WHEN DO COALITIONS FORM A LATTICE?

GABOR CzEDLI AND GYORGY POLLAK

ABSTRACT. Given a finite partially ordered set P, for subsets or, in other words,
coalitions X,Y of P let X <Y mean that there exists an injection ¢: X — Y such
that x < ¢(z) for all x € X. The set L(P) of all subsets of P equipped with this
relation is a partially ordered set. All partially ordered sets P such that L£(P) is
a lattice are determined, and this result is extended to quasiordered set P versus
g-lattice L(P) as well. Some elementary properties of distributive lattices £L(P) are
also given.

Dedicated to Professors Laszlo Leindler on his 60th and Karoly Tandori on his
70th birthday

MOTIVATION AND PRELIMINARIES

In game theory or in the mathematics of human decision making the following
situation is frequently considered, cf. e.g. Peleg [5]. Given a finite set P, for
example we may think of P as a set of political parties, and each * € P has
a certain strength measured on a numerical scale that we may think of as the
number of votes x receives. Subsets of P are called coalitions. The strength of
a coalition is the sum of strengths of its members. Let £(P) stand for the set of
all coalitions. The relation “stronger or equally strong” is a quasiorder on P and
also on £(P). The quasiorder on P has some influence on the quasiorder on £(P).
Sometimes, like before the election in our example, all we have is a quasiorder or,
more frequently, a partial order on P, supplied e.g. by a public opinion poll. Yet,
as we will see, this often suffices to build some algebraic structure on L(P).

From now on, let P = (P, <) be a fixed finite quasiordered set, i.e., < is a
reflexive and transitive relation on the finite set P. For z,y € P, x > y means
that y < x and x £ y. For undefined terminology the reader is referred to Gratzer
[4]. Even without explicit mentioning, all sets occurring in this paper are assumed
to be finite. The set of all subsets, alias coalitions, of P is denoted by L(P). For
X,Y € L(P),amap ¢: X — Y is called an extensive map if ¢ is injective and for
every x € X we have z < ¢(x). Let X <Y mean that there exists an extensive
map X — Y this definition turns £(P) into a quasiordered set L(P) = (L(P), <).
Using singleton coalitions one can easily see that P is a partially ordered set, in
short a poset, iff L(P) is a poset. Our main result, Thm. 2, describes the posets P
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for which L(P) is a lattice. However, to achieve more generality without essentially
lengthening the proof, Thm. 2 will be concluded from its generalization Thm. 1
for quasiorders.

Definition. A quasiordered set P is called upper bound free, in short UBF, if for
any a,b,c € P we have

(a<ec)& (b<c)) = ((a<b)or (b<a)).

The equivalence classes of the equivalence generated by <p will be called the
components of P. If P is an UBF poset and has only one component then P is
called a tree. A poset is called a forest if its components are trees. Clearly, a finite
poset is a forest iff it is UBF. Let P = (P, <) denote the poset obtained from P
in the canonical way, i.e., consider the intersection ~ of <p with its inverse, let
P consist of the classes of the equivalence relation ~, and for A,B € Plet A < B
mean that ¢ < b for some ¢ € A and b € B. For x € P the ~-class of z will be
denoted by Z. Sometimes, for x € P and Y € P, we write z <Y or 2 > Y instead
of . <Y orz > Y, respectively. P is called a quasilattice if each two-element
subset of P has an infimum and a supremum in P. (The infimum and supremum
is defined only up to the equivalence ~!) Equivalently, P is a quasilattice iff P is a
lattice. Following Chajda [1], cf. also Chajda and Kotrle [2], an algebra (L;V, A)
is called a g-lattice if both binary operations are associative and commutative,
and the identities z V (z Ay) =z Vz, 2V (y Vy) = = V y, their duals, and the
identity x V& = x Az hold. In Chajda [1], the well-known connection between
lattices as posets and lattices as algebraic structures is generalized to a similar
connection between quasilattices and ¢-lattices. Hence our first theorem indicates
that g-lattices are relevant tools to study coalitions.

REsuLTS

Theorem 1. For a finite quasiordered set P, L(P) is a quasilattice iff P is upper
bound free.

As indicated in the previous section, this theorem instantly yields
Theorem 2. For a finite poset P, L(P) is a lattice iff P is a forest.

The proof of Thm. 1 gives an effective construction of suprema in £(P). Propo-
sition 1 below gives a recursive description of infima in £(P) in the particular case
when P is a forest; i.e. L(P) is a lattice. The quasiorder-theoretic generalization
of Proposition 1 would cause considerable technical difficulties even in formulating
the result.

Proposition 1. Let P be a forest, k > 2, and for Ay, ..., Ax € L(P) let M =
{by A Nbg: by € Ay, ... b € Ak, and the infimum by A ... A\ by exists in P}. If
M is empty (in particular when one of the A; is empty) then /\f:1 A, =0. If M is
non-empty then choose a maximal element c = a1 A. .. Nay in M where the a; belong
to A; such that, for everyi, c € A; = c¢=a;. Let A, = A;\{a;} fori=1,... k,
P'=P\{c}, and put C' = /\f":1 Al in L(P'). Then /\f:1 A; =C"UA{c} in L(P).
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Proposition 2. For any finite quasiordered set P, L(P) is selfdual. In fact, the
map L(P) — L(P), X — P\ X is a dual automorphism.

In virtue of Proposition 2 we have
(1) AN NAL=A1 V...V Ay,

and dually. This offers a way of deducing infima from suprema and vice versa. In
practical computations this can be useful e.g. when the A; = P\ A; have only
a few elements. However, Proposition 1 gives a better view of infima for lattices
L(P) than (1), and the authors do not think that (1) would make the proof of
Proposition 1 easier.

Let Cp, = {c1 < ¢2 < ... < ¢} be the n-element chain; then £(C),) is a
lattice by Theorem 2. Now we give a more informative description of £(C,,). We
define lattices L, with ideals I, and dual ideals D,, and lattice isomorphisms
on: In — D, via induction as follows. Let L; be the two-element lattice, Iy = {0},
Dy = {1}; the meaning of ¢1: Iy — D; is obvious. For n > 1, take two disjoint
isomorphic copies of L,,_1, one of them will be I,, while the other will be D,,, choose
an isomorphism ¢,,: I, — D,, and let L, = I, UD,,. For x,y € L, welet z <y
iff one of the following three possibilities holds: either z € I,,, y € D,,, and = < d
in I,, and gpn(gpgil(d)) <wyin D, forsomed € D,_1 CI,,orz,y €I, and z <y
in I,, or z,y € D, and z < y in D,,.

Proposition 3. For everyn > 1, £(C},) = L,,.

Proposition 4. Let Ty, Ts, ..., Ts be the components of the quasiordered set P.
Then L(P) = (L(P), <) is isomorphic to the direct product of the L(T;), 1 <i < s.

Proposition 5. Let P be a finite forest. Then the lattice L(P) is distributive iff
L(P) is modular iff every tree of P is a chain.

PROOFS

Proof of Theorem 1. Let us suppose first that £(P) is a quasilattice, and a < ¢,
b < ¢ hold for a,b,c € P. Let U be a supremum of {a} and {b} in L(P). Since
{a} < {c} and {b} < {c}, we have U < {c}, whence |U| < 1. On the other hand,
|U| > 1 by {a} < U. Thus U is a singleton, say {d}. From {a} < U = {d} and
{b} < U = {d} we infer a < d and b < d. Since {a, b} is an upper bound of {a} and
{b}, we obtain {d} = U < {a, b}, yielding d < b or d < a. By transitivity, a < b or
b < a. Le., P is upper bound free.

To prove the converse, let us assume that P is UBF. Then so is P. Let P; be the
set of maximal elements of the forest P. If P\ P; is not empty then let Py denote
the set of its maximal elements, etc.; if P\ (P;U...U P;_1) is not empty then let
P; denote the set of its maximal elements. Then P is partitioned in finitely many
subsets Py, ..., P,. For 1 <i<rlet P, = {reP:zc ﬁi}; now P is the union
of the pairwise disjoint P;, 1 <i <r. The set {x € P, U...UP;: = > B holds for
no B € P;} will be denoted by Q;.

Now, for given coalitions Ay, ..., A, we intend to define a sequence () = Cy C
C;y CCy C... CC, = C of coalitions such that C; = CnN(PyU...UPF;) and C
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is a supremum of {Aq,..., Ax}. Suppose i > 0 and C;_; has already been defined.
For given B € P; and 1 < j < k we define the following numbers.

vi(B)=|{x € C;_1: x > B}|,
vi(j, B) = {z € Aj: = > B}|,
6i(j, B) = vi(j, B) — vi(B),
\i(B) = max{0,6;(1, B), 6:(2, B), ... , 6i(k, B)}.

Let us choose a subset S;(B) of B such that |S;(B)| = A\;(B). (We will soon prove
that this choice is possible.) We define C; by

C;=0C;_1U U Sz(B

BE?»L'
Denote A;N (P U...UP;) by Ag-i) and consider the following induction hypothesis
(H(4)) AW < ¢, for all j and A(B) < |B| for all B € P

Note that \;(B) < |B] is necessary to make the choice of S;(B) possible.

For i =1, v1(B) = 0 and v (j, B) = |A; N B| < |B| imply A\{(B) < |B|. Since
|A; N B| = 11(j,B) = 61(j,B) < M\i(B) = |S1(B)|, we can chose an injection
Yp: A; N B — S1(B). Clearly,

U s A7 =G

Beﬁl

is an extensive map. This proves H(1).

Now, for 1 < i < r, suppose H(i — 1). For B € P;, the existence of extensive
maps 045-2_1): AS.Z_l) — (1, which necessarily map {z € A;: * > B} into {z €
Ci—1: © > B}, yields {z € A;: « > B}| < |{ € Ci_1: = > B}| for any j.
Using this inequality we can estimate: 0;(j, B) = v;(j, B) — vi(B) = |[{z € A;: * >
B —{z€Cis1: 2> B} =|{z € Aj: x >B}UA;NB)|—{z € Ci_1: = >
B} =|A;NB|+ |{z € A;: x > B}| — |[{z € C;—1: = > B}| < |A; N B| < |B|.
Therefore \;(B) < |B|, indeed.

Now, for a fixed j and arbitrary B € P;, we will define an extensive map ¢p =
vjp: {x € Aj: x > B} — {x € C;: x> B}. Since [{x € Aj: ® > B} =v4(j, B) =
’YZ(B) —|—5Z(],B) < ’)/Z(B)—}—)\Z(B) = |{.T cCi_1: x> B}| + |CfbﬁB| = |{LE cCiy x>
B}U(C;NB)|=|{z € C;: = > B}, ie.,

(2) {z € Aj: « > B} < |{z € C;: x > B}|,

the restriction of ag-i_l) to the set {x € A;: = > B} N Ag-i_l) can be extended
to an injective map ¢p: {v € A;: * > B} — {v € C;: x > B}. For any
y € {z € A;: x > B} either y € A;Z_l) and ¢p(y) = o V(y) > yor y € B,

j
whence ¢p is an extensive map. Let agl) be the union of ag-z_l)

B € P;. Then ag-i): Agi) — (. Since, by the UBF property, ); and the sets

and all the ¢p,
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(@)

{x € C;: x > B}, B € P;, are pairwise disjoint, a;’ is injective and therefore it is

an extensive map. Hence Agz) < C;, proving H (1).

We have seen that the definition of C' = C, is correct and, by H(r), C' is an
upper bound of the 4;, 1 < j <k.

Now let D € L(P) be an arbitrary upper bound of the A;, 1 < j < k. We have
to show that ' < D. By the assumption, there are extensive maps p;: A; — D.
Let D, = DN (P U...UPF;). We will define extensive maps 7;: C; — D; for
1=1,2,...,r via induction, and C' = C,. < D, = D will follow evidently.

For each B € Py such that BNC = BNCy = S;(B) is non-empty, choose a j with
|51(B)| = )\1(B) = 51(j,B) Then |AJ N B| = Vl(j,B) - 0= 51(],3) = ‘S1(B)| =
|C1NB|. Since p; clearly maps A;NB into D1NB, |CiNB| = |A;NB| <|DiNB|.
Therefore we can choose an injective map Bg: C1 N B — D N B. Let g denote
the empty map when BNC = (). Define 7, as the union of the 85, B € P;. Clearly,
T1: C1 — Dy is an extensive map.

Now, for 1 < ¢ < r, suppose we already have an extensive map 7,_1: C;_1 —
D; 1; we define 7; as follows. For B € P;, if |C; N B| = \;(B) = 0, then let kp be
the restriction of 7;,_1 to the set {x € C;_1: > B} = {z € C;: x > B}. Otherwise
choose a j such that |C; N B| = \;(B) = 6;(j, B). Since p; maps {z € A;: + > B}
into {x € D;: > B} and (2) with the j chosen turns into an equality, we conclude
that |[{z € C;: © > B}| < |{z € D;: x > B}|. Further, for all y € {x € C;: = >
B} ={zx € C;: x > B}\ B, 7,_1(y) is defined and belongs to {z € D;: x > B}.
Therefore there exists an injective map kp: {z € C;: * > B} — {z € D;: z > B}
such that kp(x) = 7_1(z) if ¢ B. Clearly, kp is an extensive map. Now let
7; be the union of 7;,_; and the kg, B € P,;. By the UBF property, @Q; and the
sets {x € D;: © > B}, B € P;, are pairwise disjoint, implying the injectivity of 7;.
Hence 7; is an extensive map.

We have seen that finitely many (but more than zero) coalitions of L(P) have a
supremum. By finiteness and () € £(P) we infer that £(P) is a quasilattice. [

Proof of Proposition 1. Since by A ... A by exists iff all the b; belong to the same
component of P, /\f:1 A; = ) when M = (). Suppose therefore that M is not empty,
and put A = (A4; \ {a;}) U{c}. First we show that, for any j,

k
(3) N\ Ai= A5 A N A
i=1 i#j

We have to show that an arbitrary D € L(P) is a lower bound of the A; if and
only if it is a lower bound of A} and the A;, i # j. Since ¢ < a; = A} < Aj, the
“if” part is obvious. Suppose D € L(P) is a lower bound of the A; and, w.l.o.g.,
c # aj, i.e,, ¢ ¢ A;. We have extensive maps a;: D — A;, i = 1,... k. We
may assume that a; € a;(D), for otherwise D < A% hardly needs any proof. Then
a; = a;(d) for some d € D. Now ¢ < a;, d < a; and the UBF property yield that c
and d are comparable. Since d < /\f:1 a;(d) € M and c is maximal in M, we have
d < c. Hence the map

DA c, ifx=d,
I A {aj (x), otherwise

is extensive, whence D < A%. This proves (3).
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Armed with (3), we may assume that ¢ € A; for all i; indeed this situation
can be achieved by successive applications of (3) without changing the A;. Now
Al = A;\ {c}. Put C = C"U{c}. Evidently, C < A; for all i. Suppose D < A;,
witnessed by an extensive map 3;: D — A;, for each i. If D < A for all i then
D\ {c} < C"in P’ gives D < C easily, so suppose this is not the case. Therefore
B; % (c) exists for certain i. We want to find an element ¢ € D such that

(4) d<e, D\{d}CP and D\{cd} <Al fori=1,... k.

From (4) the Proposition will follow easily: we have an extensive map ¢: D\{c'} —

C’, whence
euU{{d,c)}: D—C
yields D < C.

To show (4), choose a j such that ﬁj_l(c) is a maximal element among the
B;%(c), and denote ﬂj_l(c) by d. Now we define extensive maps v;: D — A; such
that v;(d) =cfor i =1,... k. If §;(d) = ¢ then put v; = ;. Otherwise, if B;l(c)
does not exist then put

Do c, ifx=d,
Yo P A a { Bi(z), otherwise.

If B;(d) # c and ;(e) = ¢ for some e € D, then d < ¢, e < ¢ and the UBF property
yield that d and e are comparable. Hence the choice of j gives e < d, and e < [3;(d)
follows by transitivity. Therefore
c, ifx=d,
vi: D — A;, x— Bi(d), ifx=e,
Bi(x), otherwise
is an extensive map.
Now, if d = cor ¢ ¢ D then ¢ = d fulfils (4). If d < ¢ € D then consider the

extensive maps
c, ifx=c,

D — A;, xw+— < 7ile), ifz=d,
vi(x), otherwise,
and put ¢/ =c¢. O

Proof of Proposition 2. With the notation X = P\ X, it suffices to show that, for
A,B € L(P), A < B = B < A, for the reverse implication then also follows.
First we show that

(5) For [A|=|B|, A<B < A\B<B\A.

Indeed, suppose A < B, and choose an extensive map ¢: A — B with a maximum
number of fixed points. Suppose that © € AN B is not a fixed point of ¢. By the
assumptions ¢ is surjective; let a be a preimage of u. We have a < ¢(a) = u < p(u)
and |{a, u, p(u)}| = 3. Clearly, the map
u, if r=u,
Ot A= B, z+— < ¢u), ifr=a,

o(xz), otherwise
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has one more fixed point than ¢, a contradiction. Therefore ¢ acts identically on
AN B and its restriction to A\ B is an extensive map A\ B — B\ A, yielding
A\ B < B\ A. The converse is evident.

Now suppose A < B. Then necessarily |A| < |B|. If |A| = |B] then, using (5)
twice, B\A= A\ B < B\ A= A\ B implies B < A. If |[A| < |B|and ¢: A — B'is
an extensive map then A < (A) yields ¢(A4) < A by the previous case, B C ¢(A)
gives B < ¢(A), and B < A follows by transitivity. [

Proof of Proposition 3. We omit the technical but straightforward induction which
shows the intuitively clear fact that the 7-tuple U,, = (L, I, Dy, ¢n, In—1, Dpn—1, ©n—1)
(where I, 1 C I, and D, 1 C I,, etc., of course) is uniquely determined up to
isomorphism. Here by an isomorphism v: U — U* we mean a lattice isomorphism
Y: Ly, — L} which takes I,, to I}, etc., and commutes with ¢,, and ¢,,_1 in the nat-
ural way (e.g., ¥ (pn(x)) = ¢k (¢(x)) for all z € I,). In particular, L,, is uniquely
determined up to isomorphism.
In LI, = L(Cp), let I) ={X € L: ¢, ¢ X}, D, ={X € L,: ¢, € X},

L =X €I, car & X}, Dy, = {X € I : cay € X}, gi I, — Dl
X—XU{ep}t,and @), 1 I — D! 1, X — X U{c,_1}. The easy but tedious
task of checking that the primed objects also satisfy the conditions of the recursive
definition of L,, is also left to the reader. O

Proof of Proposition 4. 1t is straightforward to check that
p-L(P) = [[L(T), X—(XNTy,...,XNT.)
i=1

is an isomorphism. [

Proof of Proposition 5. Suppose that one of the trees of P is not a chain, and let a
and b be incomparable elements of this tree. Since trees are meet-semilattices, we
can take ¢ = a A b. Applying the description of joins in the proof of Thm. 1 or even
without it we obtain {a}V {b} = {a,b}. Let U = {a} A{b, c}. Since {c} < U < {a},
U is a singleton, say U = {u}, and ¢ < u < a. From {u} < {b,c} we conclude
u < boru < c. But the first possibility implies the second one via u < a A b= c.
Therefore u = ¢ and {a} A {b,c} = c. What we have already calculated is sufficient
to see that {{c},{a}, {b},{b,c},{a,b}} is a pentagon sublattice, whence L(P) is
neither modular nor distributive.

In virtue of Proposition 4, the converse will immediately follow if we show that
L(P) is distributive for any chain P. We outline two different arguments showing
this.

Firstly, by Proposition 3, it suffices to deal with the lattices L,, via induction.
Since Ly and Lo are chains, they are distributive. Suppose L, o and L, i are
distributive. Thenso are I, 1, D, 1, I,, (= I, 1UD,, 1) and D,,, being isomorphic
to Ly—o or L, 1. The sublattice D,,_1 Uy, (I,—1), which is isomorphic to the direct
product of L, _o and the two-element lattice, is distributive, too. Since L,, can be
obtained from I,,, Dp—1 U ¢y, (I,—1) and D,, by using the Hall-Dilworth gluing
construction (cf. Hall and Dilworth [3] or, e.g. Grétzer [4, page 31, Ex. 20, 21])
twice, and this gluing is well-known to preserve distributivity, cf. [3] and [4], L,, is
also distributive.

Secondly, let P = {¢; < ¢3 < ... < ¢,} and consider the chain Q = {cy < ¢; <
... < cpt. It is easy to show that S = {(x1,...,z,) € Q™ a1 <9 < ... < z,
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and, for all i > 1, z; # ¢ = x;-1 < x;} is a sublattice of Q™. Hence § is
distributive. The more or less straightforward argument showing that S — L(P),
(X1, .. yxy) = {mir x; > ¢} is a lattice isomorphism will not be detailed. O
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