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Submodule lattice quasivarieties and exact embedding functors for
rings with prime power characteristic*

G. CzepLI AND G. HUTCHINSON

Abstract. Given rings R with prime power characteristic p*, quasivarieties #(R) of lattices generated by
lattices of submodules of R-modules are studied. An algebra of expressions ¢ not dependent on R is
developed, such that each such 4 uniquely determines a two-sides ideal d of R. The main technical result
is that #(R) = £(S) makes all implications of the form d¢ =S = dg = R true, for any such expression
d. The proof makes use of the known equivalence between £(R) = £(S) and existence of an exact
embedding functor R-Mod — S-Mod. For k > 2, the ordered set #(p*) of all lattice quasivarieties .Z(R),
R having characteristic p¥, is shown to be large and complicated, with ascending and descending chains
and antichains having continuously many elements. More precisely, #(p*) has a subset which is order
isomorphic to the Boolean algebra of all subsets of a denumerably infinite set. Also, given any prime
power p*, k >2, a ring R can be constructed so that #(R) and Z(R°P) for the opposite ring R°P are
distinct elements of #( p%).

1. Imtroduction

For rings R with unit, the lattices Su(, M) of submodules of R-modules M are
among the most important examples of modular lattices. A lattice L is called
representable by R-modules if it is isomorphic to a sublattice of some Su(zM). The
class Z(R) of all lattices representable by R-modules,

ZL(R) =S{Su(xM): g M is an R-module},

is known to be a quasivariety of lattices [15]. So, £(R) admits products, ultraprod-
ucts and direct limits, and is axiomatizable by a set of universal Horn sentences for
lattices.

As usual, R-Mod denotes the abelian category of (left) R-modules and R-linear
homomorphisms. It is known that Z(R) < £(S) iff there exists an exact embedding
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functor R-Meod — S-Mod ([ 13, Theorem 1, p. 108]; also see [11, 12]). So, this paper
may equally be considered a study of exact embedding functors between module
categories. Since there are many powerful methods for constructing exact embed-
ding functors, the abelian category connection is quite useful.

We will consider rings with prime power characteristic p*. For any two such
rings R and S, the lattice varieties HZ(R) and H.#(S) are equal iff R and § have
the same (prime power) characteristic [14, Corollary 2, p. 286]. (Here, HZ(R)
denotes the homomorphic images of lattices in £(R), etc.) The case £ =1 also
simplifies: If R and S have the same prime characteristic p, then £ (R) = Z(S) [11,
Theorem 5(6), p. 88]. For k =2, much less is known about these quasivarieties.
There are examples of rings R and S with characteristic 4 such that £(R) # £(S)
{4, 11].

In this paper, we develop and apply a method for distinguishing such lattice
quasivarieties, based on properties of ring ideals. Suppose R is a ring with
characteristic p*, p prime and k > 2. We first identify certain ‘special two-sided
ideals of R, which can be described by expressions not depending upon R. Recall
that the set Su(z Ry) of two-sided ideals of R has a (0, 1) modular lattice structure
for jom X v Y=X+ Y and meet X A Y = X n Y. There are also products:

X Y:{Z x,y,-:x,-eXandy,eroriSn},

i=1

usually written as just X¥. In addition, we consider two unary operations for
Su(gRg), denoted by | and 1 and defined as the image and inverse image under
multiplication by p:

X =pX ={pv:veXi,
1X=p '[X]={veR: pveX}.

We can form constant algebraic polynomials e, generated from 0 and 1 by binary
operations v, A and - and unary operations | and 7. (For example, take
e =(10)(10) v 1({1 A 10).) Each such e can be identified with a two-sided ideal e,
of R using the concrete operations above. To motivate the following, we observe
that it is possible to show that e, annihilates certain R-modules using only the
abelian category structure for R-Mod. First, note that 0 annihilates all R-modules,
and 1 annihilates zero R-modules. Suppose we know that d, annihilates M and e,
annihilates N. If zM is a submodule or homomorphic image of N, then dp v ex
annthilates oM. Also, d; A e, annihilates gk M @ N. Furthermore, we see that dze,
annihilates P if there i1s a short exact sequence:
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h k
0— gM — gP —> tN—0

(Given v in P, r in d and s in e, we have k(sv) =0, so A(u) = sv for some u in M,
so rsv = h(ru) = 0.) Finally, if N is isomorphic to pM (the image of 1,, + - + 1,,,
p times), then 7d, annihilates N and |ep annihilates xM.

Suppose that R and S are rings with characteristic p*, and for some such
polynomial e we have e, # R and eg = S. The above considerations suggest that
there may be no exact embedding functor F: R-Med — S-Mod. Given such an F, we
might hope to construct an abelian category diagram in R-Moed containing a
nonzero M such that e annihilates M, and then use abelian category structure
to force the conclusion that eg annihilates F(zM). But then eg =S implies that
F(xM) =0, which contradicts the hypothesis that F is an embedding. As noted
previously, this construction would also prove noninclusion of the corresponding
lattice quasivarieties: Z(R) & Z(S).

In §2, we prove the main result suggested by the discussion above. That is, we
show that Z(R) < #(S) for rings with characteristic p* implies:

le€Pyex=R}2{eec P, es=S},

where 2, denotes the set of polynomials on 0 and 1 generated by v, A, -, | and
1. So, any element of #, is a potential starting point for proving inequality of #(R)
and £(S). The motivation by diagrams above is not actually used in the proof,
which relies on the methods of Fuller and Hutchinson [7].

We have not included the ring ideal residuation operations for Su(,Rz) (given
as -. and .- in [2, pp. 325--327)) in this formulation. The reason is that the critical
Lemma 2.7a in §2 does not seem to be provable if the context is extended by adding
these two operations.

If R°P denotes the ring opposite to R, the lattice quasivariety Z(R°P) is
lattice-dual to £(R) [12, Theorem 3, p. 118]. That is:

PL(RP) = (L L e Z(R)).

Of course, £ (R) is self-dual if R is a commutative ring, and it is also true that #(R)
is self-dual for many noncommutative rings. (For example, £(R) is self-dual if R is
the ring of n x n matrices over a commutative ring S, since then R is Morita
equivalent to S, and so Z(R) = Z(S).) In §3, we show that #(R) is not always
self-dual. For p prime and & > 2, we construct a ring R with characteristic p* such
that Z(R°P) # Z(R). Note also that there are no (covariant) exact embedding
functors R-Mod — R°P-Maed for such R. The examples are based on the noncommu-
tativity of multiplication in Su(zRg) with respect to polynomials in .
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In the final section, we consider the ordered set #°(p*). This consists essentially
of all lattice quasivarieties #(R) ordered by inclusion, for rings R with characteris-
tic p*. Alternatively, consider all pairs (R, S) of rings with characteristic p* such
that there exists an exact embedding functor R: Mod — S-Meod. Then #7(p*) is
essentially the poset of equivalence classes of rings induced by this reflective and
transitive relation. It is shown that #°(p,) has power of continuum whenever k > 2,
with continuous ascending and descending chains and continuous antichains. In
particular, #°( p*) always contains a subset that is order isomorphic to the lattice of
subsets of a denumerably infinite set. The proof is based on the selection of an
independent denumerable subset {d,: n € H,} of 2. That is, for any subset H of the
denumerable set H,, a ring R(H) of characteristic p* is constructed so that for all
nin H,,

d, =1 in Su(gpen R(H)pyy) iff neH.

All the required distinctness and noninclusion properties between the elements of
W (p*) corresponding to quasivarieties Z(R(H)) then foliow from Theorem 2.7, the
main result of §2. The required inclusions are proved by the construction of
appropriate ring homomorphisms, which lead to exact embedding functors by
change of rings.

2. Modules and annihilator ideals for rings with prime power characteristic

We first recall a useful selection of known sufficient and equivalent conditions
relevant to submodule lattice representability.

PROPOSITION 2.1. Suppose R and S are rings with unit. Each of the following
conditions implies L(R) < £L(S), and 2.1a is equivalent to ¥L(R) < L(S):

2.1a. There exists an exact embedding functor F: R-Mod — §-Mod (11, 13].

2.1b. There exists a ring homomorphism S — R preserving 1. (Then there is an
exact embedding functor R-Mod — S-Mod by change of rings.)

2.1c. There exists a bimodule K such that K is a projective generator. (Then
Homg (K, —) is an exact embedding functor R-Mod — S-Mod.)

In the following, we introduce a new condition equivalent to #(R) < #(S) that
is based on the analysis of Fuller and Hutchinson [7].

DEFINITIONS AND PROPERTIES 2.2. A right R-module M, is called 1-flat
if for any r|,r,,...,r, in R, there are @,,a,,...,a, in R such that Z7_, a;r, =0,
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and given any v, v,,...,0, iIn Mg such that Z7_, v;r, =0, there is some v in M,
such that va;, = v, for each i <n.

Say that M has the left invertibility property if for all r in R, Mr = M implies
that ror = 1 for some ry in R.

Let |X| denote the cardinality of any set X.

2.2a. If Mis 1-flat, then it is flat [1, Lemma 19.19, p. 228]. In fact, it is strongly
flat in the sense of [7].

2.2b. Rr =R iff ryr = 1, for some r, in R. For any M, Rr = R implies that
Mr =M.

THEOREM 2.3. Suppose R and S are rings with unit. Let zxK denote a free
R-module with a set of generators of cardinality B > N, + |R|, and let T denote the
ring of R-endomorphisms of K, written with left to right composition: (st)(v) =
t(s(v)). Then there is an exact embedding functor F: R-Meod — S-Mod iff there exists
a bimodule (N such that N, is 1-flat and has the left invertibility property.

Proof. Assume the hypotheses, and suppose such an F exists. For n > 1, let K™
denote K @ K@ - @ K, n times, and note that |[K™| = f since f >N, + |R].
For any r: K" » K in R-Mod, there exists a: K — K" such that {a, r)> is exact,
since zK is free on f generators. Now (F(K); is a bimodule if we define
wt = F(t)(w) for t: gRK— zxK and w in F(K). Taking m =1, the proof of [7,
Proposition 4, pp. 386—387] shows that F(K),is 1-flat. If N = F(K);and Nt = N,
then Im F(f) = Nt = N =Ker 0y = Ker F(04). Since exact embedding functors
reflect exact pairs [5, Theorem 3.21, p. 66}, it follows that Im ¢t = Ker 05 = K| so
tot = 1, for some £, in T, by choosing #,(x) in ¢ ~'[x] for each free generator x of K.
So, N7 has the left invertibility property.

Now assume that there is such a bimodule ¢N,. The bimodule structure yields
a ring homomorphism «: T'— End(sN) preserving 1, defined by x(#)(v) = vt for v in
N and ¢ in T. If  preserves and reflects exactness, then there is an exact embedding
functor F: R-Mod — S-Mod by [7, Theorem 10, p. 390]. (¥ is constructed by
composing Hom(,K,, —) from R-Med to 7-Mod by 2.1c, with the exact functor
sN @ ; — from T-Maed into S-Med.) In fact, the proof of this theorem only requires
that x preserve exactness and reflect epimorphisms (that is, surjections). Suppose
(s, ty is exact in R-Mod for s,¢ in T. Clearly Im «k(s) < Ker «(). Let v be in
Ker (z), so vt = 0. Since N, is 1-flat, there are w in N and a in T such that v = wa
and at=0. Then Ima <Kert=Ims, so bs=a for some b in 7. Then
v = k(s)}(wb) € Im k(s), so {(x(s), x(¢)) is exact. Also, suppose k(f) is onto, so
Nt =Im k() = N. By left invertibility for N, we have ¢4t = 1, for some ¢, in T,
hence ¢ is onto. So, k preserves exactness and reflects epimorphisms. 0O
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DEFINITION AND PROPERTIES 2.4, Define the algebraic type
6=X0,1, v, A,-, 1, 1>, with arities <0,0,2,2,2, 1, 1.

If R is a ring with characteristic p*, then Su(xRy) is a c-algebra as described in §1.
The congruence lattice Con(R) is isomorphic to Su(xzRy), so Con(R) can also be
regarded as a g-algebra. In the following, we list some o-polynomial equations that
are satisfied in any such Su(zRyz) or Con(R). (We use exponents for repeated
products, and also to indicate repeated application of unary operations T or |.)

24a. 0,1, v, A)is a (0,1) modular lattice.

2.4b. All o-operations, hence all ¢-polynomials ¢, are monotonic. That is,
clx;,. .., x)<c(y),...,y)if x; <y fori<n.

2.4c. Multiplication is associative with unit 1, so xy <x A y.

24d. x(y vz)=xy vxzand (x v y)z =xz v yz.

24e. [x <x <1x.

24f Tlx=x v 10 and [Tx =x A 1.

24g. (Ix)y = {(xy) = x(ly).

24h. [(x vy)=lx vy

2.4 (JD*=0.

2.4j. 1"0=1and |“1=0. (But 7*"'01 and [*~"1#0)

Our ¢-algebras differ from the usual residuated integral cl-semigroup structure
for Su(xRg) by addition of | and T operations, and deletion of residuation
operations (.- and -.).

DEFINITION AND PROPERTIES 2.5. Let £, denote the absolutely free
o-algebra of all constant o-polynomials, that is, o-polynomials generated by 0 and
1 only, with no variables. Let 5 denote the unique ¢-homomorphism from £, into
Su(z Rg), so that ng(e) = eg for each e in 2.

Note that {€ € 2,: e, = R} is the equivalence class 0[1] = 5n'[R] of the con-
gruence 0z on 2, induced by 7.

2.5a. For any ring R with characteristic p*, the subset 7z '[R] of #, contains
1 and is closed under products, intersections and the inverse image operation
1, and admits joints d v e such that either d or ¢ is in nz'[R]. (Obviously,
1=11=1A1=Tl=dgv1=1ve,in Su(zRg) by 2.4.)

An equation Z(R) = #(S) does not imply that 5, and #g induce the same
congruence on %, in general, as we see by simple examples. Let Z denote the ring
of integers and Z(p*) = Z/p*Z below.
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PROPOSITION 2.6. Let R =Z(p") and S =Z(p*) x Z(p) for p prime and
k >2. Then R and S are rings with characteristic p* such that #(R) = L(S). If
d=1*""1 and e =10, then ng(d) = ng(e) but n5(d) # nsle).

Proof. There are ring homomorphisms R —S and S — R preserving 1, so
PL(R) =ZL(S) by 2.1b. Clearly ng(d) =p* 'R =ng(e) but ns(d) =p*~'S #
{s € S:ps =0} =ng(e). a

We now prove the main result of this section.

THEOREM 2.7. Suppose R and S are rings with characteristic p*, p prime and
k=22 If (R) < L(S), then {ee Py eg=R}2{ecPyes=S5}.

Proof. Assume the hypotheses, and let K = xR® be the free R-module on a
set X of B generators, for f >N, + |R|. Let T be the ring of R-endomorphisms
<K — zK, written left to right, so T has characteristic p* also. By 2.3, there exists
a bimodule ¢N; such that Ny is 1-flat and has the left invertibility property. We
need:

LEMMA 2.7a. If e is in 2, then e, N < Ne.
LEMMA 2.7b. If e is in P, and h: K—> K is in ey, then Imh S e K.

Both lemmas are proved by induction on the length of the o-polynomial e.

Elementary arguments verify 2.7a when e is 0 or 1, when e is |d for d such that
d¢N < Ndr, and when e is ¢d or ¢ v d with ¢gN S Ncy and dgN S Nd,. If e =1d
with dgN < Nd, then w in TdgN implies that pw = X7_, v;t, for v;in N and ¢, in d,
i <n. So, we have za =w and zb,=v, for some z in N and a,b,,...,b,in T
satisfying ap — X7_, b;t; =0, since N, is 1-flat. (Identify p with the central ele-
ment 1,4 -+ 1, p times, in T.) Then paedy, so w=zaeN?td,, proving
TdsN = N1d,. The case e = ¢ A d completes the induction, and it suffices to show
that Ncy A Ndr S N(cr A dr). Suppose y € Nep A Ndp, so y =X} v,s, = Z7L, wit;,
for v;in N and s, €cr, i <n, and w;in N and ¢; in dr, j <m. Since N is 1-flat, we
have x in N, q; in T for i <n and b, in T for j <m such that xa;, =v, for i <n,
xb; =w, for j <m, and X]_, a;5, — 7L, b;t; =0. But then ¢ = Z]_, a;5, = X" b;t; €
¢y A dy, proving that y = xgq is in N(c; A dy). This completes the proof for Lemma
2.7a.

Observe that X7_, r,x, is in exK for distinct x,, X, . .., x, in the free generating
set X for K iff each r; is in ep, { <n. The proof of Lemma 2.7b follows by routine
computations, which we omit.
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Suppose eg=S8. Then N =egN = Ne, using 2.7a. Since zK is free on f
generators and | K| = B, there exists ¢, in T such that Im ¢, = exK, and any hin T
such that Im s € ez K equals ¢t, for some ¢ in T. By 2.7b, it follows that e, & 71,,
$s0 N = Ne,=NTt, =Nt,, so tyt =1, for some ¢, in T by the left invertibility
hypothesis for N,. Then ¢, is onto and K=1Im¢ =ezK. As noted above,
lxx €exK for x in X implies 1, € e, so that e = R. O

The converse of Theorem 2.7 remains an open question.

PROBLEM 1. Do there exist rings R and S with characteristic p* such that
nz'[Rl 2n5'[S] and Z(R) £ £(S)?

Note added at final revision. For additional information on Problem 1, sece G.
Czédli. Some lattice Horn sentences for submodules of prime power characteristic,
Acta Math. Hungar. 65 (2) (1994), 195-201.

3. Opposite rings that have different classes of representable lattices

Except for multiplication, the g-polynomial operations on Su(z Rz) depend only
on the structure of R as an additive group. To study the opposite ring R°P, consider
duals of g-polynomials obtained by reversing products and leaving everything else
unchanged.

DEFINITIONS AND PROPERTIES 3.1. If R is a ring with 1 and characteris-
tics p*, then R°P will denote the set {r*:r e R} with the operations r* + s* =
(r +s)* and r*s* = (sr)*, as usual. So, R°P is a ring with unit 1* and characteristic
p~.

For e in #,, define e°® recursively by the equations 0°°=0, 1°°=1,
(c vd)P=cPvd?P (c Ad)P=cAdP, (Tc)°P = T(cP), ({c)°P = |(c°P) and (re-
versing) (¢d)°P = d°Pc°P.

3.1a. For all e in #,, (e°P)°P =e.

PROPOSITION 3.2. If R is a ring with characteristic p* and S is the opposite
ring R°P, then eg = {r*e S:r c e} for all e in Py. In particular, es = S iff e = R.

COROLLARY 3.3. If R is a ring with characteristic p* and ¥ (R) = L(R°P),
then {e € Py:ep =R} = {e°P.e € P, and e = R}.

The proof follows from 2.7, 3.1a and 3.2.
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It is known that #(R) € #(S) implies F(R°P) < £(S°P), since there are
contravariant exact embedding functors R°P-Mod — R-Mod and S-Mod — S°P-Mod
by dual modules (or see [12, Theorem 3, p. 118]). This yields:

COROLLARY 34. If #(R) < L(R), then #(R) = L(RP).

To construct S with characteristic p* such that £(S) # £(S°P), it suffices to
find S and a o-polynomial e such that eg # .S but ¢ =S. A simple example is
obtained by taking e = ¥~ (107(1070)), as shown next.

THEOREM 3.5. If p is prime and k > 2, then there exists a ring S with p*+7
elements and characteristic p* such that £(S) # £(S°P).

Proof. Assume the hypotheses. Let ¢ =10, so e=1""!(cf(cc)) and
e°? = ¥~ 1(1(cc)c). To prove 1e€eP, it suffices to prove p*~! e (1(cc)c)s, hence it
suffices that xy =p*“~! for some x in ({(cc))s and y in cg, and so it suffices that
there exist x, y, z and w in S such that xy =p*~!, px =zw and py = pz = pw = 0.
Note that x? and yx must be nonzero in S to avoid p*~'x =0, which would lead
to px =0 in the case k =2. In the ring S we construct, every element will be a
Z-linear combination of the elements:

I, x, x%, xy, y, z and w.
Based on the above list, define the Z-module (abelian group):
4 =C(p*) @ C(p*) ® C(p) ® C(p) ® C(p) ® C(p) ® C(p),
where C(p’) is cyclic of order p/. Define
a,=<0,...,0,g,,0,...,00mAfori=12...,7>,

where g; generates the /th factor of 4. So, a, has order p%, a, has order p?, and a,
through a, have order p. Also, {a,, a,, ..., a,;} generates 4 as a weak basis. That
is, for any integers n;, n,, ..., a;, ZI_, n,a; = 0 implies that n,a, =0 for i <7. Let
End(A4) denote the ring of Z-linear endomorphisms 4 — 4, again with left to right
composition. Since 4 is a 7-term coproduct of cyclic groups in Z-Mod, any 4 in
End(A) is uniquely determined by the 7-tuple {A(a;)>,.,in A7, and A can be defined
by any choice of such {A(a;}>, ., provided only that p/a, = 0 must imply p/A(a;) =0
for i <7. In the table below, we define seven elements of End(4) by listing the
corresponding values A(a;), ..., 4(a;) in a column beneath 1. The nonzero entries
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in this table are motivated by the desired relations A, =1, 4,4, =p*~'1, and
A.A, =pi,, and the trivialities 4,4, = 4,, and 4,4, = 4,,. Although they are not
needed for the formal definitions, the correspondence on the left may assist the
reader (4,(a;) = ng; if a; corresponds to v and na; to vu).

Ay Ay Ay Ayx Ay Ao A,
a, <1 a, a, a a, as ag a,
a, <> x a, a; 0 p*la, plag 0 0
ae—x*{a 0 0 0 pla, 0 0
aeoyx | agz 0 0O 0 0 0 0
as <>y as a4 O 0 0 0 0
Qg >z a 0 O 0 0 0 pa,
a; > w a; 0 0 0 0 0 0

Let U denote the set {4,, 4., 4., 4x, 4,, 4., 4, }. We observe that 4, is the unit 1,

of End(4) and has order p*, A, has order p?, and the other members of U have
order p. We compute the multiplication table for elements of U:

W A Aw A Lo A A,
Al A A e A A A A,
A, Ay A, O pFlA o pFlA 00
i la. 0 0 0 ptli. 0 0
Ao lde 0 0 0 0 0 0
L olA Ay 00 0o 0 o
Ll AL o0 0o o0 0 0 pi,
A Ay, O 0 0 0 0 O

Define S to be the Z-submodule of End(A4) generated by U, that is:
S=Z\+2i +Zi, + 1), +1i +Zi, +Z,.

By the multiplication table for U and ring distributivity, S is a subring of End(A4)
with unit 4;. Since {AM(a,): 4 e U} ={a, a,, ..., a,}, Uis a weak basis for S, so §
is a ring with characteristic p* and p**’7 elements. Again defining ¢ =10, we
compute the appropriate two-sided ideals of S:
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s =Zp* A+ Zph, + Zhy + LAy + Zh, + 2. + ZA,,
cses = Zphy,
Neses) =Zp* "\ + LA, +ZA  +ZA, +ZA, + 24 . +Z),,
Neses)es =Zp*~'A + Zpi,,
¢sN(eses) = Ziy, + Zph,.
Now p*~'1, is not in cg1(cgcs), since U is a weak basis for S. But p*~'4, is in

TNcges)cs, 80 A is in e but not in eg. Therefore, e =S and ey # .S, proving
L(S) # L(S°P). ]

To assist in understanding the result, we recall the diagram approach of §l.
Consider the pair of short exact sequences in S-Mod:

0-p4A—->B->pC—->0 and 0-pB—>D—-pE -0

Then z annihilates p4 and w annihilates pC, so px = zw annihilates B and x
annihilates pB. But y annihilates pE, so xy =p*~' annihilates D. For S°P-Mod,
p*~'D =0 follows from the dual short exact sequences:

0->pC—>B—->p4—-0 and O0->pE—>D->pB-0.

If there was an exact embedding functor F: S-Mod — S°°-Mod, then S-Mod would
also have this dual property. So, an alternative approach to providing 3.5 would be
to construct the dual pair of short exact sequences in S-Mod with p*~'D 0. (We
do not assert that the alternative proof can be carried out exactly as stated,
although the actual proof is based on a similar idea.)

4. The semilattice of lattice quasivarieties for rings with prime power characteristic
In this section, we study the ordered set #( p*) of lattice quasivarieties Z(R) for
rings R with a fixed characteristic p*. In the cases of interest, #'(p*) is a join

semilattice, with a large and complicated structure.

DEFINITIONS 4.1. Let # denote the set of all quasivarieties of lattices,
ordered by inclusion. For m > 2, let

R(m) = {R: R is a ring with unit having characteristic m},
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and let #(m) = {L(R): Re #(m)} =¥, also ordered by inclusion. Note that we
have disregarded foundational problems, which may be avoided in many standard
ways. (For example, quasivarieties are universal Horn classes, and so can be
axiomatized by certain countable sets of implicational sentences for lattices. Alter-
natively, we may represent ¥ by a set of its finitely generated members, taking one
representative for each isomorphism class, since an arbitrary lattice L is in ¢ iff
every finitely generated sublattice of L is in ")

4.1a. #" is a complete lattice, with complete meets obtained by taking intersec-
tions of quasivarieties, and complete joins characterized by the condition that .Z is
in the join iff L satisfies every implicational sentence for lattices which is satisfied in
every factor of the join. (Apply [2, Theorem 19, p. 123] to lattices and such
implicational sentences.)

Note the following application of well-known results.

PROPOSITION 4.2. If R and S are any rings with unit, then ¥(R) v £(S) =
PL(R x S) in # . In particular, #(p*) is a join subsemilattice of # .

Proof. For any rings R and S with unit, #(R) v £(5) € (R x S) by 2.1b. If
M i1s an R x S-module, then {1,0>M is in R-Mod and <0, 1>M is in S-Mod, with

Su(g . sM) = Su(x {1, 0>M) x Su(s<0, 1> M)

in an obvious way. It follows easily that #(R x S) = L(R) v #(S). The second
part follows because #(p*) is closed under products. 0

PROPOSITION 4.3. If p is prime and k > 2, then % (p*) has the largest element
L(L(p*)) and smallest element £(S,), where S, is the Z-endomorphism ring of

B=C(p)”@C(pH @ - @®C(phH,

and C(p/)™ is an o =N, direct power of cyclic groups of order p’.

Proof. Obviously L(Z(p*)) and #(S,) are in #°(p,). Suppose R € #( p*). Since
there exists a unique ring homomorphism Z(p*) — R, we have Z(R) < L(Z(p*))
by 2.1b. So, #(Z(p*)) is the largest element of #°(p*).

By [15, Corollary 3, p. 30], if every finite system of ring equations which is
solvable in R is also solvable in §, then #(S) € Z(R). So, there exists a finite or
denumerable subring S of R such that £(S) = #£(R). Let

sM=S®pS®p>S®-- - @p~<'S.
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Since p“M =0, M (as an abelian group) is a direct sum of cyclic groups, each
of order p/ for some j <k, by Kulikov’s theorem (see [6, Theorem 17.1,
p. 87]). Note that p*~/S has a cyclic direct summand of order p/ for 1 <j <k,
and so M has cyclic direct summands of all orders p, p?, ..., p*. But then the
direct power ¢N = (M is isomorphic to B as an abelian group, since M is
denumerable.

A left S-module N corresponds to a ring homomorphism S — End,(N)°P
preserving 1 by [1, p. 26] (we compose left-to-right). Then L(SF) =
ZL(End,(N)°P) = #(S) = Z(R) by 2.1b, and so £(S§P) is the smallest element of
W (p*). But then Z(S,) = L(SP) is smallest for #'(p*), using 3.4. O

We have been unable to settle some obvious questions about #°(p*) and its
relationship to #".

PROBLEM 2. Does # (p*) admit all infinite # -joins of its members? Does it
admit all infinite ¥ -meets, or all finite # -meets, of its members? Is #(p*) a
complete lattice, or even a lattice?

PROBLEM 3. Is #°(p*) order-isomorphic to #°(¢g*) for distinct primes p and
q?

As noted in §l, #°(p) is a singleton for p prime, by well-known results:
W(p) ={&(S)} for S =Z(p) since R € #(p) implies L(R) < #(S) by 2.1b and
ZL(S) < #(R) by 2.1a using the tensor product functor zRs® ¢ ~ corresponding to
the free S-module Ry (S is a field). For k > 2 and p prime, we will show that #7(p%)
has the largest possible cardinality (power of continuum N, the cardinality of #7),
and that #7(p*) is very complicated by the explicit criterion defined next.

DEFINITIONS AND PROPERTIES 4.4. Let P denote the Boolean algebra of
all subsets of a denumerably infinite set X, ordered by inclusion. An ordered set
(Y, <) is called P-large if there is a subset Y, of Y such that P is order-isomorphic
to (Y,, <) for the order <, induced by < on Y,. The following facts are well
known:

44a. If (Y, <) is P-large, then it has antichains with continuously many
elements. (For example, there are continuously many pairwise incomparable subsets
XuX of Z, with X< {j:j>1}and X'={—j:j>1and j ¢ X}.)

4.4b. If (Y, <) is P-large, then it has chains of continuously many elements
isomorphic to the ordered set of real numbers R. (For example, consider the cut
sets {g € Q: g <r} of the field of rationals Q corresponding to each r in R.)
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Hereafter, we consider a fixed prime p and fixed k£ > 2. To prove #(p*) is
P-large, we construct elements d, in 2, (see 2.5) for n = 2k, and then show that a
ring R(H) in #°(p*) can be constructed from any subset H 2 {2k} of {n:n > 2k}
so that (d,) g, = R(H) iff n € H. (We assume 2k is in H to avoid H = (&, without
loss of generality.)

DEFINITIONS 4.5. Let Hy= {n:n > 2k}. Abbreviate 1*~! by f, so
tK={reR:p*"'rek}
for K in Su(zRy). Define elements ¢;, in #, for n € H, by induction on j:

eO.n = 0’

en=(fe,_,,)" forli<j<n—1.

For n in Hy, let d, =fle,_, ,, and say that 7, is satisfied in a ring R of #(p*) if
(dn)R = R

DEFINITIONS AND PROPERTIES. Suppose 2k € H = H,. Using the vari-
ables:

Y(H)={y,;;neH 1<i<n—1},

form the free polynomial ring F(H) = Z(p*)[Y(H)]} on Y(H) with coefficients in
Z(p*). Let J(H) denote the ideal of F(H) generated by:

r=p "y, yneH, 1 <i<n—1},0{p* 'y, :neH}

Here and in the sequel, y,, =1 in F(H). Finally, define R(H) = F(H)/J(H). So,
R(H) is a commutative ring with 1.

Next, we describe the structure of R(H). Hereafter, H will denote a fixed subset
of {n:n =2k} containing 2k.

DEFINITIONS AND PROPERTIES 4.7. Let B={(n,i):neH,1<i<n—1},
and let W denote the set of all functions w: B —Ny=1{0,1,2,...} such that
w(n, i) =0 for all but finitely many elements of B. Note that associative and
commutative sums w + z can be defined pointwise for w, z in W,

Say that w in W has a high power if w(n, i) > n for some (n,{) in B and has a
last variable if wn,n — 1) > 0 for some »n in H. Let U denote the set of all functions
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u in W with no high power and no last variable (that is, u(n, i) <n for all (n, i) in
B, and u(n,n — 1) =0 for all n in H). Let V denote the set of all functions v in W
with no high power and at least one last variable (that is, v(n, i) <n for all (n, i) in
B, and v(n,n — 1) >0 for at least one n in H). Let U denote the set of all finite
subsets of U, and V the set of all finite subsets of V.

As usual, a monomial in F(H) is a product o I, y:" for a in Z(p*)\{0}
and w in W. Every element of F(H) is expressible as a sum of monomials obtained
from distinct elements of W: the empty sum is 0 in F(H) by convention. Let
X, =Yu; +J(H) in R(H) for (n,i) in B, and x,,=1+J(H) for nin H. Let y*
denote the product I, ;. zy2v"" in F(H) for win W, and x* =TI, g X" =
'+ J(H) in R(H).

A monomial ay” in F(H), o € Z(p*)\{0} and w € W, is called reduced if w e U
orifweVand ae{l,2,...,pF "' =1} = Z(p»).

4.7a. F(H) is free as a Z(p*)-module, with basis the set {y": we W}.

4.7b. Let c in W be given by c(n, i) = 0 for all (n, i) in B, so ¢ € U. Then 1y is
the ring unit for F(H), so 1x¢ is the ring unit for R(H).

4.7c. If visin V, then p*~'y®is in J(H), and for « € Z(p*), ay’ is in By* + J(H)
for some fin {0, 1, ... ,p¥~"—1}. (See 4.6, and let § be the remainder of a after
division by p*~'.)

4.7d. Suppose w in W has a variable y,, and high power, and z in W satisfies
z(n, i) =wn, i) —n, zn,i—1)=wh,i—1)+1 if i>1, and z(m,j) =w(m,j)
otherwise. Then ay™ is in p*~lay® + J(H), and ay* is in J(H) if z is not in U. (Use
4.6 and 4.7c, and note that p*~2=0 in Z(p*).)

We now show that every element of R(H) is uniquely representable in F(H) by
a sum of reduced monomials obtained from distinct elements of Uu V.

PROPOSITION 4.8. Each f+ J(H) in R(H), [ in F(H), has a canonical form:.

[HIH) =} oy + ¥ By'+ J(H),

ueC veD

where CeU, DeV, a, € Z(p)\{0} for all u in C, and p,€{1,2,...,p* ' —1} for
all v in D. (By convention, C = D = (¥ represents 0 in R(H).) The sets C and D and
coefficients {a,: u € C} and {f,: v e D} are uniquely determined.

Proof. To show that every element of R(H) is representable by a sum of
reduced monomials, it suffices to show that every non-reduced monomial ay* in
F(H) is either in J(H) or in éy* + J(H) for some reduced monomial éy°. If w has
no high power, then it is in V since oy ” is not reduced, and so ay* is in J(H) or in
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fy” + J(H) for fy” reduced by 4.7c. If w has a high power, then ay™ is in J(H) or
doy° + J(H) for a suitable reduced monomial dy* by 4.7d and the above.

To show that C, D and all «, and f§, are uniquely determined for a given
fH+JH, =2, cay“+Z,.pBy" it suffices to show that C=D =g if fis in
J(H). But then f = f, in F(H), where:

Jfo= Z gn,i'()’:',,i“Pk_lyn,i-l)+ Z hn'pk‘lyn.n~l’

(ni)e P neQ

for finite subsets P € B and Q < H, and elements g,, € F(H) for (n,i) in P and
h,e F(H) for nin Q.

If we express f; as a Z( p*)-linear combination of basis elements in F(H) by 4.7a,
then each monomial summand either has a high power or is a multiple of p* ~'. But
then D = ¢, since a reduced By” for fin {1,2,...,p* ' —1} and vin Vis not a
sum of such terms plus reduced monomials dy" with w # v.

Suppose C # &, with u in C. Since u contains no high powers and no last
variables, there is a & in Z(p*)\{0} such that y* is a summand of a Z(p*)-linear
combination of basis elements equal to g, (—p*~'y,;_,) for some (n, i) in P, by
4.7a. Expressing g,, as a Z(p*)-linear combination of basis elements, it has a
summand monomial xy* such that —p*~'sx =4 in Z(p*) and u’' in U satisfies
u'(m,j) =u(m,j), except that w'(m,i—1)=umi—1)—1 if i>1 Define
u”: B->N, by u'(m,j)=u'(m,j) for (m,j)#(n,i) and u"(n,i)=u'(n, i) +n=
u(n, i) + n. Then ky“ is a summand of g,, - y7,, and y,, is the only variable with a
high power in «”. From —p*~'x = 6 #0, we have p Y in Z( p*). Since all the other
summands of f, not obtained from g, - v, have either another variable with high
power or a coefficient divisible by p, f = f, cannot hold, and C = (. 0

COROLLARY 4.9. R(H) is in #(p*), so L(R(H)) is in W (p*).

Proof. Use 4.7b and 4.8.

PROPOSITION 4.10. If n e H < Hy, then 4.10a holds for j =1,2,...,n, and 1,
is satisfied for R(H).
4.10a. y,, -+ J(H) e (ﬂej— 1) R(H) -

Proof. First, verify 4.10a by induction. Note that p*~'y,,_, is in J(H) for
neH,soy,, ,+J(H)isin (fey,)pu,- This proves 4.10a for j = 1, so assume 4.10a
as induction hypothesis, for 1 <j <n. Using 4.6, we have:

pk_]yn,n—(j+l) +J(H) = Yun-,; +J(H) e(ﬂej—],n)’}i(l-l) = (€, ) rtrys
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and 4.10a for j + 1 follows, completing the induction. By 4.10a with j = n:

Lrery = Yno +J(H) € (Re, 1 ) rin = () ran s
from which it follows that 7, holds for R(H). ]

By close analysis, we will see that 7, is not satisfied in R(H) when n is in Hy\ H.
The remaining desired results then follow quickly.

DEFINITIONS AND PROPERTIES 4.11. Fix H and » with 2k € H < H, and
ne H\H. For 0 <j <n—1 and w in W, say that the predicate last (j, w) holds iff
there exists m > n, m € H, such that

wim,m =2y +wim,m —3)+---+wim,m—j—1)>1,

and that last*(j, w) holds iff
Z wim,m -2y +wim,m —=3)+---+wlm,m—j—1)]>2.
meH

By convention, any empty sums equal zero. In particular, the sums above are taken
as empty if j =0.

4.11a. For all w, last(0, w) and last*(0, w) do not hold.

4.11b. If last(, 2) holds, then so does last(s, w) for j <s <n —1.

4.11c. If last(j, w) holds, then so does last(j, w + z) for all z in W. If last*(j, w)
holds, then so does last*(j, w + z) for all z in W.

4.11d. If last(j, w) and last(j,z) both hold, then last*(j, w +z) holds. If
last*(j, w) holds, then last( j, w) holds.

PROPOSITION 4.12. Suppose n is in Hy\H, and L, is the Z(p*)-submodule of
R(H) generated by W, = U, wU,uV, for j=0,1,...,n—1, where:

U, ={1x*ue U and last( j, w)},

U, = {px*: z € U and not last(j, z)},

Vo={lx"veV}.
Then L, is an ideal of R(H) which satisfies 4.12a for j =0, 1,...,n — 1, and 1, is not

satisfied in R(H).
4.12a. (e, )reery S L;-



442 G. CZEDLI AND G. HUTCHINSON ALGEBRA UNIV.

Proof. Assume the hypotheses, and suppose that 0 <j <n —1. By 4.7a, L, is an
ideal if ax®*7is in L; for all w in W and ax® in W,. By 4.7d, x**7 is a multiple of
p*~'if w + z has a high power, and then ax”** is in L, by 4.8. If w + z has a last
variable and no high power, then 1x**? is in V, < L,. Otherwise, w +z is in U,
hence z is in U. Then ax**? is in L; if last(j, w + z), and also if not last(j, w + z)
because then not last( j, z) holds by 4.11c and p divides « by 4.8. Therefore, each L;
is an ideal of R(H).

Next, verify 4.12a by induction on j. If j =0, then 4.12a follows from 4.8, 4.11a
and 0 = |1 for Z(p*). So, assume 4.12a as induction hypothesis, 0 <j <n — 1. Let
K denote the Z( p*)-submodule of R(H) generated by K* U V,, where:

K*={1x“ue U and last*(j, u)} v {px“ u e U and last(j + 1, u)}.

To prove that L} < X, it suffices by ring distributivity to show that ax" is in X for
o =00,...,4, and w=w, +w,+- - +w,, where ax™ is in W, for
s=1,2,...,n Since 0 is in K, we assume ax* # 0.

Suppose that w has no high power. If w has a last variable, then 1x" is in V),
hence ax" is in K. Suppose w has no last variable, so w € U. Then no w, has a last
variable, hence all ¢, x"~ are in U,y u U, by 4.8. But « =0 if more than & elements
o, are equal to p, hence by 4.8 at least n — k > k > 2 elements o, x*~ are in U,;. Since
last( j, w,) for two or more s values implies last*(j, w) by 4.11c,d, ax" is in K.

Now suppose that w has a high power, say w(m, i) = m for (m, i) € B. Define z
in Wby z(m,i)y=wm,i) —m,z(m, i — 1)y =w(m,i —1)+1if i > 1, and z(s, {) =
w(s, f) otherwise. By 4.7d, ax" =p*~'ax?, and ax” #0 implies z € U and pfa,
hence no a,x" is in U,. If some a,x™ is in Uy, then last(j, w) holds by 4.1lc, so
either last(j, z) holdsorm >nand m —j — 1 <i <m — 2, so last(j + 1, z) holds by
4.11b or because z(m, i — 1) > 0, hence ax” = p* ~lax? is in K. Otherwise, o, x"* is in
Vo for all s <n. Then z in U implies that i=m — |, w(m,m —1) >0 for all
s <n,wim,m—1) =m and z(m, m —2) > 0. But then m > n, and so m > n since
m e H and n ¢ H. Therefore, last(1, z) holds, and ax” = p*~'ax® is in K by 4.11b.
This completes the proof that L} < K.

Suppose fefi(L7), and f=Z, . ca,x*+ Z,.p B,x" as in 4.8. Using 4.7c,

polf=3% pFlax“ell =K.

ue C

By the uniqueness in 4.8, either p | , or last*(j, ) holds or last(j + 1, u) holds for
each u in C. If p | a,, obviously o,x*is in L;, ;. Now last*(j, u) implies last(j + 1, u)
by 4.11b,d, and so a,x* is in L;,, in the last two cases. Then V, = L, , implies
feL;,, so:
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(e s 1adran = Mhe)ran S MLT) S L4y,

using 4.12a and the above. This completes the induction, and so 4.12a holds for
0<j<n—-1

By 4.12a with j=n — 1, (d,) gy = (€0 10)rary S Lo 1. Since gy, is not in
L,_, by 4.7b and 4.8, 7, is not satisfied in R(H). O

Our theorem follows; the ordered set of lattice quasivarieties obtained from
rings with characteristic p* has a subset isomorphic to the set of all subsets of a
denumerable set.

THEOREM 4.13. Let p be prime and k > 2. then W (p*) is P-large, using the
Sfunction assigning L(R(H)) to any H such that 2k € H < {n: n > 2k}. In particular,
W p*) has power of continuum with continuous antichains and continuous ascending
and descending chains.

Proof. By 4.9, we can assign #(R(H)) in #(p*) to any such H. Suppose
{2k} < H; < H, for j=1,2. Then H, 2 H, iff (R(H,)) € Z(R(H,)). The forward
implication follows from 2.1b since the obvious ring homorphism
F(H,) > F(H,)—> F(H,)|J(H,) annihilates J(H,) by 4.6. The reverse implication
follows by 4.10 and 4.12, because » in H, implies that 7, is satisfied in L(R(H,)),
hence in #(R(H,)), hence n is in H,. Therefore, #( p*) is P-large since P is order
isomorphic to ({H:2k e H < H,}, 2). (Recall that P is isomorphic to its order
dual by set complementation.) The rest follows from 4.4a,b. !

This result easily extends to rings with non-square-free characteristic. Rings with
composite characteristic are reducible to products of rings with prime power
characteristic in the usual way.

PROPOSITION 4.14. Suppose m > 2 and the prime power factorization of m is

pYOpE@ - p*) for s distinct primes p; and positive integers k( j). Then there is a

join semilattice isomorphism:

2 W m) = W (PR X H(PA) X - X W (ph).
For R of characteristic m, 2 is defined by:

ML(R)) = CZLR[pYVR), Z(RIp5PR), . .., L(R[pL“R)).
The reciprocal 1, of A is defined for R; in R(pk?), j <s, by:

A LR, (Ry), ..., L(R)>=L(R X Ry x -+ XR,).
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Proof. Suppose L(R) < Z(S) for R and § in #(m). For j < s, exact embedding
functors F from 2.1a and G;, H, from 2.1b in the diagram below can be completed
to a commutative square by a unique exact embedding functor F;:

F;
R/p¥PR-Mod — S[pXS-Mod
G

) | _on

R-Mod ———— S-Mod

Then Z(R/pfR) < L(S[pfS) in #(pF”) for j<s by 2.1a, and so 1 is a
well-defined and order-preserving function. Clearly 4, is well-defined and preserves
order by 4.2. We omit the standard computations verifying that A and A, are
reciprocal bijections. O

COROLLARY 4.15. Suppose m = 2. If m is a square-free integer (a product of
distinct primes), then W (m) is the singleton {L(Z(m))}. If m is not square-free, then
W (m) is P-large.

The first part was proved in [11, Theorem 5(6), p. 88]; it also follows from 4.14
because each #°(p) equals {F(Z(p))}. The second part follows easily from 4.13
and 4.14, since m then has a factor p* for k > 2.
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