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Abstract. Let L be a lattice. If for each a < b ∈ L there is a lattice embedding of

ϕ : L → [a, b] then L is called a semifractal. If, in addition, 0,1 ∈ L and ϕ can always be
chosen such that ϕ(0) = a and ϕ(1) = b then L is said to be a 0–1-semifractal. Now let L

be a bounded lattice. If for each a1 < b1 ∈ L and a2 < b2 ∈ L there is a lattice embedding

ψ : [a1, b1 ] → [a2, b2 ] with ψ(a1) = a2 and ψ(b1) = b2 then we say that L is a quasifractal.
If ψ can always be chosen an isomorphism or, equivalently, if L is isomorphic to each of its

nontrivial intervals then L will be called a fractal lattice or, shortly, a fractal. Although
there is an obvious hierarchy of these notions and we construct 0–1-semifractals which are

not quasifractals it remains only a conjecture that the above notions are distinct.
A variety generated by a fractal lattice is called fractal generated, and analogous ter-

minology applies for the rest of our new notions. We show that semifractal generated
nondistributive lattice varieties cannot be of residually finite length. This will easily imply

that there are exactly continuously many lattice varieties which are not semifractal gen-
erated. On the other hand, for each prime field F , the variety generated by all subspace

lattices of vector spaces over F is shown to be fractal generated. These countably many
varieties and the class D of all distributive lattices are the only known fractal generated

lattice varieties at present. Four distinct countable distributive fractal lattices will be given
such that each of them generates D. After showing that each lattice can be embedded in a

quasifractal, continuously many quasifractals will be given such that each of them has the
cardinality ℵ0 and generates the variety of all lattices.

The last section of the paper is devoted to an application. A class of lattices is called
a convexity if it is closed under taking homomorphic images, convex sublattices and direct

products. This notion is due to Ervin Fried. Each nontrivial lattice variety includes the
variety generated by the two element lattice, which is a minimal variety. The question if

the same is true for convexities goes back to Jakub́ık [17]. Using appropriate semifractals
we give many convexities which include no minimal convexity.

1. Introduction and the main theorem

In colloquial usage, a fractal is a geometric shape that is self-similar (at least
approximately) to its arbitrarily small parts, cf. Wikipedia [24]. Nature has many
objects that approximate fractals. These objects include river networks, systems of
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2 GÁBOR CZÉDLI

blood vessels and pulmonary vessels, cauliflower or broccoli, snow flakes, mountains
and lightning bolts. Fractals are frequently used tools to make mathematics popular
for wider audience. Therefore it is quite natural to investigate the related notion
in algebra and, first of all, in lattice theory. (For general reference on this theory
the reader can resort to, e.g., Grätzer [10] or [11] or Crawley and Dilworth [3].)

In lattice theory, self-similarity will, of course, mean isomorphisms. But what
should we understand by small parts and should we consider all of these small parts
or only some of them? The one element lattice, also called trivial lattice, should of
course be excluded. We have decided to consider all parts except the trivial ones.
An obvious resp. straightforward argument shows that a lattice with more than
two elements cannot be isomorphic to all of its sublattices resp. convex sublattices.
Hence we take the only possibility to give the following

Definition 1.1. By a fractal lattice, or shortly fractal, we mean a lattice which is
isomorphic to each of its nontrivial (i.e., at least two element) intervals.

To provide some examples and to fix some notations we remark that the trivial
lattice 1, the two element lattice 2 and the poset Q[0,1] = (Q[0,1],≤) of rational
numbers between zero and one are fractal lattices. Except for 2, all nontrivial
fractal lattices are infinite and they have 0 and 1. Although infinitely many fractals
will be given in the present paper and they are appropriate to derive a theorem
on convexities of lattices in the last section, we do not know sufficiently many of
them. In order to derive a better theorem, and also to make some of our statements
stronger by weakening the conditions, we introduce some weaker notions as well.

Definition 1.2. A lattice L is called a semifractal if for each a < b ∈ L there is a
lattice embedding L→ [a, b]. If L is a bounded lattice such that for each a < b ∈ L
there is a lattice embedding L → [a, b] which maps {0, 1} to {a, b} then L is called a
0–1-semifractal. If L is a bounded lattice and for each a1 < b1 ∈ L and a2 < b2 ∈ L
there is a lattice embedding [a1, b1] → [a2, b2] which maps {a1, b1} to {a2, b2} then
we say that L is a quasifractal. For brevity, the term β-fractal will mean an arbitrary
element of the set {fractal, quasifractal, semifractal, 0–1-semifractal}; the meaning
of a β-fractal is of course fixed within a context.

There are obvious inclusions among these kinds of lattices: {semifractals} ⊇
{0–1-semifractals} ⊇ {quasifractals} ⊇ {fractals}. We conjecture that all these
inclusions are proper but we can prove {0–1-semifractals} 6= {quasifractals} only.

Any fractal L = (L,∨,∧) can be considered as an algebra (L,∨,∧, t) where t is
a ternary operation such that t(x, y,−) : L → L, z 7→ t(x, y, z) is an L → [x, y]
isomorphism when x < y and it is the identical L → L map otherwise. (Notice
that the choice of t is not unique in general but this does not create any prob-
lem.) The treatment for other β-fractals is similar. Since (L,∨,∧, t) is first-order
axiomatizable, we obtain the following statement easily from well-known theorems
of Löwenheim and Skolem, and  Loś, cf., e.g., Bell and Slomson [1].

Proposition 1.3. The ultraproduct of any set of β-fractals is a β-fractal again.
If a lattice variety V can be generated by an infinite β-fractal then for any infinite
cardinal α, V is generated by a β-fractal of power α.
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A variety V is said to be nontrivial if it contains a nontrivial lattice. Let us call
a nontrivial variety β-fractal generated if it can be generated by a β-fractal. Propo-
sition 1.3 yields that a variety is β-fractal generated if and only if it is generated
by a β-fractal of power ℵ0 or less. We say that a lattice variety V is of residually
finite length if there exists an n ∈ N such that every chain in every subdirectly
irreducible lattice of V has at most n elements.
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Figure 1
Now we introduce a notion which may look too technical here but it will be quite
relevant in the last section where the main theorem is applied.

Definition 1.4. A lattice L will be called an M3-simple lattice if |L| ≥ 3 and for
each chain x < y < z of L there is an embedding M3 → L such that 0 7→ x, a 7→ y
and 1 7→ z, cf. Figure 1.

Clearly, M3-simple lattices are simple. We say that a bounded lattice L has a
spanning M3 if M3 is a 0–1-sublattice of L. Let P be the set of prime numbers and
for p ∈ P ∪ {0} let Fp be the prime field of characteristic p. The lattice variety
generated by the subspace lattices of all vector spaces over Fp will be denoted by
Vp. Now we formulate the main result of the paper.

Theorem 1.5. (1) For each p ∈ P ∪ {0}, Vp is generated by a simple countable
fractal lattice with a spanning M3. Further, Vp contains continuously many sim-
ple countable 0–1-semifractals with a spanning M3 such that none of them is a
quasifractal and each of them generates Vp.

(2) There are at least four nonisomorphic fractal lattices with power ≤ ℵ0 such
that each of them generates the variety D of distributive lattices.

(3) There is a countable distributive 0–1-semifractal which is not a quasifractal.
(4) Let V be a variety of lattices. If V is of residually finite length, then all

semifractals in V are distributive.
(5) There are continuously many lattice varieties which are not semifractal gen-

erated.
(6) Each lattice with at least three elements has a 0–1-embedding into an ap-

propriate M3-simple quasifractal. Moreover, there are continuously many pairwise
nonisomorphic M3-simple quasifractals such that each of them has only ℵ0 elements
and generates the variety of all lattices.

Notice that the Vp, p ∈ P ∪ {0}, are distinct and they are just the minimal
nondistributive modular congruence varieties, cf. Freese [5] or Corollary 14 in Freese,
Herrmann and Huhn [6]. Since “length is at most n” is a first-order property, it
follows by the famous PsHSPu lemma of Jónsson [18] that every finite lattice
generates a variety of residually finite length. Theorem 1.5 leaves many natural
questions open, we mention only a few.
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Problems 1.6. (1) Is the variety of all lattices fractal generated?
(2) Is the variety of modular lattices β-fractal generated?
(3) Given a β-fractal generated variety V, what is the number of pairwise noniso-

morphic countable β-fractals such that each of them generates V? (Some particular
cases are answered by Theorem 1.5.)

(4) What is the cardinality of the set of β-fractal generated varieties?

2. Lemmas and proofs

Let Q[0,1) = Q[0,1] \ {1}, a sublattice of the fractal Q[0,1]. For any lattice L, a
function g : Q[0,1) → L is called a sectionally constant function if there is an n ∈ N
and there are rational numbers 0 = a0 < a1 < a2 < · · · < an = 1 such that for each
i ∈ {1, 2, . . ., n} the restriction of g to the left closed right open interval [ai−1, ai) is
a constant function. Clearly, the set C(Q[0,1), L) of sectionally constant Q[0,1) → L

functions is a lattice, in fact, a sublattice of the direct power LQ[0,1) of L. Notice
that the particular case L = 2 of this construction is well-known, cf. Lemma 10 of
Section 10 in Grätzer [10].

Lemma 2.1. If L is a fractal lattice then so is C(Q[0,1), L).

Proof. Suppose g < h in C(Q[0,1), L). Then there is a k ∈ N and there are

0 ≤ a1 < b1 ≤ a2 < b2 ≤ a3 < b3 ≤ · · · ≤ ak < bk ≤ 1

in Q[0,1) such that both g and h are distinct constant functions on each [ai, bi),
i ∈ {1, . . . , k}, and, with the notation T =

⋃k
i=1[ai, bi), g and h are the same

functions on Q[0,1) \T . (Notice that Q[0,1) \T can be empty.) Clearly, T is (order)
isomorphic to Q[0,1). Let α : Q[0,1) → T be an isomorphism. For i ∈ {1, . . . , k},
let βi be a [g(ai), h(ai)] → L isomorphism. We claim that γ : [g, h] → C(Q[0,1), L),
t 7→ t∗ where t∗(x) = βi(t(α(x))) for x ∈ α−1([ai, bi)) is an isomorphism. Indeed,
let δ : C(Q[0,1), L) → [g, h], t 7→ t] where t](x) = g(x) = h(x) for x ∈ Q[0,1) \ T
and t](x) = β−1

i (t(α−1(x))) for x ∈ [ai, bi). It is straightforward to check that γ
and δ are monotone and they are inverses of each other. Therefore γ is a lattice
isomorphism. �

Proof. Now we prove parts (2) and (3) of Theorem 1.5. Since any nontrivial dis-
tributive lattice generates D, it suffices to present four distinct nontrivial distribu-
tive fractals of power at most ℵ0. The first two of them are 2, the two element
lattice, and Q[0,1], the set or rational numbers between 0 and 1.

The third one is C(Q[0,1),2). First of all, it is a fractal by Lemma 2.1. However,
this follows from well-known results on Boolean algebras, too. Indeed, Grätzer [10]
shows that C(Q[0,1),2) is, up to isomorphism, the unique countable atomless boolean
lattice, cf. Lemma 10, Thm. 20 and Cor. 23 in Section 10 of [10]. In other words, the
theory of countable atomless boolean lattices is ℵ0-categorical. This easily implies
that C(Q[0,1),2) is a fractal lattice.

The fourth fractal is C(Q[0,1),Q[0,1]). It is distinct from the previous ones since
it is neither a chain nor a complemented lattice.
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Now let K be the subset of all those g ∈ C(Q[0,1),Q[0,1]) that are monotone
Q[0,1) → Q[0,1] function. Clearly, K is a 0–1-sublattice of C(Q[0,1),Q[0,1]). Instead
of an arbitrary βi : [g(ai), h(ai)] → Q[0,1] from the proof of Lemma 2.1 we define

βi(x) =
x− g(ai)

h(ai) − g(ai)
, then β−1

i (x) = g(ai) + (h(ai) − g(ai))x.

For i < j, we have g(ai) ≤ g(aj) and h(ai) ≤ h(aj), whence

β−1
j (x) − β−1

i (x) = (1 − x)(g(aj) − g(ai)) + (h(aj) − h(ai))x ≥ 0.

This easily implies that whenever t ∈ C(Q[0,1),Q[0,1]) is monotone then so is t].
Thus the restriction of δ from the proof of Lemma 2.1 is a lattice embedding. Since
δ(0) = g and δ(1) = h, K is a 0–1-semifractal. Now define g, c, d ∈ K by

g(x) =

{
0 if x < 1

2
2
3 if x ≥ 1

2

, c(x) =

{
1
3 if x < 1

2
2
3 if x ≥ 1

2

, d(x) =

{
0 if x < 1

2

1 if x ≥ 1
2

,

and let h(x) = g(x) + 1
3
. Then c is a complement of d in the interval [g, h]. Since

only 0 and 1 have complements is K, we conclude that there is no 0–1-embedding
of [g, h] into [0, 1]. Therefore K is not a quasifractal. �

Proof. Now we prove part (4) of Theorem 1.5. Let us say that v/u is a low critical
quotient of a bounded subdirectly irreducible lattice K if u < v < 1 = 1K and
(u, v) generates the least nontrivial congruence of K.

Let V be a lattice variety which contains a nondistributive semifractal L. We
have to show that for each n an appropriate subdirectly irreducible lattice of V has
a chain consisting of more than n elements.

First we assume that L is modular. We define a sequence of sublattices Kn,
n ∈ N0. The largest element of Kn will be denoted by wn. Since L is modular but
not distributive, we can choose a sublattice K0 of L such that K0 is isomorphic
to M3, cf. Figure 1. Let us fix a low critical quotient v0/u0 in K0. Since L is a
semifractal, we can choose a sublattice K1 in the interval [u0, v0] such that K1 is
isomorphic to M3. Let us fix a low critical quotient v1/u1 in K1 and continue: if
Kn has already been chosen with a low critical quotient vn/un then let Kn+1

∼= M3

be a sublattice of the interval [un, vn] and let vn+1/un+1 be a low critical quotient
of Kn+1.

Let Tn be the sublattice generated by K0 ∪ · · · ∪Kn. By Zorn Lemma, there is
a maximal congruence Θn of Tn such that Θn does not collapse un and vn. Since
[un, vn] ⊆ [ui, vi] for i ≤ n, (ui, vi) /∈ Θn. Clearly, Bn = Tn/Θn is a subdirectly
irreducible lattice in V. We claim that

v0/Θn > v1/Θn > v2/Θn > · · ·> vn/Θn

holds in Bn, which does the job. Since v0 > v1 > · · · > vn, we have v0/Θn ≥
v1/Θn ≥ · · · ≥ vn/Θn. Now, by way of contradiction, suppose that vi/Θn =
vi+1/Θn for some i < n. Since vi ≥ wi+1 > vi+1 and the Θn-classes are convex
sublattices, (wi+1, vi+1) belongs to Θn and also to the restriction Θn|Ki+1 of Θn to
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Ki+1. But vi+1/ui+1 is a critical quotient of Ki+1, so we conclude

(ui+1, vi+1) ∈ Θn|Ki+1 ⊆ Θn ,

a contradiction.
The same argument with N5, the five element nonmodular lattice, instead of M3

works when L is not modular. �

Proof. Now we prove part (5) of Theorem 1.5. Let P denote the set of prime
numbers. For q ∈ P let Sub(F 3

q ) stand for the lattice of all subspaces of the
three-dimensional vector space over Fq. For a subset T of P , let VT be the variety
generated by {Sub(F 3

q ) : q ∈ T}. Since “length ≤ 3” is a first-order property, the
classical PsHSPu lemma of Jónsson [18] yields that VT is of residually finite length.
Part (4) of Theorem 1.5 gives that VT is not semifractal generated.

The identity εp in Herrmann and Huhn [13] (or ∆(p, 1) of [16]) holds in Sub(F 3
q )

iff 1 + 1 + · · ·+ 1 (the sum of p copies of the unit element of Fq) is an invertible
element of Fq iff p 6= q. Therefore εp holds in VT iff p /∈ T . This shows that the
map T 7→ VT from the set of all subsets of P to the set of lattice varieties that are
not semifractal generated is injective. �

Let B be a subalgebra of an algebra A. With a temporary terminology, B
will be called a homogeneously unique subalgebra of A if for any subalgebra C
of A such that C ∼= B each isomorphism ϕ : B → C can be extended to an
A → A automorphism. When speaking of homogeneously unique 0–1-sublattices
then lattices are considered as algebras of type {∨,∧, 0, 1}. For a field F let

Fn = {(a1, . . . , an) : a1, . . . , an ∈ F}

denote the n-dimensional vector space over F , and let Sub(Fn) stand for its sub-
space lattice. Part (C) of the following lemma is due to von Neumann [21]; we will
shortly give the embedding for the reader’s convenience and for later reference.

Lemma 2.2. (A) Suppose that An is a subalgebra of An+1 for all n ∈ N. If An is
a homogeneously unique subalgebra of An+1 for all but finitely many n ∈ N then,
up to isomorphism, the directed union

⋃
n∈NAn does not depend on the choice of

the An → An+1 embeddings.
(B) If, for all n ∈ N, An is a homogeneously unique subalgebra of An+1, Bn

is a homogeneously unique subalgebra of Bn+1 and Bn is a homogeneously unique
subalgebra of An, then

⋃
n∈NBn can be embedded in

⋃
n∈NAn.

(C) If F is a field and k, n ∈ N then Sub(Fn) is a 0–1-sublattice of Sub(F kn).
(D) If F is a prime field and k, n ∈ N with 3 ≤ n then Sub(Fn) is a homoge-

neously unique 0–1-sublattice of Sub(F kn).

Proof. (A) Since the directed union does not depend on finitely many members, we
can assume that An is a homogeneously unique subalgebra of An+1 for all n ∈ N.
We will write homomorphisms on the left, so for α : X → Y and β : Y → Z the
composite map is denoted by β ◦ α : X → Z and, for x ∈ X, we have (β ◦ α)(x) =
β(α(x)).
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Let ϕn : An → An+1 (n ∈ N) and ψn : An → An+1 (n ∈ N) be two systems of
embeddings. Let ϕ−1

n denote the inverse of ϕn when ϕn is considered as an An →
ϕn(An) map. Subsequent inverses in the proof of the lemma will be understood
analogously. We define automorphisms γn : An → An via induction. Let γ1

be the identical map. If γn is already defined then ϕn(An) and ψn(γn(An)) are
subalgebras of An+1 and both are isomorphic to An. Now ψn ◦ γn ◦ ϕ−1

n is a
ϕn(An) → ψn(γn(An)) isomorphism, therefore we can choose an An+1 → An+1

automorphism γn+1 such that γn+1 extends ψn ◦ γn ◦ ϕ−1
n . Clearly, γn+1 ◦ ϕn =

ψn ◦ γn.
If we think of An as a subset of An+1 via identifying x ∈ An with ϕn(x) resp.

ψn(x) of An+1 then it is straightforward to check that
⋃

n∈N γn is an isomorphism
between the two directed unions. (Indeed, we can easily show that

⋃
n∈N γ−1

n is the
inverse mapping.) Another way to derive the same conclusion is to use the fact that
direct limits are unique up to isomorphism in category theory, cf. e.g. pp. 76–77 in
Freud [7].

(B) Let ϕn : An → An+1 resp. ψn : Bn → Bn+1 be the x 7→ x embedding and let
δn : Bn → An an arbitrary embedding (n ∈ N). It suffices to define an embedding
γn : Bn → An for each n ∈ N such that ϕn ◦γn = γn+1 ◦ψn; indeed, then

⋃
n∈N γn

is a desired
⋃

n∈NBn →
⋃

n∈NAn embedding. Let γ1 = δ1. If γn is already defined
then let ηn+1 be an automorphism of An+1 extending the isomorphism

ϕn ◦ γn ◦ ψ−1
n ◦ δ−1

n+1 : δn+1(ψn(Bn)) → ϕn(γn(Bn)),

and let γn+1 = ηn+1 ◦ δn+1. Then, for any x ∈ Bn, we have

γn+1 ◦ ψn(x) = ηn+1 ◦ δn+1 ◦ ψn(x) = ϕn ◦ γn ◦ ψ−1
n ◦ δ−1

n+1(δn+1 ◦ ψn(x)) =
ϕn ◦ γn(x),

so ϕn ◦ γn = γn+1 ◦ψn.

(C) Now, to show that Sub(Fn) is a 0–1-sublattice of Sub(F kn) for any k, n ∈ N,
consider the vector space embeddings

πi : Fn → F kn,

n∑

j=1

αjej 7→
n∑

j=1

αjej+n(i−1)

for i ∈ {1, . . . , k}. Then it is straightforward to check that

κ : Sub(Fn) → Sub(F kn), M 7→
k∑

i=1

πi(M ) (1)

is a lattice embedding preserving 0 and 1.

(D) Let 3 ≤ n ∈ N. A spanning n-diamond in a bounded modular lattice L
is defined to be an (n + 1)-tuple ~a = (a0, a1, . . . , an) satisfying

∨
i6=j ai = 1 and

aj ∧
∨

i/∈{j,k} ai = 0 for all j 6= k ∈ {0, 1, . . ., n}. This important concept is due
to András P. Huhn [13] and [15] but occurs under several names and in equivalent
versions in the literature, cf. e.g. Day and Kiss [4]. Let F be a prime field. It
follows from Theorem 4.1 in Herrmann and Huhn [14] that Sub(Fn) is generated
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by a spanning n-diamond. (This is where we need the assumption that n ≥ 3 and
F is a prime field.) Now suppose that S and T are 0–1-sublattices of Sub(F kn),
both being isomorphic to Sub(Fn), and let ϕ : S → T be an isomorphism.

Focusing our attention first on S, we have that S is generated by a spanning
n-diamond ~A = (A0, . . . , An). Then ~A is also a spanning n-diamond of Sub(F kn).
Hence, by a particular case of Lemma 1 in Herrmann and Huhn [13], F kn is,
up to isomorphism, of the form V n such that A0 = {(u, . . . , u) : u ∈ V } and
Ai = {0}i−1 × V × {0}n−i for 1 ≤ i ≤ n. It follows that V is k-dimensional and
F kn has a basis ~e = (e1, e2, . . . , ekn) such that

A0 = [e1 + ek+1 + · · ·+ e(n−1)k+1, e2 + ek+2 + · · ·+ e(n−1)k+2, . . . ,

ek + e2k + · · ·+ enk], and
Ai = [e(i−1)k+1, e(i−1)k+2, . . . , eik] for 1 ≤ i ≤ n.

Let ~B = ϕ( ~A), i.e. Bi = ϕ(Ai) for i = 0, . . . , n. Then ~B a spanning n-diamond
which generates T = ϕ(S). Applying Hermann and Huhn’s result again we conclude
that F kn has a basis~f = (f1, f2, . . . , fkn) such that the previous displayed formulas
with A and e replaced by B and f are valid. Now the bijection e1 7→ f1, . . . , ekn 7→
fkn extends to an automorphism of F kn which induces an automorphism ψ of
Sub(F kn). Since this ψ sends the genarating n-diamond ~A of S to the n-diamond
~B such that ψ(Ai) = Bi = ϕ(Ai), we conclude that ψ extends ϕ. �

Proof. Now we prove part (1) of Theorem 1.5. Let F = Fp be a prime field. Suppose
that ~b = (b1, b2, . . .) and ~c = (c1, c2, . . .) are two strictly increasing sequences in the
lattice (N, |) where the lattice order is the divisibility relation. Then the directed
unions LF (~b) =

⋃
n∈N Sub(F bn) and LF (~c) =

⋃
n∈N Sub(F cn) are uniquely defined

(up to isomorphism) by Lemma 2.2. We say that ~b and ~c are cofinal with each other
in (N, |) if for all i there exist k and ` such that bi | ck and ci | b`.

We claim that (∗) whenever ~b and ~c are cofinal with each other in (N, |) then
LF (~b) is (isomorphic to) LF (~c).

Indeed, then we can choose a strictly increasing sequence ~d = (d1, d2, . . .) in
(N, |) as follows. Let d1 = b1. Let d2 be the smallest ci with d1 | ci and d1 6= ci.
Let d3 be the smallest bj with d2 | bj and d2 6= bj. Let d4 be the smallest ck
with d3 | ck and d3 6= ck. And so on we choose elements from ~b and ~c alternately.
Now ~d (odd) = (d1, d3, d5, . . .) is a subsequence of both ~d and ~b, and in both cases
~d (odd) is cofinal with the original sequence. This yields that LF (~b) ∼= LF (~d (odd)) ∼=
LF (~d). Similarly, working with ~d (even) = (d2, d4, d6, . . .) we obtain LF (~c) ∼= LF (~d).
Therefore LF (~b) ∼= LF (~c), proving (∗).

We also claim that (∗∗) whenever bn | cn for all n then LF (~b) has a 0–1–
embedding into LF (~c).

This is a straightforward consequence of Lemma 2.2 and the fact that, after
disregarding from finitely many members, we can assume that all the bi and cj are
greater than 2.
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Now we define continuously many 0–1-semifractals in Vp. Let us consider a
subset H = {p1, p2, p3, . . .} of the set P of prime numbers such that 2 ∈ H. Let
hn = pn

1p
n−1
2 pn−2

3 . . . pn. It is worth noting that h0 = 1 and hn = hn−1p1p2 . . . pn

for n > 0. Then ~h = (h0, h1, h2 . . .) is a strictly increasing sequence in (N, |), so
we can consider the lattice LH = LF (~h). To make this definition unambiguous we
assume that p1 < p2 < · · · when H is infinite while p1 < · · · < pn and pkn+i = pi

for k ∈ N and i ∈ {1, . . . , n} when |H| = n ∈ N.
Consider a nontrivial interval [u, v] in LH . Then u, v ∈ Sub(F ht) for some t.

Keeping t fixed, let Ai = [u, v] ∩ Sub(F ht+i). Then [u, v] =
⋃

i∈NAi. Let g0 be
the length of A0 and define gi = gi−1p1p2 . . . pt+i for i > 0. This way we have a
sequence ~g = (g0, g1, . . .). Since any interval of finite length ` in a subspace lattice
over F is isomorphic to Sub(F `), we have A0

∼= Sub(F g0). We claim that for all
i ∈ N0 we have

Ai
∼= Sub(F gi).

To show this, assume that i > 0 and Ai−1
∼= Sub(F gi−1). Using the fact that

the particular embedding κ given in formula (1) has the property dim(κ(M )) =
k dim(M ) for any M ∈ Sub(Fn), and the same is true for any other 0–1-embedding
by Lemma 2.21, we conclude that dim(u) in Sub(F ht+i) is p1p2 . . . pt+i times dim(u)
in Sub(F ht+i−1 ). The same holds for dim(v) and, consequently, for dim(v)−dim(u).
This implies that Ai

∼= Sub(F gi−1p1p2...pt+i) = Sub(F gi), indeed.
The above arguments show that

[u, v] =
⋃

i∈N

Ai
∼= LF (~g).

When H = P , the set of all primes, then ~h and ~g are cofinal with each other and
(∗) yields [u, v] ∼= LF (~g) ∼= LF (~h) = LP . This shows that LP is a fractal. When
{2} ⊆ H ⊂ P then hn | gn for all n and (∗∗) gives a 0–1-embedding of LH = LF (~h)
into LF (~g) ∼= [u, v]. This shows that LH is a 0–1-semifractal.

To prove both that H1 6= H2 implies LH1 6= LH2 and that H 6= P implies LH

is not a quasifractal, it suffices to show that, for any prime q, Sub(F q) is always a
sublattice of LH but it is a 0–1-sublattice of LH iff q ∈ H.

Take an n with q ≤ hn. Then L(F hn) has an iterval of length q. Hence Sub(F q)
can be embedded into L(F hn ) and therefore also into LH . If q ∈ H then q | hn for
some n. By Lemma 2.2 Sub(F q) has a 0–1-embedding into L(F hn ), and therefore
also into LH .

Now assume that Sub(F q) is 0–1-embedded in LH . According to Herrmann and
Huhn [14], we can choose a spanning q-diamond ~A = (A0, . . . , Aq) which generates
Sub(F q). This q-diamond consists only of q + 1, i.e. finitely many, elements. So
there is an hn such that L(F hn) includes this spanning q-diamond. Like in the
proof of part (D) of Lemma 2.2, from Lemma 1 in Herrmann and Huhn [13] we
conclude that hn, the dimension of F hn is a multiple of q. This implies q ∈ H.

1Lemma 2.2 applies only for g0 ≥ 3. The case g0 = 1 is trivial while the case g0 = 2 follows
easily from modularity.
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Finally, the F hn are simple lattices whence so is their union, LH . Since Sub(F 2)
has a spanning M3, so have all the LH , {2} ⊆ H ⊆ P . Any variety is closed with
respect to directed unions, so we have LH ∈ Vp. Since the Fp-vector spaces form a
congruence permutable variety, the theory of Mal’cev conditions, cf. Wille [25] and
Pixley [23], or cf. also [16], implies that Vp is generated by {Con(F hn) : n ∈ N}.
But Con(F hn ) ∼= Sub(F hn) is a sublattice of LH for any n ∈ N, whence we conclude
that LH generates Vp. �

Notice that L{k}, i.e. our 0–1-semifractal with H = {k}, is just von Neumann’s
example of a lattice that has a normalized dimension function without being of finite
length, cf. [21]. Although the L{k} and any other LH are far from being continuous
or even from complete lattices, the metric completion L{k} of L{k} is a continuous
geometry and has the cardinality of continuum, cf. [21] (cf. also pages 161–162 in
Crawley and Dilworth [3]). While, according to our proof, distinct values of k give
distinct 0–1-semifractals L{k}, von Neumann showed that L{k} does not depend on
k (cf. page vi in the foreword of [21]). Using his ideas it is trivial that each of our
0–1-semifractals LH has a normalized dimension function.

While this paper was under refereeing, E. Tamás Schmidt and Luca Giudici
remarked that many uncountable modular lattices obtained from regular or bisimple
rings are fractals in our sense, cf. Hannah [12], Munn [20] and, for a very detailed
overview, Giudici [9].

Now, to prepare the rest of the proof of Theorem 1.5, we give two lattice construc-
tions. Let L be a lattice with a nontrivial interval [a, b], and let H = {Hi : i ∈ I}
be a system of bounded lattices. (The Hi are not necessarily distinct.) Take an
isomorphic copy Ki of Hi for each i ∈ I, disjoint from L and from Kj for j ∈ L\{i},
and identify the least elements of these Ki with a and their greatest elements with
b. This way we obtain a poset denoted by L©/ [a,b]H.

For example, when L = N5, b/a is the critical quotient of N5, H1 is the five
element chain, H2 = H1, H3 is obtained from the four element Boolean lattice by
adding a new 0 and new 1 to it, I = {1, 2, 3}, and H = {Hi : i ∈ I} then this
poset, i.e. N5 ©/ [a,b]{H1,H2,H3}, is depicted on the left in Figure 2. Notice that a
particular case of the L©/ [a,b]H construction occurs in Lihová [22].

a

c

0

1

x

z

y

b

Figure 2



FRACTAL LATTICES 11

When we form L©/ [a,b]H for all nontrivial intervals [a, b] of L at the same time,
adding disjoint elements to distinct intervals, then the poset we obtain is denoted
by L©/ H. For example, when L = 3 = {0, c, 1}, the three element chain, H1 = M3,
and H = {H1} then this poset, i.e. 3©/ {M3}, is depicted in the middle of Figure 2.

The following construction will be used to provide M3-simplicity. For a lattice
L and x < y < z in L we obtain the poset L⊕x,y,z M3 by identifying x, y, z of L
with the respective elements 0, a, 1 of M3 in the disjoint union of L and M3. For
example, if L = N5 and 0 < x < y < z = 1 then N5 ⊕x,y,zM3 is depicted on
the right in Figure 2. When we form L⊕x,y,z M3 for all choices of x < y < z at
the same time, using disjoint copies to distinct choices, then the poset obtained is
denoted by L ⊕M3.

Lemma 2.3. All of the posets L©/ [a,b] H, L©/ H, L⊕x,y,z M3 and L⊕M3 are
lattices.

Proof. When L is 2, the two element lattice, then A = 2©/ [0,1]H is obviously
a lattice. Otherwise L©/ [a,b] H = L©/ [a,b]{A}, and a straightforward calculation
shows that this is a lattice.

Let {bι/aι : ι < α} be the set of nontrivial quotients of L. Here α is an or-
dinal and aι < bι for all ι < α. Let L0 = L©/ [a0,b0]

H, for λ < α let Lλ+1 =
Lλ ©/ [aλ+1,bλ+1] H, and let Lλ =

(⋃
ι<λ Lι

)
©/ [aλ ,bλ]H when λ is a limit ordinal.

Then L©/ H =
⋃

λ<αLλ. Since any directed union of lattices is a lattice, we con-
clude that L©/ H is a lattice.

It is straightforward again that L⊕x,y,z M3 is a lattice, and we can resort to the
previous direct limit argument to conclude that L ⊕M3 is a lattice. �

Proof. Now we prove part (6) of Theorem 1.5. For an arbitrary lattice X let I(X)
denote the set of nontrivial intervals of X. So I(X) consists of lattices and distinct
members of I(X) can be isomorphic. We say that X extends to another lattice Y if
X is a 0–1-sublattice of Y . Let L = L0 be an arbitrary lattice with |L| ≥ 3. Define
a sequence of lattices as follows: L′

n = Ln ⊕M3 and let Ln+1 = L′
n ©/ I(L′

n).
Notice that when passing from L′

n to Ln+1 then each interval [c, d] of L′
n is

doubled in some but not in the exact sense. Namely, a new isomorphic copy of [c, d]
(together with other intervals) is glued to the “old” interval [c, d] at c and d. The
inner elements (i.e., those distinct from c and d) of this new copy form a convex
subset of Ln+1 but this is not the case for the “old” inner elements of the original
interval [c, d].

We consider Ln as a 0–1-sublattice of L′
n and L′

n as a 0–1-sublattice of Ln+1

in the natural way. For x ∈ L′
n when x is regarded as an element of Ln+1 then

we often denote this element by (x,−). For a < b ∈ L′
n and c ≤ x ≤ d ∈ L′

n let
(a, b; c, x, d) denote the element x in the “flap” (i.e., interval) [c, d] glued into the
interval [a, b]. With this notation, Ln+1 consists of the elements (x,−) and the
elements (a, b; c, z, d). Notice that (a, b; c, c, d) = (a,−) and (a, b; c, d, d) = (b,−).
We usually denote an element of Ln+1 by a single letter like x when we do not want
to specify if it is of the form (x,−) or (a, b; c, z, d).
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Let Lω be the (directed) union of these lattices. If x < y < z in Lω then
x < y < z in Ln for some n, whence there is an appropriate M3 in L′

n ⊆ Lω. This
shows that Lω is M3-simple.

To show that Lω is a quasifractal, it suffices to show that for any a < b in
Lω, there is a 0–1-embedding [a, b] → Lω and another 0–1-embedding Lω → [a, b].
Let U = [a, b]. We can assume that (a, b) 6= (0, 1). Choose an m < ω such that
a, b ∈ Lm. For n ≥ m let Un = [a, b]∩ Ln and U ′

n = [a, b]∩ L′
n. Clearly, U = [a, b]

is equal to
⋃

n≥m Un.
In one direction, it suffices to define a 0–1-embedding ϕn : Un → Ln+1 for

each n ≥ m such that ϕn+1 extends ϕn. Indeed, in this case the union of these
embeddings will be a desired U → Lω embedding.

When Lm+1 is formed, a copy of U ′
m is glued to the interval [0, 1] of L′

m. But U ′
m

extends Um, so there is a natural embedding ϕm of Um into the new copy of U ′
m just

glued. This ϕm is an Um → Lm+1 0–1-embedding. Now suppose ϕn : Un → Ln+1

is already defined. Clearly, U ′
n = Un⊕M3. First we extend ϕn to an embedding ϕ′

n :
U ′

n → L′
n+1 that sends the copy of M3 attached to x < y < z ∈ Un onto the copy of

M3 attached to ϕn(x) < ϕn(y) < ϕn(z) ∈ Ln+1. Now Un+1 consists of the elements
(x,−) for x ∈ U ′

n and the elements (c, d;u, z, v) for c < d ∈ U ′
n and u < z < v ∈ L′

n.
Let ϕn+1(x,−) = (ϕ′

n(x),−) and ϕn+1(c, d;u, z, v) = (ϕ′
n(c), ϕ′

n(d);u, z, v). (Here
we used that u, z, v ∈ L′

n are also elements of L′
n+1.) Then ϕn+1 : Un+1 → Ln+2 is

a 0–1-embedding that extends ϕn, as desired.
Now, in the other direction, it suffices to define 0–1-embeddings ψn : Ln → Un+1

for each n ≥ m such that ψn+1 extends ψn. Indeed, in this case the union of
these embeddings will be a desired Lω → U embedding. When forming Lm+1, a
copy of L′

m is glued to [a, b], i.e. into U ′
m. This copy becomes a 0–1-sublattice

of Um+1. But L′
m extends Lm, so we have a 0–1-embedding ψm : Lm → Um+1.

Now suppose that ψn : Ln → Un+1 is already defined. We can extend it to a
0–1-embedding ψ′

n : L′
n → U ′

n+1 that sends the M3 attached to x < y < z ∈ Ln

onto the M3 attached to ψn(x) < ψn(y) < ψn(z) ∈ Un+1, for any x < y < z ∈
Ln. Now we extend ψ′

n to an embedding ψn+1 : Ln+1 → Un+2 as follows. For
x ∈ L′

n, c < d ∈ L′
n and u < z < v ∈ L′

n, let ψn+1(x,−) = (ψ′
n(x),−) and

ψn+1(c, d;u, z, v) = (ψ′
n(c), ψ′

n(d);u, z, v). (Here we used that u, z, v ∈ L′
n are also

elements of L′
n+1.) This embedding extends ψn, as desired.

We have seen that each lattice L with |L| ≥ 3 extends to an M3-simple quasifrac-
tal Lω. Now, given a chain I = (I,≤) and a lattice Ki for each i ∈ I, by the ordinal
sum

∑
i∈I Ki we mean ({(a, i) : i ∈ I, a ∈ Ki},≤) where (a, i) ≤ (b, j) means i < j

or i = j with a ≤ b.
Now let T be a subset of P , the set of prime numbers. Let K1 be the free lattice

on ℵ0 free generators and let Kp be Sub(F 3
p ) for p ∈ T . Then {1}∪T has its natural

order, so we can form L =
∑

i∈{1}∪T Ki. I.e., L = L(T ) is the ordinal sum of the
free lattice and the Sub(F 3

p ) for p ∈ T .
Clearly, L(T ) is a countable lattice generating the variety of all lattices, whence

so is Lω = L(T )ω . To show that different subsets T give different quasifractals
L(T )ω it suffices to show that Sub(F 3

p ) is embeddable in L(T )ω iff p ∈ T . To prove
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the nontrivial direction, assume that p /∈ T . For any prime q, Sub(F 3
q ) is generated

by any of its spanning 3-diamonds by Herrmann and Huhn [14]. Hence Sub(F 3
p )

cannot be embedded in Sub(F 3
q ) for q 6= p, for otherwise the sublattice generated

by a 3-diamond would consist of exactly

|Sub(F 3
q )| = 1 +

q3 − 1
q − 1

+
q3 − 1
q − 1

+ 1 = 2q2 + 2q + 4

elements and exactly |Sub(F 3
p )| = 2p2 + 2p + 4 elements, a contradiction. The

free lattice is semidistributive by Jónsson and Kiefer [19], therefore its modular
sublattices are distributive, whence Sub(F 3

p ) cannot be embedded in the free lattice.
We conclude that Sub(F 3

p ) cannot be embedded in L(T ) = L. By way of contra-
diction suppose now that Sub(F 3

p ) is embeddable in Lω. Then there is a smallest
m such that either Sub(F 3

p ) is embeddable in L′
m or it is embeddable in Lm+1.

In the first case some element u of L′
m \Lm must belong to (a copy of) Sub(F 3

p ).
Then u is either ∨-reducible or ∧-reducible in Sub(F 3

p ), which contradicts the fact
that every element of L′

m \ Lm is both ∨-irreducible and ∧-irreducible in L′
m.

The other case is when Sub(F 3
p ) is embedded in Lm+1 but not in L′

m. For a < b
and c < d in L′

m let us call E = E(a, b, c, d) = {(a, b; c, z, d) : c ≤ z ≤ d} a flap.
This is just a recently inserted interval. If c < z < d then (a, b; c, z, d) is called
an inner element of the flap. The elements of Sub(F 3

p ) of height 1 resp. 2 will be
called points resp. lines. Since Sub(F 3

p ) is not a sublattice of L′
m and Sub(F 3

p ) is
generated by its points, there exists a point u ∈ Sub(F 3

p )\L′
m. This u is necessarily

an inner element of some flap E.
Now if h, g are lines of Sub(F 3

p ) with h ∧ g = u then both h and g must belong
to E. Indeed, otherwise h ∧ g would be h or g or the bottom of E (which is (a,−)
in Lm+1 and the zero of Sub(F 3

p )). We have seen that if a point u belongs to E
then any two lines whose intersection is u belongs to E. Therefore if u is in E then
any lines above u is in E. The dual argument gives that if E contains a line then E
contains all points below that line. It follows from these observations that for any
point v 6= u, the line u ∨ v and then v belongs to E. But Sub(F 3

p ) is generated by
its points, so Sub(F 3

p ) is a sublattice of E. This is a contradiction, for L′
m contains

an interval isomorphic to E but we assumed that Sub(F 3
p ) cannot be embedded in

L′
m. �

3. Convexities of lattices

A class V of lattices is called a convexity if it is closed with respect to the
operators H of forming homomorphic images, C of forming convex sublattices and
P of forming direct products. This notion is due to Ervin Fried [8]. He showed
that, given a class V of lattices, the least convexity containing this class is HCPV,
and he asked how many convexities exist. The answer was given by Jakub́ık [17],
who showed that convexities form a proper class and, apart from the fact that they
do not constitute a set, they form a complete lattice with respect to inclusion. The
least element of this lattice is the class of trivial lattices. Jakub́ık [17] also showed
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that HCP{2} is an atom in this lattice. In other words, HCP{2} is a so-called
minimal convexity. He raised the question if there exists another minimal convexity
or not. Although we still do not know the answer, this section of the paper will
shed more light on the problem.

In some sense, it is not a surprise that HCP{2} is an atom, for much more is
true. Namely, if L is a lattice which has either a nontrivial distributive interval (in
particular, if there are a, b ∈ L with a ≺ b) or a nontrivial distributive homomor-
phic image then HCP{2} ⊆ HCP{L}. This follows easily from the prime ideal
theorem. Notice that the above condition on L is not necessary. Indeed, Lihová [22]
has recently given a lattice L with HCP{2} ⊂ HCP{L} such that, surprisingly,
L is simple and it has no nontrivial distributive interval. She also generalized the
classical Jónsson [18] lemma as follows: if V is any class of lattices then

HCPV = PsHCPuV.

Knowing that the lattice of subvarieties of any variety of algebras is atomic, cf.
e.g. Thm. 14.21 in Burris and Sankappanar [2], the following theorem is somewhat
surprising.

Theorem 3.1. (A) Let F be a simple 0–1-semifractal with a spanning M3. (For
example, let F be one of the fractals from part (1) of Theorem 1.5.) Then HCP{2}
is not a subclass of the convexity HCP{F}.

(B) Let M be an M3-simple semifractal. (For example, let M be one of the
quasifractals from part (6) of Theorem 1.5.) Then no minimal convexity is a sub-
class of the convexity HCP{M}.

(C) Let C be the collection of all lattice convexities V such that V has no minimal
subconvexity. Then C is a proper class, not a set.

Notice that if F and M are taken from Theorem 1.5 then the convexities in part
(A) consist of modular lattices but this is not the case in part (B).

Proof. (A) By way of contradiction let us assume that HCP{2} ⊆ HCP{F}.
Lihová’s result gives 2 ∈ HCPu{F}. Hence there is an ultrapower K of F and a
convex sublattice S of K such that 2 is a homomorphic image of S. Let Θ be the
kernel of a surjective S → 2 homomorphism. Observe that S is either a nontrivial
interval of K or a directed union of nontrivial intervals. In both cases we obtain
that the congruence Θ, restricted to an appropriate nontrivial interval J of K, has
exactly two classes. By Proposition 1.3, K is a 0–1-semifractal. Further, K has a
spanning M3 since this is a first-order property. Therefore J has a spanning M3

as well. Since Θ does not collapse the bottom and top elements of the spanning
M3 of J , the restriction of Θ to this M3 has exactly two classes. But this is a
contradiction, for M3 is a simple lattice.

(B) First we claim that (∗∗∗) if M is an M3-simple semifractal and L is a
subdirectly irreducible lattice in HCP{M} then L is also an M3-simple semifractal
and |L| ≥ |M |.

The proof of (∗∗∗) starts with applying Lihová’s result again: there is an ultra-
power K of M and a convex sublattice S of K such that L is a homomorphic image
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of S. Clearly, |K| ≥ |M |, for the constant choice functions are distinct modulo
any ultrafilter. Using Proposition 1.3 and the fact that M3-simplicity is a first-
order property we conclude that K is an M3-simple semifractal. So is S, for these
properties are inherited by convex sublattices. Since K is a semifractal, |S| = |K|.
Finally, L ∼= S, for S is simple. This proves (∗∗∗).

Now let V be an arbitrary nontrivial convexity with V ⊆ HCP{M}. Since V
contains a nontrivial lattice, which must have a subdirectly irreducible homomor-
phic image, V contains a subdirectly irreducible lattice L. In view of (∗∗∗), L is
an M3-simple semifractal with |L| ≥ |M |. Let M ′ be an ultrapower of L with
|M ′| > |L|. Then M ′ is again an M3-simple semifractal by Proposition 1.3. Since
M ′ ∈ PuV ⊆ HPV ⊆ V, we have that HCP{M ′} is a subconvexity of V. It
follows from |M | < |M ′| by (∗∗∗) that M /∈ HCP{M ′}. Hence HCP{M ′} ⊂ V,
showing that V is not minimal.

(C) It follows from Proposition 1.3 and part (6) of Theorem 1.5 that for each
infinite cardinal α there is an M3-simple semifractal Mα with |Mα| = α. Part
(B) gives that the convexity HCP{Mα} has no minimal subconvexity. These
convexities are distinct, for α < β implies Mα /∈ HCP{Mβ} in view of (∗∗∗). �
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