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Abstract. For a finite lattice L, let Gm(L) denote the least n such that
L can be generated by n elements. For integers r > 2 and k > 1, denote

by FD(r)k the k-th direct power of the free distributive lattice FD(r) on r

generators. We determine Gm(FD(r)k) for many pairs (r, k) either exactly
or with good accuracy by giving a lower estimate that becomes an upper

estimate if we increase it by 1. For example, for (r, k) = (5, 25 000) and (r, k) =

(20, 1.489 · 101789), Gm(FD(r)k) is 300 and 6000, respectively. To reach our
goal, we give estimates for the maximum number of pairwise unrelated copies

of some specific posets (called full segment posets) in the subset lattice of

an n-element set. In addition to analogous earlier results in lattice theory, a
connection with cryptology is also mentioned among the motivations.

1. Introduction

This work belongs mainly to lattice theory but it also belongs to extremal com-
binatorics. The paper is more or less self-contained; those familiar with M.Sc. level
mathematics and the concept of distributive lattices can read it easily.

The search for small generating sets has belonged to lattice theory for long; for
example, in chronological order, see Gelfand and Ponomarev [9], Strietz [17], Zádori
[19, 20], Chajda and Czédli [2], Takách [18], Kulin [13], Czédli and Oluoch [7], and
Ahmed and Czédli [1]. See also the surveying parts and the bibliographic sections in
[1] and Czédli [3] for further references. If a large lattice L can be generated by few
elements, then this lattice has many small generating sets. Czédli [3] and [5] have
recently observed that these lattices can be used for cryptography; for a further
note on this topic, see Remark 5.3. This fact and the results on small generating
sets of lattices in the above-mentioned and some additional papers constitute the
lattice theoretic motivation of the paper.

There is a motivation coming from extremal combinatorics, too. The first result
on the maximum number Sp(U, n) of pairwise unrelated (in other words, incom-
parable) copies of a poset U in the powerset lattice of an n-element finite set was
published by Sperner [16] ninety-five years ago. While U is the singleton poset
in Sperner’s theorem, the Sperner theorem (that is, the Sperner type theorem) in
Griggs, Stahl, and Trotter [11] determines Sp(U, n) for any finite chain U . For
some other finite posets, similar results were obtained by Katona and Nagy [12]
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and Czédli [6]. In general, the exact value of Sp(U, n) is rarely known. On the
other hand, Katona and Nagy [12] and, independently from them, Dove and Griggs
[8] determined the asymptotic value of Sp(U, n). Their celebrated result asserts
that for any finite poset U ,

Sp(U, n) ∼ 1

|U |

(
n

bn/2c

)
, that is, lim

n→∞

1

|U |

(
n

bn/2c

)
· Sp(U, n)−1 = 1. (1.1)

By the main result of [6], the lattice theoretic motivation and the combinatorial
one are strongly connected; see (2.4) later, which we are going to quote from [6].
Here we only mention that in order to get closer to what the title of the paper
promises, we need to determine Sp(U, n) for some rather special posets U .

The asymptotic result (1.1) may suggest that for our special posets U , we can
obtain Sp(U, n) or at least some of its estimates simply by copying what Dove and
Griggs [8] or Katona and Nagy [12] did. However, we have three reasons not to
follow this plan. First, while several constructions and considerations can lead to
the asymptotically same result, we cannot expect a similar experience when dealing
with small values of n. Furthermore, concrete (non-asymptotic) calculations and
considerations are often harder and their asymptotic counterparts do not offer too
much help. For example, while we know for any fixed a, b ∈ Z (the set of integers)
that, with our vertical-space-saving permanent notation fSp(n) :=

(
n
bn/2c

)
,

(
n+ a

bn/2c+ b

)
∼ 2a ·

(
n

bn/2c

)
= 2afSp(n) as n→∞ (1.2)

and so we can simply work with 2afSp(n) in asymptotic considerations, we have to

work with
(

n+a
bn/2c+b

)
in concrete calculations, which is more difficult. (Note at this

point that both Dove and Griggs [8] and Katona and Nagy [12] use (1.2).) Second,
even though a general construction could be specialized to our particular posets U ,
we cannot expect to exploit the peculiarities of our U ’s in this way. Third, an easy-
to-read construction with a short and easy argument will hopefully be interesting
for the reader, partially because these details are necessary to explain and perform
the computations.

Hence, the construction we are going to give for lower estimates is different from
those in Dove and Griggs [8] and Katona and Nagy [12]. At some places in the
proofs, we are going to point out the difference from [8]; the difference from [12] is
clearer. Note that our construction gives better lower estimates for our particular
posets U than any of the Dove-Griggs and the Katona-Nagy construction would
give, at least for small values of n. (For n→∞, that is, asymptotically, all the three
constructions yield the same lower estimate.) On the other hand, let us emphasize
the similarities. While many calculations in this paper are new, most of the ideas
in our construction occur in Dove and Griggs [8] and Katona and Nagy [12]; more
details will be mentioned right after the proof of Proposition 3.2.

Even though our result allows a big gap between the lower estimate and the
upper estimate of Sp(U, n), this result will suffice to determine the least number
n of elements that generate the direct powers FD(3)k of FD(3) with quite a good
accuracy, and we can give reasonable estimates on n in case of FD(r)k.
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Figure 1. FD(3) and the 3-crown W3 = FSP(3, 0, 3) ∼= J(FD(3))

2. Basic facts and notations

Except for N+ := {1, 2, 3, . . . }, N0 := {0}∪N+, N≥3 := {3, 4, 5, . . . } = N+\{1, 2}
and their subsets, all sets and structures in the paper will be assumed to be finite.
(Sometimes, we repeat this convention for those who read only a part of the paper.)
For r ∈ N≥3, the free distributive lattice on r generators is denoted by FD(r); for
r = 3, it is drawn on the left of Figure 1. A lattice element with exactly one lower
cover is called join-irreducible. For a lattice L, the poset (that is, the partially
ordered set) of the join-irreducible elements of L is denoted by J(L). For L = FD(3),
J(L) consists of the black-filled elements and it is also drawn separately on the right
of the figure. For a set H, the powerset lattice of H is ({Y : Y ⊆ H};∪,∩); it (or
its support set) is denoted by Pow(H). For n ∈ N0, the set {1, 2, . . . , n} is denoted
by [n]; note that [0] = ∅. For x, y in a poset, in particular, for x, y ∈ Pow([n]), we
write x ‖ y to denote that neither x ≤ y nor y ≤ x holds; in Pow([n]), “≤” is “⊆”.
For a poset U , a copy of U in Pow([n]) is a subset of Pow([n]) that, equipped with
“⊆”, is order isomorphic to U . Two copies of U in Pow([n]) are unrelated if for all
X in the first copy and all Y in the second copy, X ‖ Y . Let us repeat that for
n ∈ N0 and a poset U , we let

Sp(U, n) := max{k : there exist k pairwise

unrelated copies of U in Pow([n])}.
(2.1)

According to the sentence containing (1.2), we often write Cb(n, k) instead of
(
n
k

)
;

especially in text environment and if n or k are complicated or subscripted expres-
sions. The notation“Sp(−,−)” and “Cb(−,−)” come from Sperner and binomial
coefficient, respectively. As usual, b c and d e denote the lower and upper inte-
ger part functions; for example, b5/3c = 1 and d5/3e = 2. With our notations,
Sperner’s theorem [16] asserts that for every n ∈ N0,

if U is the 1-element poset, then Sp(U, n) =

(
n

bn/2c

)
=: fSp(n). (2.2)

Recall that a subset X a lattice L = (L;∨,∧) is a generating set of L if for every
Y such that X ⊆ Y ⊆ L and Y is closed with respect to ∨ and ∧, we have that
Y = L. We denote the size of a minimum-sized generating set of L by

Gm(L) := min{|X| : X is a generating set of L}. (2.3)
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For k ∈ N+, the k-th direct power Lk of L consists of the k-tuples of elements of L
and the lattice operations are performed componentwise. With our notations, the
main result of Czédli [6] asserts that

for 2 ≤ k ∈ N+ and a finite distributive lattice L, Gm(Lk)
is the smallest n ∈ N+ such that k ≤ Sp(J(L), n).

(2.4)

It is also clear from [6] that for each finite distributive lattice L, the functions
k 7→ Gm(Lk) and n 7→ Sp(J(L), n) mutually determine each other, but we do not
need this fact in the present paper. The following definition is crucial in the paper.

Definition 2.1. For 0 ≤ a < b ≤ r ∈ N0 such that a + 2 ≤ b, the full segment
poset FSP(r, a, b) is the poset U defined (up to isomorphism) by the conjunction
of the following two rules.

(a) r is the smallest integer such that U is embeddable into Pow([r]);
(b) the subposet {X ∈ Pow([r]) : a < |X| < b} of Pow([r]) is order isomorphic

to U .

Even though 0 ≤ a in Definition 2.1 could be replaced by by −1 ≤ a, we do not
do so since the case a = −1 would need a different (in fact, easier) treatment; see
[6]. Let U be a finite poset, s ∈ N+, and denote {s, s + 1, s + 2, . . . } by N≥s. If
f1, f2 : N≥s → N0 are functions such that f1(n) ≤ Sp(U, n) ≤ f2(n) for all n ∈ N≥s,
then (f1, f2) is a pair of estimates of the function Sp(U,−) on N≥s; in particular,
f1 is a lower estimate while f2 is an upper estimate of Sp(U,−). A reasonably good
property of pairs of estimates of Sp(U,−) is defined as follows:

for s ∈ N+, a pair (f1, f2) of estimates is separated
on N≥s if f2(n) ≤ f1(n+ 1) for all n ∈ N≥s. (2.5)

The following fact is a trivial consequence of (2.4) and for k ≥ 2, it is implicit in
Czédli [6]; see around (5.23) and (5.24) in [6].

Observation 2.2. Let D be a finite distributive lattice. Denote the poset J(D) by
U , and let s ∈ N+. Let (f1, f2) be a separated pair of estimates of Sp(U,−) on
N≥s such that f1 (the lower estimate) is strictly increasing on N≥s. Then, for each
k ∈ N+ such that f1(s) < k, (f1, f2) determines Gm(Dk), see (2.3), “ with accuracy
1/2” as follows: Letting n be the unique n ∈ N+ such that f1(n) < k ≤ f1(n + 1),
either k ≤ f2(n) and Gm(Dk) ∈ {n, n+ 1} or f2(n) < k and Gm(Dk) = n+ 1.

The term “accuracy 1/2” comes from the fact that the distance between the
never exact estimate n+ 1/2 and Gm(Dk) is always 1/2.

3. Lower estimates

The easy proof of the following lemma raises the possibility that the lemma
might belong to the folklore even though the author has never met it.

Lemma 3.1. For 2 ≤ r ∈ N+, J(FD(r)) ∼= FSP(r, 0, r); see Definition 2.1.

Proof. Denote by {x1, . . . , xr} the set of free generators of FD(r). Call a subset J
of [r] nontrivial if ∅ 6= J 6= [r], and let Pownt([r]) =

(
Pownt([r]);⊆

)
stand for the

poset formed by the nontrivial subsets of [r]. For J ∈ Pownt([r]), let mJ be the
meet

∧
i∈J xi, and define X := {mJ : J ∈ Pownt([r])}. As X ⊆ FD(r), X = (X;≤)

is a subposet of FD(r).
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First, we show that the map ϕ : Pownt([r]) → X defined by J → mJ is a dual
order isomorphism. The tool wee need is very simple: Since FD(r) is free, it
follows that whenever J,K ∈ Pownt([r]) and mJ = mK , then mJ(~y) = mK(~y)
for all ~y = (y1, . . . , yr) ∈ {0, 1}r, and similarly for “≤” instead of “=”. The
implication J ⊆ K ⇒ mJ ≥ mK is obvious. For the sake of contradiction, suppose
that mJ ≥ mK for some J,K ∈ Pownt([r]) but J * K. Pick a j ∈ J \ K, and
let ~y ∈ {0, 1}r be the vector for which yj = 0 but yi = 1 for all i ∈ [r] \ {j}.
Then mK = ~y = 1 since the j-th component of ~y does not occur in the meet but
mJ = 0, contradicting mJ ≥ mK . This proves that “≥” in X and “⊆” in Pownt([r])
correspond to each other. In particular, ϕ is a bijective map as the equality of two
elements or subsets can be expressed by these relations. Thus, ϕ is a dual order
isomorphism. The composite of ϕ and the selfdual automorphism of Pownt([r])
defined by J 7→ [r] \ J is an order isomorphism, proving that X ∼= FSP(r, 0, r).

Next, to complete the proof, it suffices to show that J(FD(r)) = X. Using the
tool (with ~y) mentioned earlier, observe that 1 = x1 ∨ · · · ∨ xr /∈ J(FD(r)) and for
every J ∈ Pownt([r]), mJ /∈ {0, 1}. By distributivity, each element of FD(r) \{0, 1}
is the join of meets of some generators or, in other words, a disjunctive normal
form of the generators. Clearly, neither the empty meet, nor the empty join, nor
the meet of all generators is needed here, whereby there is at least one joinand and
each of the joinands is of the form mJ with J ∈ Pownt([r]). As one joinand is
sufficient for the elements of J(FD(r)), we obtain that J(FD(r)) ⊆ X.

To show that converse inclusion by way of contradiction, suppose that mJ ∈
X \ J(FD(r)). Then mJ is the join of some elements of J(FD(r)) that are smaller
than mJ . These elements are of the form mIj as J(FD(r)) ⊆ X. This fact and dual
isomorphism proved in the previous paragraph imply that there are I1, . . . , It ∈
Pownt([r]) such that J ⊂ I1, . . . , J ⊂ It and mJ = mI1 ∨ · · · ∨mIt . This equality
holds as an identity in the two-element lattice {0, 1}. However, if we define ~y ∈
{0, 1}r by ys := 1 if s ∈ J and ys = 0 otherwise, then mJ(~y) = 1 but each of the
joinands and so the join are 0. This contradiction completes the proof. �

For 1 ≤ a < b ≤ r ∈ N+ such that a+ 2 ≤ b and n ∈ N≥r, ~v will denote a vector
(v0, . . . , va; vb, . . . , vr), so there is gap in the index set of the components. Let
p ∈ {−r,−r+ 1, . . . , r} be a parameter, and let us agree that a binomial coefficient
Cb(x1, x2) is 0 unless x1, x2 ∈ N0 and 0 ≤ x2 ≤ x1. With these conventions, define

f
(p)
r,a,b(n) :=

bn/rc−1∑
i=0

∑
~v∈{0,...,i}r+a−b+2

v0+···+va+vb+···+vr=i

i!

v0! . . . va! · vb! . . . vr!
×

×
(

n− (i+ 1)r

p+ b(n− r)/2c − 0v0 − 1v1 − · · · − ava − bvb − · · · − rvr

)
×

×
(
r

0

)v0
. . .

(
r

a

)va
·
(
r

b

)vb
. . .

(
r

r

)vr
, and

(3.1)

fr,a,b(n) := max{f (p)
r,a,b(n) : p ∈ {−r,−r + 1, . . . , r − 1, r}}. (3.2)

Proposition 3.2. For r ∈ N≥3 and 0 ≤ a < b ≤ r ∈ N+ such that a + 2 ≤ b,
fr,a,b(n) is a lower estimate of Sp(FSP(r, a, b), n) on N≥r.
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The proof below shows that Proposition 3.2 would still hold if we replaced
{−r,−r + 1, . . . , r − 1, r} with Z but we do not have any example where Z, which
would make practical computations longer, is better than {−r,−r+1, . . . , r−1, r}.

Proof. It suffices to show that for any p ∈ Z, f
(p)
r,a,b(n) ≤ Sp(FSP(r, a, b), n). Take an

n-element set M , and denote the quotient bn/rc by q. Fix q pairwise disjoint subsets
M0, . . . , Mq−1 of M , we call them blocks, and let Mq := M \ (M0 ∪ · · · ∪Mq−1).
Let h := p + b(n − r)/2c. For j ∈ {0, . . . , q − 1}, a subset X of the block Mj is
called small if |X| ≤ a. Similarly, if |X| ≥ b, then X is large while in the remainder
case when a < |X| < b, we say that X is medium-sized. By an extremal subset
of Mj we mean a subset that is large or small; so “extremal” is the opposite of
“medium-sized”. For a subset B of M , B∩Mi is often denoted by Bi. We say that
(i, B) ∈ {0, . . . , q − 1} × Pow(M) is a fundamental pair if

(F1) |B| = h, and
(F2) Bi = ∅ and for each j ∈ {0, . . . , i − 1}, Bj is extremal (that is, small or

large).

Four examples are given in Figure 2, where n = 54, r = 8, a = 3, b = 6, q = 6, and
h = 26. In each of the four parts of this figure, the green-filled solid ovals1 represent
extremal subsets of the appropriate Mj ’s, j ∈ {0, . . . , i−1}, the red dotted oval is a
medium-sized subset of Mi, and there is no condition on the subsets represented by
magenta-filled solid ovals. Hence, in each of the four examples, the set component
(that is, the second component, which was denoted by B) of the fundamental pair
is the union of the color-filled solid ovals. The index component (that is, the first
component) is indicated at the top of the figure. Each color-filled solid oval contains
the number of elements of the subset Bj that this oval represents. Note, however,
that a red dotted oval (regardless the number it contains) in the picture of (i, B)
means that Bi = ∅. (The red dotted ovals will be explained right after (3.3).) Note
also that, witnessed by i = 5 and i = 4 in the figure, the set component does not
determine the index component.

M0

M1

M2

M3

M4

M5

Mq

2

8

1

4

7

6

2

i = 3

7

5

0

4

8

4

3

i = 1

3

7

2

8

0

4

6

i = 5

3

7

2

8

5

0

6

i = 4

Figure 2. Illustrating the proof of Proposition 3.2 with
FSP(8, 3, 6); h = 26, n = 54; in each fundamental pair, the set
component is the union of the color-filled solid ovals.

1Note for a grayscale version: the green-filled ovals contain black numbers in their interiors
while the ovals with white numbers are magenta-filled.
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For a fundamental pair (i, B), let

U(i, B) := {B ∪X : X ⊆Mi and a < |X| < b}. (3.3)

Clearly, U(i, B) is a copy of FSP(r, a, b). The role of a red dotted oval in Figure 2 is
to represent one of the sets X in (3.3). Now that we have defined our construction,

we have to prove that the number of fundemental pairs is f
(p)
r,a,b(n) and for different

fundamental pairs (i, B) and (i′, B′), U(i, B) and U(i′, B′) are unrelated.
To obtain a fundamental pair (i, B), first we choose i ∈ {0, . . . , q − 1}; this ex-

plains the outer summation sign in (3.1). Then for each j ∈ {0, . . . , a, b, . . . , r} we
chose the number vj of the j-element green-filled solid ovals. As there are i green-
filled solid ovals, the choice of the vector formed from these vj ’s is not quite arbi-
trary; this explains the subscript of the inner summation sign in (3.1). For example,
on the right (that is, in the i = 4 part) of Figure 2, ~v = (v0, . . . , v3; v6, v7, v8) =
(0, 0, 1, 1; 0, 1, 1). The fraction in (3.1) is the multinomial coefficient showing how
many ways v0 zeros, v1 1’s, . . . , va a’s, vb b

′s, . . . , vr r’s can be ordered. On the
right of the figure, this is how many ways the numbers 3, 7, 2, 8 can be written
below the red dotted oval (the figure shows only one of these ways). As there is no
stipulation on the magenta-filled solid ovals, the binomal coefficient in the middle
of (3.1) gives the number of possible unions of the magenta-filled solid ovals, that
it, it shows how many ways the system of these ovals can be chosen.

For j ∈ {0, . . . , a, b, . . . , r}, a j-element subset (green-filled solid oval) of an r-
element block Mt can be chosen in Cb(r, j) ways. As there are vj such subsets and
there are several values of j, the product in the last row of (3.1) is the number how
many ways the systems of the green-filled solid ovals can be chosen. Therefore,

f
(p)
r,a,b(n) is the number of fundamental pairs as required.

Next, let (i, B) 6= (i′, B′) be distinct fundamental pairs, Y = B ∪X ∈ U(i, B),
and Y ′ = B′ ∪X ′ ∈ U(i′, B′). For the sake of contradiction, suppose that Y ⊆ Y ′.
If we had that i = i′, then B = (M \Mi)∩Y ⊆ (M \Mi)∩Y ′ = (M \Mi′)∩Y ′ = B′,
which together with |B| = h = |B′| would give that B = B′ and so (i, B) = (i′, B′),
a contradiction. Hence, i 6= i′. Observe that Y ⊆ Y ′ gives that Mj ∩ Y ⊆Mj ∩ Y ′
for all j ∈ {0, . . . , q}. Furthermore, Mj ∩ Y = Bj for j 6= i while Mi ∩ Y = X.
Similarly, Mj ∩ Y ′ = B′j for j 6= i′ while Mi′ ∩ Y ′ = X ′. Hence, Bj ⊆ B′j and so
|Bj | ≤ |B′j | for j ∈ {0, . . . , q} \ {i, i′}, implying that

z :=
∑

j∈{0,...,q}\{i,i′}

|Bj | ≤
∑

j∈{0,...,q}\{i,i′}

|B′j | =: z′. (3.4)

As X is medium-sized, B′i is extremal, and X = Mi ∩ Y ⊆Mi ∩ Y ′ = B′i, we have
that B′i is large, that is, b ≤ |B′i|. Hence, (3.4) gives that z′ + b ≤ z′ + |B′i| = |B′|.
Similarly, X ′ is medium-sized, Bi′ is extremal, and Bi′ = Mi′ ∩Y ⊆Mi′ ∩Y ′ = X ′,
whence Bi′ is small, that is, |Bi′ | ≤ a. Thus, |B| = z + |Bi′ | ≤ z + a. Combining
the inequalities a < b, |B| ≤ z + a, z′ + b ≤ |B′|, and (3.4), we obtain that

|B| ≤ z + a < z + b ≤ z′ + b ≤ |B′|.

This strict inequality contradicts (F1), completing the proof of Proposition 3.2. �

Several ideas and ingredients of the proof above, like the way of partitioning the
base set into blocks, are contained in Dove and Griggs [8] and Katona and Nagy
[12]. However, even if the construction given in [8] was tailored to our particular
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posets U , (F1) would fail. The following assertion says that the lower estimate
given in Proposition 3.2 is asymptotically as good as possible.

Proposition 3.3. For r ∈ N≥3 and 0 ≤ a < b ≤ r ∈ N+ such that a + 2 ≤ b,

fr,a,b(n) and, for any fixed p ∈ Z, f
(p)
r,a,b(n) are asymptotically Sp(FSP(r, a, b), n) as

n→∞.

Proof. With s := |FSP(r, a, b)|, s = 2r −
(
r
0

)
− · · · −

(
r
a

)
−
(
r
b

)
− · · · −

(
r
r

)
. Let

κ be a real number such that κ < 1 but 1 − κ is very little. As we have that∑∞
i=0((2r − s)/2r)i = 2r/s, we can pick an n0 ∈ N+ such that

κ · 2r/s ≤
bn/rc−1∑
i=0

((2r − s)/2r)i ≤ 1

κ
2r/s for all n such that n ≥ n0. (3.5)

It suffices to deal with f
(p)
r,a,b for a fixed p ∈ Z. Using (1.2), we can pick an n1 ≥ n0

such that

κ · fSp(n) · 2−(i+1)r

≤
(

n− (i+ 1)r

p+ b(n− r)/2c − 0v0 − 1v1 − · · · − ava − bvb − · · · − rvr

)
≤ 1

κ
· fSp(n) · 2−(i+1)r

(3.6)

for all n ≥ n1. Let us define an auxiliary function for n ≥ n1 and apply the
multinomial theorem to it as follows.

faux(n) :=

bn/rc−1∑
i=0

∑
~v∈{0,...,i}r+a−b+2

v0+···+va+vb+···+vr=i

i!

v0! . . . va! · vb! . . . vr!
×

× fSp(n) · 2−(i+1)r

(
r

0

)v0
. . .

(
r

a

)va
·
(
r

b

)vb
. . .

(
r

r

)vr
(3.7)

=
fSp(n)

2r

bn/rc−1∑
i=0

(2r)−i
((r

0

)
+ · · ·+

(
r

a

)
+

(
r

b

)
+ · · ·+

(
r

r

))i
=
fSp(n)

2r

bn/rc−1∑
i=0

(2r − s
2r

)i
. (3.8)

Comparing (3.1), (3.6), and (3.7), we obtain that κfaux(n) ≤ f (p)
r,a,b(n) ≤ κ−1faux(n)

holds for all n ≥ n1. Applying (3.5) to the sum in (3.8), it follows that κfSp(n)/s ≤
faux(n) ≤ 1

κfSp(n)/s. Substituting this pair of inequalities into the previous one,

we have that κ2fSp(n)/s ≤ f
(p)
r,a,b(n) ≤ κ−2fSp(n)/s for all n ≥ n0. Letting κ→ 1,

it follows that f
(p)
r,a,b(n) is asymptotically fSp(n)/s. So is Sp(FSP(r, a, b), n) by Dove

and Griggs [8] and Katona and Nagy [12]. By transitivity, we obtain the required
asymptotic equality. The proof of Proposition 3.3 is complete. �

4. Pairs of estimates

For n ∈ N≥3, take the following “discrete 4-dimensional simplex”

H4(n) := {(t, x1, x2, x3) ∈ N4
0 : x1 > 0, x2 > 0, x3 > 0,

t+ x1 + x2 + x3 ≤ n}.
(4.1)
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Remembering that [3] := {1, 2, 3}, define the function f3,4 : H4(n)→ N0 by

f3,4(t, x1, x2, x3) =
∑
j∈[3]

(t+ xj)! · (n− t− xj)!

+
∑

{j,u}⊆[3], j 6=u

(t+ xj + xu)! · (n− t− xj − xu)!

−
∑

(j,u)∈[3]×[3], j 6=u

(t+ xj)! · xu! · (n− t− xj − xu)! ,

(4.2)

and let
Mn := min{f3,4(t, x1, x2, x3) : (t, x1, x2, x3) ∈ H4(n)}. (4.3)

We also define the following three functions:

gr(n) :=

⌊
1

2
fSp(n+ 2− r)

⌋
, (4.4)

g∗3(n) := bn!/Mnc, where Mn is given in (4.3), and (4.5)

g∗∗3 (n) =
⌊
n! ·

(
3 · bn/2c! · dn/2e! + 3 · b(n+ 2)/2c! · d(n− 2)/2e!

−6 · bn/2c! · d(n− 2)/2e!
)−1⌋ (4.6)

Next, based on the notations and concepts given in (2.1), (2.5), Definition 2.1,
(4.4), (4.5), and (4.6), we can formulate the main result of the paper.

Theorem 4.1. For 3 ≤ r ≤ n ∈ N+ and p ∈ {−r,−r+ 1, . . . , r− 1, r}, gr(n) is an
upper estimate while

f
(p)
r,0,r(n) :=

bn/rc−1∑
i=0

i∑
j=0

(
i

j

)(
n− (i+ 1)r

p+ b(n− r)/2c − jr

)
and (4.7)

f [r,0,r(n) := f
(0)
r,0,r(n) (4.8)

are lower estimates of Sp(FSP(r, 0, r), n) = Sp(J(FD(r)), n) on N≥r. In particular,

for all n ∈ N≥r, f [r,0,r(n) ≤ Sp(J(FD(r)), n) ≤ gr(n). (4.9)

For r = 3, in addition to the satisfaction of (4.9), g∗3(n) is also an upper estimate of
Sp(J(FD(3)), n) on N≥3. For n ∈ {3, 4, . . . , 300}, g∗3(n) = g∗∗3 (n) ≤ gr(n); in fact,
g∗∗3 (n) < gr(n) for n ∈ {5, 6, . . . , 300}. The pair (f [3,0,3, g3) is separated for n ∈ N≥3,

and so are the pairs (f [3,0,3, g
∗∗
3 ) and (f [3,0,3, g

∗
3) for n ∈ {3, 4, . . . , 300}. Finally, for

r ∈ {3, 4, . . . , 100}, the pair (f [r,0,r, gr) is separated on the set {r, r + 1, . . . , 300}.
It took 952 seconds ≈ 16 minutes for a computer, see Footnote 2 later, to show

that for r ∈ {3, . . . , 200} and n ∈ {r, . . . 300}, f [r,0,r(n) defined in (4.8) is the same

as fr,0,r(n) ; see (3.2). Since f [r,0,r(n) is easier to define and much easier to compute
than fr,0,r(n), it is the former that occurs in Theorem 4.1. However, it will be clear

from the proof that the theorem holds with fr,0,r in place of f [r,0,r.

Conjecture 4.2. We guess that g∗3(n) = g∗∗3 (n) for all n ∈ N≥3 and g∗∗3 (n) < gr(n)
for all N≥6.

Example 5.4 in Section 5 will show that, combining Theorem 4.1 with Observa-
tion 2.2, we can determine Gm(FD(3)k) exactly in many cases and we can give a
good approximation for Gm(FD(r)k) quite often.
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Proof of Theorem 4.1. Substituting (i − j, j) for (v0, vr) and observing that the

multinomial coefficient becomes a binomial one, it is clear that f
(p)
r,0,r in (4.7) is a

particular case of (3.1). Hence, Lemma 3.1, (3.2), Proposition 3.2, and (4.8) yield
the first inequality in (4.9).

By its definition (and Lemma 3.1), FSP(r, 0, r) = J(FD(r)) ∼= Pownt([r]). In each
of the intervals [{1}, {1, 3, 4, . . . , r}] and [{2}, {2, 3, 4, . . . , r}], take a maximal chain;
denote these two chains by C ′ and C ′′. Clearly, C ′ and C ′′ are unrelated chains
of length r − 2 and C ′ ∼= C ′′. Let n ∈ N≥r. With k := Sp(FSP(r, 0, r), n), there
are k pairwise unrelated copies of Pownt([r]) ∼= FSP(r, 0, r) in Pow([n]). Therefore,
there are 2k pairwise unrelated copies of C ′ in Pow([n]). So 2k ≤ Sp(C ′, n). By
Griggs, Stahl, and Trotter [11], Sp(C ′, n) = fSp(n−(r−2)). So 2k ≤ fSp(n+2−r),
implying the second inequality in (4.9).

In the rest of the proof, r := 3. Let Sym(n) stand for the set of all permutations
of [n]. For ~σ = (σ1, . . . , σn) ∈ Sym(n) and i ∈ {0, 1 . . . , n}, the i’s initial segment
of ~σ is Is(~σ, i) := {σj : j ≤ i}. For X ∈ Pow([n]), the permutation set associated
with X is Ps(X) := {~σ ∈ Sym(n) : X = Is(~σ, |X|)}. The trivial fact that

if X,Y ∈ Pow([n]) are incomparable (in nota-
tion, X ‖ Y ), then Ps(X) ∩ Ps(Y ) = ∅ (4.10)

was used first by Lubell [14], and then by Griggs, Stahl, and Trotter [11] and
some other papers listed in the bibliographic section. To ease the notation, let
W3 := FSP(3, 0, 3) and denote its elements by A, B, C, X, Y , Z according to

Figure 1. Let k := Sp(W3, n), and let W
(1)
3 , . . . ,W

(k)
3 be pairwise unrelated copies

of W3 in Pow([n]). For W
(i)
3 , we use the notation W

(i)
3 = {Ai, Bi, Ci, Xi, Yi, Zi} in

harmony with Figure 1; for example, Ai ⊂ Xi and Ai ‖ Zi, etc.. We claim that

W
(1)
3 , . . . ,W

(k)
3 can be chosen so that, for all i ∈ [k],

Xi = Ai ∪Bi, Yi = Ai ∪ Ci, Zi = Bi ∪ Ci, (4.11)

Ai = Xi ∩ Yi, Bi = Xi ∩ Zi, Ci = Yi ∩ Zi. (4.12)

Assume that the first equality in (4.11) fails. Let X ′i := Ai∪Bi and define W
(i)
3
′ :=

(W
(i)
3 \ {Xi}) ∪ {X ′i}. If we had that X ′i ⊆ Yi, then B ⊆ X ′i ⊆ Yi would be a

contradiction. As Yi ⊆ X ′i would lead to Yi ⊆ Xi since X ′i ⊆ Xi, we conclude that
X ′i ‖ Yi. We obtain similarly that X ′i ‖ Zi. So {X ′i, Yi, Zi} is an antichain, and

now it follows easily that W
(i)
3
′ is a copy of W3. For j ∈ [k] \ {i} and E ∈ W (j)

3 ,
E ⊆ X ′i would lead to E ⊆ Xi while X ′i ⊆ E to Ai ⊆ E. So E ∦ X ′i would lead to

contradiction. Hence, W
(i)
3
′ and W

(j)
3 are unrelated, showing that we can change

W
(i)
3 to W

(i)
3
′. As there is an analogous treatment for Yi and Zi, and we can take

i = 1, i = 2, . . . , i = k one by one, (4.11) can be assumed.
Recall that Grätzer [10, Lemma 73] asserts that whenever a, b, c are elements of

a lattice such that {a ∨ b, a ∨ c, b ∨ c} is a 3-element antichain, then this antichain
generates an 8-element Boolean sublattice in which {a ∨ b, a ∨ c, b ∨ c} is the set
of coatoms. Therefore, if we apply the dual of the procedure above (that is, if we
replace Ai by Xi ∩Yi, etc.), then we reach (4.12) without destroying the validity of
(4.11). We have shown that both (4.11) and (4.12) can be assumed; so we assume
them in the rest of the proof.

Let Ti := Xi∩Yi∩Zi. By (4.12), Ti is also the intersection of any two of Ai, Bi,
and Ci. Hence, letting A•i := Ai\Ti, B•i := Bi\Ti, and C•i := Ci\Ti, it follows from
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(4.11), (4.12), and W
(i)
3
∼= W3 that A•i , B

•
i , and C•i are pairwise disjoint subsets of

[n], none of them is empty, they are disjoint from Ti, and

Ai = Ti ∪A•i , Bi = Ti ∪B•i , Ci = Ti ∪ C•i ,
Xi = Ti ∪A•i ∪B•i , Yi = Ti ∪A•i ∪ C•i , Zi = Ti ∪B•i ∪ C•i .

(4.13)

For i ∈ [k], we let

Gi := Ps(Ai) ∪ Ps(Bi) ∪ Ps(Ci) ∪ Ps(Xi) ∪ Ps(Yi) ∪ Ps(Zi). (4.14)

As each of Ai,. . . ,Zi is incomparable with each of Aj ,. . . ,Zj provided that i 6= j,
(4.10) together with (4.14) imply that

for i, j ∈ [k], if i 6= j then Gi ∩Gj = ∅. (4.15)

It follows from (4.15), G1 ∪ · · · ∪Gk ⊆ Sym(n), and |Sym(n)| = n! that∑
i∈[k]

|Gi| ≤ n! . (4.16)

Next, for i ∈ [k], we focus on |Gi|. Denote |Ti|, |A•i |, |B•i |, and |C•i | by ti, ai,
bi, and ci, respectively. By (4.13), |Ai| = ti + ai, |Bi| = ti + bi, |Ci| = ti + ci,
|Xi| = ti + ai + bi, |Yi| = ti + ai + ci, and |Zi| = ti + bi + ci. Observe that
|Ps(Ai)| = (ti + ai)! · (n − ti − ai)! since what the first |Ai| = ti + ai components
of ~σ = (σ1, . . . , σn) ∈ Ps(Ai) form is set Ai and they can be arranged in (ti + ai)!
many ways while the rest of the components of ~σ in the last n− ti− ai positions in
(n−ti−ai)! many ways. We obtain similarly that |Ps(Bi)| = (ti+bi)! ·(n−ti−bi)!,
|Ps(Ci)| = (ti + ci)! · (n − ti − ci)!, |Ps(Xi)| = (ti + ai + bi)! · (n − ti − ai − bi)!,
|Ps(Yi)| = (ti+ai+ci)!·(n−ti−ai−ci)!, and |Ps(Zi)| = (ti+bi+ci)!·(n−ti−bi−ci)!.
It follows from (4.10) that the intersection of any three of the six permutation sets

considered above is empty since there is no 3-element chain in W
(i)
3 . By (4.10)

again, we need to take care of the intersections of two permutation sets associated

with comparable members of W
(i)
3 ; there are six such intersections as the diagram of

W3 has exactly six edges; see Figure 1. One of the just-mentioned six intersections
is Ps(Ai)∩Ps(Xi). For a permutation ~σ ∈ Ps(Ai)∩Ps(Xi), (4.13) yields that there
are |Ai|! = (ti + ai)! possibilities to arrange the elements of Ai in the first |Ai|
places, bi! many possibilities to arrange the elements of Xi \ Ai = B•i in the next
bi places, and (n − ti − ai − bi)! possibilities for the rest of entries of ~σ. Hence,
|Ps(Ai)∩Ps(Xi)| = (ti + ai)! · bi! · (n− ti − ai − bi)!, and analogously for the other
five intersections of two permutation sets.

The considerations above imply that for i ∈ [k], |Gi| = f3,4(ti, ai, bi, ci); see (4.2).
As (ti, ai, bi, ci) is clearly in H4(n), (4.3) yields that Mn ≤ |Gi|. This fact and (4.16)
imply that kMn ≤

∑
i∈[k] |Gi| ≤ n!. Dividing by Mn and taking into account that

k ∈ N+, we obtain that Sp(W3, n) = k ≤ bn!/Mnc = g∗3(n), as required.
We only guess but could not prove that for all n ∈ N≥3, f3,4 takes its minimum

on H4(n) at (b(n− 2)/2c, 1, 1, 1); see also Conjecture 4.2. However, we can reduce
the computational difficulties by considering the following auxiliary function:

f3,3(t, x, y) = (t+ x)! · (n− t− x)! + (t+ y)! · (n− t− y)!

+ 2(t+ x+ y)! · (n− t− x− y)!− 2(t+ x)! · y! · (n− t− x− y)!

− 2(t+ y)! · x! · (n− t− x− y)! .

(4.17)
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The definition of H4(n), see (4.1), and

2f3,4(t, x1, x2, x3) = f3,3(t, x1, x2) + f3,3(t, x2, x3) + f3,3(t, x1, x3) , (4.18)

explain that we are interested in f3,3 on the first one of the following two sets,

H3(n) := {(t, x, y) ∈ N3
0 : x > 0, y > 0, t+ x+ y ≤ n− 1} and (4.19)

H ′3(n) := {(t, x, y) ∈ N3
0 : x > 0, y ≥ x, t+ x+ y ≤ n− 1}. (4.20)

In (4.19), the sum is only at most n−1 since the fourth variable of f3,4, which does
not occur in f3,3, is at least 1. The progress is that H3(n) has much less elements
than H4(n), and H ′3(n) has even less; this is why we could reach 300 in Theorem
4.1. (Note that a priori, it was not clear that when 2f3,4(t, x1, x2, x3) takes its
minimum value, then so do all of its summands in (4.18).) Observe that since f3,3

is symmetric in its last two variables,

min{f3,3(t, x, y) : (t, x, y) ∈ H3(n)} = min{f3,3(t, x, y) : (t, x, y) ∈ H ′3(n)}. (4.21)

A straightforward Maple program2, which benefits from (4.21), shows that

for 3 ≤ n ≤ 300, f3,3 takes its minimum on the discrete
tetrahedron H3(n) at (t, x, y) = (b(n− 2)/2c, 1, 1).

(4.22)

(Note that f3,3 takes its minimum at two triples if n is even but only at a unique
triple if n is odd.) If n ∈ {3, 4, . . . , 300} and (b(n− 2)/2c, 1, 1, 1) is substituted for
(t, x, y, z), then each of the three summands in (4.18) takes its minimal value by
(4.22). This allows us to conclude that at (t, x, y, z) = (b(n − 2)/2c, 1, 1, 1), f3,4

takes its minimum on H4(n). Thus, for n ∈ {3, 4, . . . , 300} and for Mn from (4.3),

Mn = f3,4(b(n− 2)/2c, 1, 1, 1) = 3 · bn/2c! · dn/2e!
+ 3 · b(n+ 2)/2c! · d(n− 2)/2e!− 6 · bn/2c! · d(n− 2)/2e! .

(4.23)

Combining (4.5), (4.23), and (4.6), we obtain that g∗3(n) = g∗∗3 (n) for n belonging
to the set {3, 4, . . . , 300}, as required.

Next, to show that the pair (f [3,0,3, g3) = (f
(0)
3,0,3, g3) is separating, we need to

show that f
(0)
3,0,3(n+ 1)− g3(n) ≥ 0 for all n ∈ N≥3. Depending on the parity of n,

there are two cases. If n is of the form n = 2m+ 2 then, reducing the sum in (4.7)
to its summands corresponding to (i, j) = (0, 0) and (i, j) = (1, 0),

2f
(0)
3,0,3(n+ 1)− 2g3(n) ≥ 2

(
2m

m

)
+ 2

(
2m− 3

m

)
−
(

2m+ 1

m

)
(4.24)

=
2 · (2m)!

m! ·m!
+

2 · (2m− 3)!

m!(m− 3)!
− (2m+ 1)!

m!(m+ 1)!

=
(2m− 3)!

m!(m+ 1)!
· α, where α = 2(m+ 1)2m(2m− 1)(2m− 2)

+2(m+ 1)m(m− 1)(m− 2)− (2m+ 1)2m(2m− 1)(2m− 2)

= 2m4 + 4m3 − 14m2 + 8m = 2m(m+ 4)(m− 1)2. (4.25)

2Maple V Release 5 (1997); this computer algebraic program ran on a desktop computer (AMD
Ryzen 7 2700X Eight-Core Processor 3.70 GHz) in Windows XP environment simulated by Oracle
VM VirtualBox 6.0 (2019) under Windows 10 Pro. The whole computation for (4.21) and the data

in Section 5 took 7 hours and 16 minutes; (4.21) in itself needed about 7 hours. The program is
available from the (Appendix) Section 6 of the extended arXiv:2309.13783 (or arXiv:2309.13783v2)
version of the paper and, at the time of writing, from the author’s website.

https://arxiv.org/abs/2309.13783
https://arxiv.org/abs/2309.13783v2
http://www.math.u-szeged.hu/~czedli
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Hence, both α and the fraction multiplied by α are non-negative for m ∈ N+. Thus,

f
(0)
3,0,3(n+ 1)− g3(n) ≥ 0 for n ≥ 4 even. Similarly, for n = 2m+ 1 odd,

2f
(0)
3,0,3(n+ 1)− 2g3(n) ≥ 2

(
2m− 1

m− 1

)
+ 2

(
2m− 4

m− 1

)
−
(

2m

m

)
=

(2m− 4)!

m!m!
· 2m2(m− 1)(m− 2).

Therefore, f
(0)
3,0,3(n + 1) − g3(n) ≥ 0 for 2 ≤ m ∈ N+, that is, for n ≥ 5 odd.

For n = 3, f
(0)
3,0,3(n + 1) − g3(n) ≥ 0 is trivial; see also 5.2. We have shown that

(f [3,0,3, g3) is separated.
The already mentioned Maple program has computed g3(n), g∗3(n), and g∗∗3 (n)

for all n ∈ {3, 4, . . . , 300}. This computation proves that g∗∗3 (n) = g∗3(n) ≤ g3(n) for
all these n and g∗∗3 (n) = g∗3(n) < g3(n) for n ∈ {5, 6, . . . , 300}. These inequalities
and that (f [3,0,3, g3) is separated imply that (f [3,0,3, g

∗
3) and (f [3,0,3, g

∗∗
3 ) are separated

on {3, 4, . . . , 300}. The same Maple program has computed all the relevant f [r,0,r(n+

1) and gr(n), from which we conclude that for r ∈ {3, 4, . . . , 100}, the pair (f [r,0,r, gr)
is separated on the set {r, r+1, . . . , 300}. The proof of Theorem 4.1 is complete. �

Some comments on this proof are appropriate here. While we could use quite
a rough estimation in (4.24) when proving that (f [3,0,3, g3) is separating on the set

N≥3, there is no similar possibility for (f [r,0,r, gr). Indeed, since f [r,0,r(n+1) = gr(n)

for, say, (r, n) = (20, 56) when f [20,0,20(56 + 1) = 17 672 631 900 = g20(56), no
estimation would be possible. As gr(n) is far from being asymptotically good, it is
not worth putting more work into its investigation. While we could use Grätzer [10,
Lemma 73] to reach a pleasant situation for r = 3, see (4.11) and (4.12),we have no
similar tool for r > 3; this explains that Theorem 4.1 does not tell too much about
upper estimates in case of r > 3. Finally, note that even though f3,3 in (4.17) is
simpler than f3,4 in (4.2), the three-variate function f3,3 is still too complicated. In
particular, we know from computer-assisted calculations that f3,3 has several “local
minima” on the discrete tetrahedron H3(n) defined in (4.19); this is our excuse that
we could verify Conjecture 4.2 only for n ≤ 300 and only with a computer.

5. Odds and ends, including some computational results

Theorem 4.1 pays no attention to the case r = 2, which is trivial by the following
remark. As in (4.4), g2(n) := bfSp(n)/2c = bCb(n, n/2)/2c.

Remark 5.1. For n ∈ N≥2, Sp(J(FD(2)), n) = g2(n).

Proof. By Lemma 3.1 or trivially, J(FD(2)) is the two-element antichain. Hence,
Remark 5.1 follows from Sperner’s theorem; see (2.2). �

Corollary 5.2. For r ∈ N≥3 and k ∈ N≥2, let n ∈ N+ be the smallest integer such
that k ≤ f [r,0,r(n); see (4.8). Then for every distributive lattice D generated by r

elements, the direct power Dk has an at most n-element generating set.

Proof. Let k, D, and n be as in the corollary. Since k ≤ f [r,0,r(n) is included in

the assumption and f [r,0,r(n) ≤ Sp(J(FD(r)), n) by Theorem 4.1, it follows from

(2.4) that FD(r)k can be generated by an at most n element subset Y . Using that
FD(r) is the free r-generated distributive lattice, we can pick a surjective (in other
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words, onto) homomorphism ϕ : FD(r) → D. Then ϕk : FD(r)k → Dk, defined
by (x1, . . . , xk) 7→ (ϕ(x1), . . . , ϕ(xk)), is also a surjective homomorphism. Thus,
ϕk(Y ) generates Dk and |ϕk(Y )| ≤ |Y | ≤ n proves Corollary 5.2. �

The just-proved corollary and the abundance of large lattices that are easy-
to-describe and easy-to-work-with motivate the following extension of the crypto-
graphic “protocol” outlined in Czédli [3] and, mainly, in [5]. The purpose of the
quotient marks here is to warn the reader : none of our protocols is fully elabo-
rated and, thus, it does not meet the requirements of nowadays’ cryptology. In
particular, neither a concrete method of choosing the master key according to some
probabilistic distribution is given nor we have proved that the average case with-
stands attacks; we do not even say that we are close to meet these requirements.
On the other hand, no rigorous average case analysis supports some widely used
and, according to experience, safe cryptographic protocols like RSA and AES and,
furthermore, many others rely ultimately on the conjecture that the complexity
class P is different from NP. This is our excuse to tell a bit more about one of our
motivations in Remark 5.3 below. For a lattice L and ~h = (h1, . . . , hk) ∈ Lk, ~h is
a (k-dimensional) generating vector of L if {h1, . . . , hk} is a generating set of L.

Remark 5.3. In the session key exchange protocol given in Czédli [5]3, the secret
master key known only by the communicating parties was a k-dimensional gener-

ating vector ~h of the 2n-element Boolean lattice Bn. The point was that Gm(Bn),

see (2.3), is small, and so there are very many k-dimensional generating vectors ~h
if k is a few times, say, seven times larger than Gm(Bn). Here we suggest to add
(A) or (B) to the protocol outlined in [5] and to work in a lattice different from Bn.

(A) Choose a medium-sized finite random poset U and an exponent n ∈ N+;
for example, a 20-element random poset U and n = 500 are sufficient. (There
are very many 20-element posets; see A000112 in Sloan [15]; the direct link is
https://oeis.org/A000112.) By the well-known structure theorem of finite distribu-
tive lattices, see Grätzer [10, Theorem 107], U determines a finite distributive lattice

D. Then replace Bn with Dn in the [5]-protocol so that, in addition to ~h, U and n
also belong to the secret master key.

(B) Choose a random poset U of size 100 or so. As in [4], this U determines

the huge lattice (Quo≤(U);⊆) of quasiorders extending ≤U ; this lattice can be
generated by few elements. Use this lattice instead of Bn. The poset U and a
k-dimensional generating vector of (Quo≤(U);⊆) constitute the secret master key;
otherwise the protocol is the same as in [5].

Next, we present some computational data, see Footnote 2; at the “≈” rows, the
last decimals are correctly rounded.

n 298 299 300

f [3,0,3(n) ≈ 3.919 720 · 1087 7.839 440 · 1087 1.562 662 · 1088

g∗∗3 (n) ≈ 3.932 918 · 1087 7.865 747 · 1087 1.567 888 · 1088

g∗∗3 (n)

f[
3,0,3(n)

≈ 1.003 367 003 1.003 355 705 1.003 344 482

(5.1)

3At the time of writing, see (4.3) in https://arxiv.org/abs/2303.10790v3 .

https://oeis.org/A000112
https://arxiv.org/abs/2303.10790v3
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n = 3 4 5 6 7 8

f [3,0,3(n) 1 1 2 3 6 11

g∗3(n) = g∗∗3 (n) 1 1 2 4 7 13
g3(n) 1 1 3 5 10 17

n = 9 10 11 12 13 14

f [3,0,3(n) 24 42 84 153 306 570

g∗3(n) = g∗∗3 (n) 26 46 92 168 333 616
g3(n) 35 63 126 231 462 858

n = 15 16 17 18 19 20

f [3,0,3(n) 1146 2145 4290 8100 16200 30786

g∗3(n) = g∗∗3 (n) 1225 2288 4558 8580 17107 32413
g3(n) 1716 3217 6435 12155 24310 46189

(5.2)

n = 4 5 6 7 8 9 10 11 12

f [4,0,4(n) 1 1 2 3 6 10 20 36 74

g4(n) 1 1 3 5 10 17 35 63 126

n = 13 14 15 16 17 18 19 20 21

f [4,0,4(n) 134 268 496 992 1856 3712 7004 14014 26598

g4(n) 231 462 858 1716 3217 6435 12155 24310 46189

(5.3)

n = 5 6 7 8 9 10 11 12 13

f [5,0,5(n) 1 1 2 3 6 10 20 35 70

g5(n) 1 1 3 5 10 17 35 63 126

n = 14 15 16 17 18 19 20 21 22

f [5,0,5(n) 127 256 471 942 1758 3516 6620 13240 25095

g5(n) 231 462 858 1716 3217 6435 12155 24310 46189

(5.4)

The computation for the following table took 306 seconds.

n 5 999 6 000

f [20,0,20(n) ≈ 7.445 882 708 069 · 101797 1.489 176 541 614 · 101798

g20(n) ≈ 1.488 924 847 889 · 101798 2.977 849 695 779 · 101798

(5.5)

Next, we give some examples; each of them is based on (2.4), Observation 2.2,
and one of the computational tables that will be specified.

Example 5.4. (A) By (5.2), Gm(FD(3)30 000) = 20; see (2.3). That is, the direct
power FD(3)30 000 can be generated by 20 elements but not by 19.

(B) By (5.3), Gm(FD(4)20 000) is either 20 or 21 but we do not know which one.
(C) By (5.4), Gm(FD(5)25 000) = 22.

(D) By (5.1), Gm(FD(3)1088

) = 300 (the exponent in the direct power is 1088).

(E) By (5.5), Gm(FD(20)1.489·101798

) = 6 000 (the exponent is 1.489 · 101 798).

At the time of writing, we know from Sloan [15] (https://oeis.org/A000372) that
in spite of lots of work by many contributors, the largest integer r for which |FD(r)|
is known is r = 9. We mention the following well-known folkloric lower fact:

21024 = 2210

≤ |FD(20)|. (5.6)

Indeed, the free Boolean lattice FB(10) on 10 generators consists of 2210

elements
and it is lattice-generated by the free generators of FB(10) and their complements.
So FB(10) as a distributive lattice is generated by 20 elements, implying (5.6).

https://oeis.org/A000372
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Based on (5.6) and the paragraph above, the direct power in part (E) of Example
5.4 consists of an unknown but very large number of elements. However, only 306
seconds were needed to determine the least possible size of its generating sets.
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