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Lattices with many congruences are planar
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Abstract. Let L be an n-element finite lattice. We prove that if L has
more than 2n−5 congruences, then L is planar. This result is sharp, since
for each natural number n ≥ 8, there exists a non-planar lattice with
exactly 2n−5 congruences.
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1. Aim and introduction

Our goal is to prove the following statement.

Theorem 1.1. Let L be an n-element finite lattice. If L has more than 2n−5

congruences, then it is a planar lattice.

In order to point out that this result is sharp, we will also prove the
following easy remark. An n-element finite lattice L is dismantlable if there is
a sequence L1 ⊂ L2 ⊂ · · · ⊂ Ln = L of its sublattices such that |Li| = i for
every i ∈ {1, . . . , n}; see Rival [13]. We know from Kelly and Rival [9] that
every finite planar lattice is dismantlable.

Remark 1.2. For each natural number n ≥ 8, there exists an n-element non-
dismantlable lattice L(n) with exactly 2n−5 congruences; this L(n) is non-
planar.

We know from Freese [5] that an n-element lattice L has at most 2n−1 =
16 · 2n−5 congruences. In other words, denoting the lattice of congruences of
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L by Con(L), we have that |Con(L)| ≤ 2n−1. For n ≥ 5, the second largest
number of the set

ConSizes(n) := {|Con(L)| : L is a lattice with |L| = n}
is 8 · 2n−5 by Czédli [3], while Kulin and Mureşan [10] proved that the third,
fourth, and fifth largest numbers of ConSizes(n) are 5 · 2n−5, 4 · 2n−5, and
7
2 · 2n−5, respectively. Since both [3] and Kulin and Mureşan [10] described
the lattices witnessing these numbers, it follows from these two papers that
|Con(L)| ≥ 7

2 · 2n−5 implies the planarity of L. So, [3], [10], and even their
precursor, Mureşan [11] have naturally lead to the conjecture that if an n-
element lattice L has many congruences with respect to n, then L is necessarily
planar. However, the present paper needs a technique different from Kulin and
Mureşan [10], because a [10]-like description of the lattices witnessing the sixth,
seventh, eighth, . . . , k-th largest numbers in ConSizes(n) seems to be hard to
find and prove; we do not even know how large k is. Fortunately, we can rely
on the powerful characterization of planar lattices given by Kelly and Rival
[9].

Note that although an n-element finite lattice with “many” (that is,
more than 2n−5) congruences is necessarily planar by Theorem 1.1, an n-
element planar lattice may have only very few congruences even for large n.
For example, the n-element modular lattice of length 2, denoted usually by
Mn−2, has only two congruences if n ≥ 5. On the other hand, we know, say,
from Kulin and Mureşan [10] that there are a lot of lattices L with many
congruences, whereby a lot of lattices belong to the scope of Theorem 1.1.

Outline and prerequisites

Section 2 recalls some known facts from the literature and, based on these
facts, proves Remark 1.2 in three lines. The rest of the paper is devoted to the
proof of Theorem 1.1.

Due to Section 2, the reader is assumed to have only little familiarity with
lattices. Apart from some figures from Kelly and Rival [9], which should be at
hand while reading, the present paper is more or less self-contained modulo
the above-mentioned familiarity. Note that [9] is an open access paper at the
time of this writing; see http://dx.doi.org/10.4153/CJM-1975-074-0.

2. Some known facts about lattices and their congruences

In the whole paper, all lattices are assumed to be finite even if this is not
repeated all the time. For a finite lattice L, the set of nonzero join-irreducible
elements, that of nonunit meet-irreducible elements, and that of doubly irre-
ducible (neither 0, not 1) elements will be denoted by J(L), M(L), and Irr(L) =
J(L) ∩ M(L), respectively. For a ∈ J(L) and b ∈ M(L), the unique lower
cover of a and the unique (upper) cover of b will be denoted by a− and
b+, respectively. For a, b ∈ L, let con(a, b) stand for the smallest congruence
of L such that 〈a, b〉 ∈ con(a, b). For x, y ∈ J(L), let x ≡con y mean that

http://dx.doi.org/10.4153/CJM-1975-074-0
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con(x−, x) = con(y−, y). Then ≡con is an equivalence relation on J(L), and
the corresponding quotient set will be denoted by

Q(L) := J(L)/≡con. (2.1)

As an obvious consequence of Freese, Ježek and Nation [6, Theorem 2.35] or
Nation [12, Corollary to Theorem 10.5], for every finite lattice L,

|Con(L)| ≤ 2|Q(L)| ≤ 2|J(L)|; (2.2)

more explanation of this fact and (2.3) below will be given later. The situation
simplifies for distributive lattices; it is well known that

if L is a finite distributive lattice, then |Con(L)| = 2|J(L)|. (2.3)

Next, having no explicit reference at hand, we give a possible way how
to extract (2.2) and (2.3) from the literature; the reader may skip over these
details. A quasiordered set is a structure 〈A;≤〉 where ≤ is a quasiordering,
that is, a reflexive and symmetric relation on A. For example, if we let a ≤con b
mean con(a−, a) ≤ con(b−, b), then 〈J(L);≤con〉 is a quasiordered set. A subset
X of 〈A;≤〉 is hereditary, if (∀x ∈ X)(∀y ∈ A)(y ≤ x ⇒ y ∈ X). The set of
all hereditary subsets of 〈A;≤〉 with respect to set inclusion forms a lattice
Hered(〈A;≤〉). Freese, Ježek and Nation [6, Theorem 2.35] can be reworded
as 〈Con(L);⊆〉 ∼= Hered(〈J(L);≤con〉). To recall this theorem in a form closer
to [6, Theorem 2.35], for the ≡con-blocks of a, b ∈ J(L), we define the meaning
of a/≡con ≤con b/≡con as a ≤con b. In this way, we obtain a poset (partially
ordered set) 〈Q(L);≤con /≡con〉. With this notation, the original form of [6,
Theorem 2.35] states that Con(L) ∼= Hered(Q(L);≤con /≡con), which implies
(2.2).

Since ≡con will play an important role later, recall that for intervals [a, b]
and [c, d] in a lattice L, [a, b] transposes up to [c, d] if b ∧ c = a and b ∨ c = d.
This relation between the two intervals will be denoted by [a, b]↗[c, d]. We say
that [a, b] transposes down to [c, d], in notation [a, b]↘[c, d] if [c, d]↗[a, b]. We
call [a, b] and [c, d] transposed intervals if [a, b]↘[c, d] or [a, b]↗[c, d]. It is well
known and easy to see that

if [a, b] and [c, d] are transposed intervals, then con(a, b) = con(c, d). (2.4)

Note that Con(L) in (2.3) is a Boolean lattice. Even more is true: Con(L)
is Boolean for every finite modular lattice; this follows from the characteriza-
tion of lattice congruences given in Dilworth [4] and it is explicit in the mono-
graph Crawley and Dilworth [2, 10.3 combined with 10.7]. Next, let L be a
finite distributive lattice, and pick a maximal chain 0 ≺ a1 ≺ · · · ≺ at = 1 in L.
Here t is the length of L, and it is well known that t = |J(L)|; see, for example,
Grätzer [7, Corollary 112 in page 114]. If con(ai−1, ai) = con(aj−1, aj), then it
follows from Crawley and Dilworth [2, 10.2 and 10.3] or from Grätzer [8] that
there is a sequence of prime intervals (edges in the diagram) from [ai−1, ai] to
[aj−1, aj ] such that any two neighboring intervals in this sequence are trans-
posed. (We know from Crawley and Dilworth [2, 10.4] that there exists such a
sequence even of length two, but we do not need this fact.)
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In the terminology of Adaricheva and Czédli [1], the existence of the
above-mentioned sequence means that [ai−1, ai] and [aj−1, aj ] belong to the
same trajectory. Since no two distinct comparable prime intervals of L can
belong to the same trajectory by [1, Proposition 6.1], it follows that i = j.
Hence, the congruences con(ai−1, ai), i ∈ {1, . . . , t}, are pairwise distinct.
It is well known that a prime interval in a finite lattice generates a join-
irreducible congruence; see, for example, Grätzer [7, page 213]. Hence, the
con(ai−1, ai), i ∈ {1, . . . , t}, are atoms in Con(L) since Con(L) is Boolean.
Clearly,

∨t
i=1 con(ai−1, ai) is 1Con(L), which implies that |Con(L)| = 2t. This

proves (2.3) since t = |J(L)|.
Next, a lattice is called planar if it is finite and has a Hasse-diagram that

is a planar representation of a graph in the usual sense that any two edges
can intersect only at a vertex. For lattices K and L, we say that L contains
K as a subposet if there exists an injective map ϕ : K → L such that, for all
x, y ∈ K, we have x ≤ y in K if and only if ϕ(x) ≤ ϕ(y) in L. If, in addition,
K ⊆ L and the inclusion map ι : K → L, defined by x �→ x, has the same
property as ϕ above, then the lattice K is a subposet of L. If K is only a
poset but need not be a lattice, then the same condition defines that K is
(isomorphic to) a subposet of L. Let N0 and N

+ denote the set {0, 1, 2, . . .} of
nonnegative integers and the set {1, 2, 3, . . .} of positive integers, respectively.
In their fundamental paper on planar lattices, Kelly and Rival [9] gave a set

LKR = {An, En, Fn, Gn,Hn : n ∈ N0} ∪ {B,C,D}
of finite lattices such that the following statement holds.

Proposition 2.1 (A part of Kelly and Rival [9, Theorem 1]). A finite lattice L
is planar if and only if neither L, nor its dual contains some lattice of LKR as
a subposet.

Note that the lattices An, Fn, Gn, and Hn are selfdual. Note also that
Kelly and Rival [9] proved the minimality of LKR, but we do not need this
fact.

Next, we prove Remark 1.2. The ordinal sum of lattices L′ and L′′ is their
disjoint union L′ ∪̇ L′′ such that for x, y ∈ L′ ∪̇ L′′, we have that x ≤ y if and
only if x ≤L′ y, or x ≤L′′ y, or x ∈ L′ and y ∈ L′′.

Proof of Remark 1.2. Let L(8) be the eight-element Boolean lattice. Also, for
n > 8, let L(n) be the ordinal sum of L(8) and an (n−8)-element chain. Since
|J(Ln)| = n − 5, Remark 1.2 follows from (2.3). �

Note that L(n) above occurs also in page 93 of Rival [13].

3. A lemma on subposets that are lattices

While LKR consists of lattices, they appear in Proposition 2.1 as subposets.
This fact causes some difficulties in proving our theorem; this section serves as
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a preparation to overcome them. The set of join-reducible elements of a lattice
L will be denoted by JRed(L). Note that

JRed(L) = L\({0} ∪ J(L)) = {a ∨ b : a, b ∈ L and a ‖ b}, (3.1)

where ‖ stands for incomparability, that is, a ‖ b is the conjunction of a � b and
b � a. Similarly, MRed(L) = L\({1}∪M(L)) denotes the set of meet-reducible
elements of L.

Lemma 3.1. Let L and K be finite lattices such that K is a subposet of L.
Then the following four statements and their duals hold.

(i) If a1, . . . , at ∈ K and t ∈ N
+, then a1 ∨L · · · ∨L at ≤ a1 ∨K · · · ∨K at.

(ii) If t, s ∈ N
+, a1, . . . , at, b1, . . . , bs ∈ K, and a1 ∨K · · · ∨K at is distinct

from b1 ∨K · · · ∨K bs, then a1 ∨L · · · ∨L at �= b1 ∨L · · · ∨L bs.
(iii) |JRed(L)| ≥ |JRed(K)| and, dually, |MRed(L)| ≥ |MRed(K)|.
(iv) If |JRed(L)| = |JRed(K)|, u1, u2, v1, v2 ∈ K, u1 ‖ u2, v1 ‖ v2, and

u1 ∨K u2 = v1 ∨K v2, then u1 ∨L u2 = v1 ∨L v2.

Note that, according to (ii) and (iv), the distinctness of joins is generally
preserved when passing from K to L, but equalities are preserved only under
additional assumptions. The dual of a condition or statement (X) will often
be denoted by (X)d; for example, the dual of Lemma 3.1(i) is denoted by
Lemma 3.1(i)d or simply by 3.1(i)d.

Proof of Lemma 3.1. Part (i) is a trivial consequence of the concept of joins
as least upper bounds.

In order to prove (ii), assume that a1 ∨L · · · ∨L at = b1 ∨L · · · ∨L bs. Part (i)
gives that ai ≤L a1 ∨L · · · ∨L at = b1 ∨L · · · ∨L bs ≤L b1 ∨K · · · ∨K bs, for all
i ∈ {1, . . . , t}. Since K is a subposet of L, ai ≤K b1 ∨K · · · ∨K bs. But i ∈
{1, . . . , t} is arbitrary, whereby a1 ∨K · · · ∨K at ≤K b1 ∨K · · · ∨K bs. We have
equality here, since the converse inequality follows in the same way. Thus, we
conclude (ii) by contraposition.

Next, let {c1, . . . , ct} be a repetition-free list of JRed(K). For each i in
{1, . . . , t}, pick ai, bi ∈ K such that ai ‖ bi and ci = ai ∨K bi. That is,

JRed(K) = {c1 = a1 ∨K b1, . . . , ct = at ∨K bt}. (3.2)

Since ai ‖ bi holds also in L,

{a1 ∨L b1, . . . , at ∨L bt} ⊆ JRed(L). (3.3)

The elements listed in (3.3) are pairwise distinct by part (ii). Therefore,
|JRed(K)| = t ≤ |JRed(L)|, proving part (iii).

Finally, to prove part (iv), we assume its premise, and we let t :=
|JRed(K)| = |JRed(L)|. Choose ci, ai, bi ∈ K as in (3.2). Since t = |JRed(L)|,
part (ii) and (3.3) give that

JRed(L) = {a1 ∨L b1, . . . , at ∨L bt}. (3.4)

As a part of the premise of (iv), u1 ‖ u2 has been assumed. Hence, u1 ∨K u2 ∈
JRed(K), and so (3.2) yields a unique subscript i ∈ {1, . . . , t} such that
ci = u1 ∨K u2 = v1 ∨K v2. Since c1, . . . , ct is a repetition-free list of the ele-
ments of JRed(K), we have that u1 ∨K u2 �= cj = aj ∨K bj for every j ∈
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Figure 1. K = F0 and an example for L containing K as a subposet

Figure 2. K = E0 and an example for L containing K as a subposet

{1, . . . , t}\{i}. So, for all j �= i, part (ii) gives that u1 ∨L u2 �= aj ∨L bj .
But u1 ∨L u2 ∈ JRed(L), whence (3.4) gives that u1 ∨L u2 = ai ∨L bi. Since
the equality v1 ∨L v2 = ai ∨L bi follows in the same way, we conclude that
u1 ∨L u2 = v1 ∨L v2, as required. This yields part (iv) and completes the proof
of Lemma 3.1. �

Note that ai ∨L bi in the proof above can be distinct from ci; this will be
exemplified by Figures 1 and 2.

4. The rest of the proof

In this section, to ease our terminology, let us agree on the following convention.
We say that a finite lattice L has many congruences if |Con(L)| > 2|L|−5.
Otherwise, if |Con(L)| ≤ 2|L|−5, then we say that L has few congruences.

Lemma 4.1. For every finite lattice L, the following two assertions holds.
(i) If |JRed(L)| ≥ 4 or |MRed(L)| ≥ 4, then L has few congruences.
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(ii) If |JRed(L)| = 3 and there are p, q ∈ J(L) such that p �= q and con(p−, p)
= con(q−, q), then L has few congruences.

Proof. Let n := |L|. If |JRed(L)| ≥ 4, then (3.1) leads to |J(L)| ≤ n − 5,
and it follows by (2.2) that L has few congruences. By duality, this proves
part (i). Under the assumptions of (ii), p ≡con q, and we obtain from (2.1)
that |Q(L)| ≤ |J(L)| − 1 = n − 4 − 1 = n − 5, and (2.2) implies again that L
has few congruences. This proves the lemma. �

Lemma 4.2. Let K := F0 ∈ LKR, see on the left in Figure 1. If K is a subposet
of a finite lattice L, then L has few congruences.

Proof. Label the elements of K = F0 as shown in Figure 1. A possible L is
given on the right in Figure 1; the elements of K are black-filled. The diagram
of L is understood as follows: for y1, y2 ∈ L, a thick solid edge, a thin solid
edge, and a thin dotted edge ascending from y1 to y2 mean that, in the general
case, we know that y1 ≺ y2, y1 < y2, and y1 ≤ y2, respectively. In a concrete
situation, further relations can be fulfilled; for example, a thin dotted edge can
happen to denote that y1 = y2. The two dashed edges and the element x as
well as similar edges and elements can be present but they can also be missing.
Note that y1 ≤ y2 is understood as y1 ≤L y2; for y1, y2 ∈ K, this is the same
as y1 ≤K y2 since K is a subposet of L. Since L in the figure carries a lot
of information on the general case, the reader may choose to inspect Figure 1
instead of checking some of our computations that will come later. Note also
that the convention above applies only for L; for K, every edge in the left of
Figure 1 stands for covering.

Clearly, |JRed(K)| = |MRed(K)| = 3. Hence, Lemma 3.1(iii) gives that
|JRed(L)| ≥ 3 and |MRed(L)| ≥ 3. We can assume that none of |JRed(L)| ≥ 4
and |MRed(L)| ≥ 4 holds, because otherwise Lemma 4.1(i) would immediately
complete the proof. Hence,

|JRed(L)| = 3 and |MRed(L)| = 3. (4.1)

Since |JRed(K)| = |MRed(K)| = 3 holds also for K = E0, to be given later in
Figure 2, note at this point that (4.1) will be valid in the proof of Lemma 4.3.
Let p := b∨L c ∈ L, and let u1 ∈ L be a lower cover of p in the interval [b, p]L.
Also, let q := b∧L d and let u2 ∈ [q, d]L be a cover of q. Finally, let r := b∧L g,
and let u3 ∈ [r, g]L be a cover of r. Since we have formed the joins and the
meets of incomparable elements in L such that the corresponding joins are
pairwise distinct in K and the same holds for the meets, (4.1) and Lemma 3.1
imply that

JRed(L) = {p, e∨L d, e∨L g, } and MRed(L) = {q, r, b∧L c}. (4.2)

In order to justify some features of Figure 1, note that (4.2) implies easily
that a < p, c < e∨L d, q < e, and r < f , but we will not use these inequalities.
For example, we obtain a < p as follows. Since b �≤ a, we have that p �≤ a. For
the sake of contradiction, suppose that a ‖ p. Then e∨L g ≤ b∨L c = p < a∨L p
and, by Lemma 3.1(i), e∨L d ≤ e∨K d = a < a∨L p, whereby (4.2) gives that
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a < a∨L p is strictly larger than every element of JRed(L), which contradicts
a∨L p ∈ JRed(L). Hence, a < p.

Since u1 ≺L p, u1 �= p. If we had that u1 = e∨L d, then

b ≤ u1 = e∨L d
3.1(i)

≤ e∨K d = a

would contradict b �K a. Replacing 〈d, a〉 by 〈g, c〉, we obtain similarly that
u1 �= e∨L g. Hence, (4.2) gives that u1 ∈ J(L). If we had that u2 = p, then
b ≤ p = u2 ≤ d would be a contradiction. Similarly, u2 = e∨L d would lead
to e ≤ e∨L d = u2 ≤ d while u2 = e∨L g again to e ≤ e∨L g = u2 ≤ d,
which are contradictions. Hence, u2 /∈ JRed(L) and so 0L ≤ q ≺L u2 gives
that u2 ∈ J(L). We have that u3 �= p, because otherwise b ≤ p = u3 ≤ g would
be a contradiction. Similarly, u3 = e∨L d and u3 = e∨L g would lead to the
contradictions e ≤ e∨L d = u3 ≤ g and e ≤ e∨L g = u3 ≤ g, respectively. So,
u3 /∈ JRed(L) by (4.2). Since r ≺L u3 excludes that u3 = 0, we obtain that
u3 ∈ J(L). Since u3 = u2 would lead to

f = b∧K d
3.1(i)d

≤ b∧L d = q ≤ u2 = u3 ≤ g, (4.3)

which is a contradiction, we have that

u1, u2, u3 ∈ J(L) and u2 �= u3. (4.4)

Next, we claim that

[q, u2]↗[u1, p] and [u1, p]↘[r, u3]. (4.5)

Since b � a, b � c, and b � d, none of e∨L d, e∨L g, and u2 belongs to [b, i]L.
In particular, we obtain from u1 ≺ p and (4.2) that

[b, u1]L ⊆ J(L) and b � u2. (4.6)

Suppose, for a contradiction, that u2 ≤ u1, and pick a maximal chain in the
interval [u2, u1]. So we pick a lower cover of u1, then a lower cover of the
previous lower cover, etc., and it follows from (4.6) that this chain contains
b. Hence, u2 ≤ b, and we obtain that q ≺L u2 ≤ b∧L d = q, a contradiction.
Hence, u2 � u1. This means that u1 ∧L u2 < u2. But q ≤ b ≤ u1, so we have
that q ≤ u1 ∧ u2 < u2. Since q ≺L u2, we obtain that u1 ∧L u2 = q. Similarly,
u2 ≤ d ≤ p and u2 � u1 give that u1 < u1 ∨L u2 ≤ p, whereby u1 ≺L p yields
that u1 ∨L u2 = p. The last two equalities imply the first half of (4.5). The
second half follows basically in the same way, so we give less details. Based
on (4.6), u3 ≤ u1 would lead to u3 ≤ b and r ≺L u3 ≤ b∧L g = r, whence
u3 � u1. Since u3 ≤ g ≤ c ≤ b∨L c = p and r = b∧L g ≤ b ≤ u1, we obtain
that u1 < u1 ∨L u3 ≤ p and r ≤ u1 ∧L u3 < u3. Hence the covering relations
u1 ≺L p and r ≺L u3 imply the second half of (4.5).

Finally, (2.4) and (4.5) give that con(q, u2) = con(u1, p) = con(r, u3).
Since (4.4) allows us to replace q and r by u−

2 and u−
3 , respectively, we obtain

that con(u−
2 , u2) = con(u−

3 , u3). But u2 and u3 are distinct elements of J(L)
by (4.4), whereby (4.1) and Lemma 4.1(ii) imply that L has few congruences,
as required. This completes the proof of Lemma 4.2. �

We still need another lemma.
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Lemma 4.3. Let K := E0 ∈ LKR, see on the left in Figure 2. If K is a subposet
of a finite lattice L, then L has few congruences.

Proof. This proof shows a lot of similarities with the earlier one. In particu-
lar, the same convention applies for the diagram of L in Figure 2 and, again,
there can be several elements of L not indicated in the diagram. We have
already noted that (4.1) holds in the present situation. Figure 2 shows how to
pick u1, u2 ∈ L; they are covers of a∧L b in [a∧L b, a] and b∧L c in [b∧L c, c],
respectively. As a counterpart of (4.2) and the paragraph following it, now
we obtain in the same way from (4.1) and Lemma 3.1 that the compara-
bilities and incomparabilities on the right of Figure 2 are correctly depicted
and

JRed(L) = {p := a∨L b = b∨L c, e∨L f, e∨L g = f ∨L g} and

MRed(L) = {a∧L b = a∧L d, b ∧L c = d ∧L c, a∧L c = e∧L f}.

}

(4.7)

Neither all the equalities above, nor all similar equalities like d ∧L g = e∧L f ,
nor all features of the figure will be used, and there can be many more elements
not indicated. Using (4.7) in the same way as we used (4.2) in the proof
of Lemma 4.2 and the above-mentioned correctness of Figure 2, it follows
that

[a∧L b, a]\{a∧L b} ⊆ Irr(L) and [a, p]\{p} ⊆ Irr(L),
whereby u1 ∈ J(L) and [u1, p] is a chain.

}

(4.8)

Similarly to the argument verifying (4.5) (but p need not cover b and we need
to use that [u1, p] is a chain), (4.8) implies that [u−

1 , u1] = [a∧L b, u1]↗[b, p].
Since 〈a, u1〉 and 〈c, u2〉 play symmetric roles, we obtain that u2 ∈ J(L) and
[u−

2 , u2] = [b∧L c, u2]↗[b, p]. Hence, (2.4) gives that con(u−
1 , u1) = con(b, p) =

con(u−
2 , u2). Since u1 and u2 are distinct by Figure 2 and they belong to J(L)

by (4.8) and the 〈a, u1〉–〈c, u2〉-symmetry, (4.1) and Lemma 4.1(ii) imply that
L has few congruences. This completes the proof of Lemma 4.3. �

Now, we are in the position to prove our theorem.

Proof of Theorem 1.1. Let L be an arbitrary non-planar finite lattice; it suf-
fices to show that L has few congruences. By Proposition 2.1, there is a lattice
K in Kelly and Rival’s list LKR such that K is a subposet of L or the dual
Ldual of L. Since Con(Ldual) = Con(L) and Ldual is non-planar either, we
can assume that K is a subposet of L. A quick glance at the lattices of LKR,
see their diagrams in Kelly and Rival [9], shows that if K ∈ LKR\{E0, F0},
then |JRed(K)| ≥ 4 or |MRed(K)| ≥ 4. Hence, if K ∈ LKR\{E0, F0}, then
Lemma 4.1(i) implies that L has few congruences, as required. If K ∈ {E0, F0},
then the same conclusion is obtained by Lemmas 4.2 and 4.3. This completes
the proof of Theorem 1.1. �
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[11] Mureşan, C.: Cancelling congruences of lattices while keeping their filters and
ideals. arxiv:1710.10183 (2017)

[12] Nation, J.B.: Notes on Lattice Theory. http://www.math.hawaii.edu/∼jb/books.
html

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://actamath.savbb.sk/pdf/oacta2018003.pdf
http://actamath.savbb.sk/pdf/oacta2018003.pdf
http://arxiv.org/abs/1801.05282
http://arxiv.org/abs/1710.10183
http://www.math.hawaii.edu/%7ejb/books.html
http://www.math.hawaii.edu/%7ejb/books.html


Lattices with many congruences Page 11 of 11    16 

[13] Rival, I.: Lattices with doubly irreducible elements. Can. Math. Bull. 17, 91–95
(1974)
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