"TEMPUS JEP-0153 LECTURE SERIES

n-distributive lattices versus projective geometries

Gdbor Czédli (Szeged)

1. Rudiments on lattices

By a partially ordered set, shortly poset, we mean a pair (L,<) where “<” is a
reflexive (i, (Vz € L)(z < z)), antisymmetric (Vz,y € L)z < y & y <z = z = y))
and transitive ((Vz,y,z € L)(z <y & y < 2 = z < 2)) relation on the non-empty set
L. If0#HCL,a€ Landforany h€ H a < h then ais a lower bound of H. If for
any other lower bound b of H we have b < a then a is called the greatest lower bound or
meet or infimum of H. In this case the following notations apply: ¢ = inf H, a = A\ H,
a= N,cx h,and even @ = hy Ahy A...Ah, when H = {hy,h,,...,h,}. The concept
of the least upper bound or join or supremum is defined dually and is denoted by sup H,
VH, V,exhiand hy VA, V...Vh, when H = {hy,h,,...,h,}. Note that A\ H and
V H need not exist but if they do then they are uniquely determlned

If anb and a Vb exist for any a,b € L then L is called a Jattice. If sup H and inf H exist
for any non-empty subset H of L then L is called a complete Jattice. In a laticce L A and
V can be considered as binary operations. Both operations are commutative, associative,
idempotent (i.e., zA £ = £ = zV z) and they obey the absorption laws z A (zVy) =z and
zV(zAy) =z

Example 1. For a set A let P(A) denote the set of all subsets of A. Then (P(4), Q)
is a complete lattice. In this lattice the A\ and \/ coincide with the intersection () and the
union | J, respectively.

Example 2. Let | denote the divisibility relation on the set N = {1,2,3,...} of natural
numbers. Le.,a|bd <= (3¢ € N)(ac =b). Then (N, |) is a complete lattice where the join
and meet are the least common multiple and the greatest common divisor, respectively.
This lattice is not complete; e.g. \/ N does not exist.

If L =(L,<)is a poset, a € L and @ is an upper bound of L then a is called the
greatest element of L and is denoted by 1 or 1,,. If 1;, exists then it is uniquely determined.
The dual notion, the smallest element of L is denoted by 0 = 0,. We will write ¢ < b,
a>band a>bto denote a <b& a#b,b< aandb < a, respectively. If a < b but
a < ¢ < b holds for no ¢ € L then we say that b covers a, in notation a < b. A finite poset
is uniquely determined by the covering relation <. This allows us to give a finite poset, in
particular a finite lattice, by its Hasse diagram. The diagram of a poset L is a graph in
wich the vertices represent the elements of L and the edges represent the covering relation.
If a < b in L then the vertex representing a is placed lower then the vertex representing b
and these two vertices are connected by an edge. For A = {a,b,c} the lattice P(A) from
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Example 1 is depicted on Figure 1. (Figures are at the end of the paper.) The diagram of
a poset determines L in the following way: a < b iff there is an ascending path (maybe of
length 0) from a to b in the diagram.

If L is a lattice and 0,1 € L exist then L is called a bounded lattice. Note that every
finite lattice is bounded Whlle the lattice (N, |} of Example 2 is not. The elements covering
0 in a bounded lattice are called atoms. If a Ab = 0 and a V b.= 1 then b is called a
complement of a. An element in a bounded lattice need not have a complement and, if
exists, the complement need not be unique, as illustrated in Figure 2. If each element of L
has at least one complement then L is said to be a complemented lattice. E.g., (P(4), Q)
is a complemented lattice where, for X C A, A\ X is the (unique) complement of X.

A subset C of a poset L is called a chain if for any z,y € L z<yory<z. fCis
a chain in L and for any e € L\ C C U{a} is not a chain then C is called a maximal
chain in L. :

An important but quite evident observation on lattices is that any notion or statement
has its dual counterpart, which is obtained via replacing < by >. E.g., the dual of infimum
is supremeum, the dual of 1 is 0, the dual of a chain or poset or lattice is itself, etc. The
Duality Principle states that if a statement is true for lattices then so is the dual statement.
(Indeed, by dualizing the proof of the original statement we obtain a proof of the dual one.)

We have not seen too many examples of lattices so far. This will be remedied by

Theorem 1. If a poset L has a greatest element and for any non—empty'subset H
of L A H exists then L is a complete lattice.

Proof. We need to show the existence of suprema. Let H be a non-empty subset of
L. Denote the set of upper bounds of H by X. Sincel € X, Xisnotemptyandec=AX
exists. Given an h € H, h < z holds for every z € X by the definition of X. Thus h is a
lower bound of X, yielding h < A X = ¢. Since this is true for any h, ¢ is an upper bound
of H. On the other hand, for any other upper bound dof H de X => ¢ < d, whence
¢ is the least upper bound alias supremum, of H. n

Example 3.
(N(G), C) where N(G) is the set of normal subgroups of a given group G,
(Sub(@), C) where Sub(G) is the set of subgroups of a given group G,
(I(R),C) where I(R) is the set of ideals of a given ring R, and
(Sub(V), C) where Sub(V) is the set of subspaces of a given vector space V', etc.
are complete lattices. ' ‘

These examples demonstrate that lattices frequently occur as “companion stuctures”.
With the help of Theorem 1 we show that (N (G), C) is a complete lattice; the rest of these
examples can be verified the same way. Let H = {B; : 7 € I'} be a set of normal subgroups
of G. Tt is well-known (and this is the key property wich makes our example a complete
lattice) that the set-theoretic intersection B = [,.; B; is also a normal subgroup of G.
Hence B belongs to N(G). Since B C B; for all ¢ € I, B is a lower bound of H. If C is
another lower bound of H then (V¢ € I)(C C B;) implies C C B. Hence B is the greatest
lower bound of H, i.e., B = A H. Since G is the greates element of N(G), Theorem 1
applies and (N (G),C) is a complete lattice indeed.

2




2. Rudiments on projective geometry

Consider a triple G = (P,L, 1) where P is a non-empty set (its element are called
points), L is an arbitrary set (its elements are called lines) and | C P x L. | is called the
incidence relation and plZ is also worded as p is on the line £ or £ goes through the point
p. G is called a projective geometry if the following three axioms are fulfilled:

(i) Each line £ € L goes through at least two distinct points p,,p,; € P;

(ii) For any two distinct points p # ¢ € P there exists exactly one line £ € L
which goes through p and ¢ (this line will be denoted by £,,).

(iii) For any points p,q,r,z,y € P and any lines £,,4, € L satisfying pl¢,,
gléy, zlly, ple,, rlé, and ylf; there exist lines 43, £, € L and a point 2 € P such that
qlls, ey, 2145, 214y, y1L, and 214, (cf. Figure 3).

In particular (when no points and lines in Figure 3 coincide), (iii) yields that if a line
£, intersects two sides (namely £, and £;) of a triangle (whose vertices are p, g, r) then
it has to intersect the third side (namely £;3) of this triangle. This is the so-called Pasch
Aziom.

Given a projective geometry G = (P, L, 1), a subset H of P is called a subspace if
for any two distinct points p,q € X and any r € P if r is on the line £,, then r € X.
In particular, P, any one-element subset of P and the 0 are subspaces. It is easy to see
that the intersection of an arbitrary family of subspaces is a subspace again. This has
two important consequences. Firstly, for any H C P we may speak of the subspace [H]|
spanned by H, this is the intersection .of all subspaces including H. Secondly, if £(G) is
the set of all subspaces of G then L(G) = (L(G),C) is a complete lattice. (This follows
from Theorem 1 the same way as for normal subgroups previously.) .

For later references we need an explicit description of the join in £(G). f X,Y € L(G)
then '

XVY=XUYU{reP:(FpeX)FqcY)(p#q&rli,)}.

 Note that this is a statement not a definition! However, this course is mainly on lattices
not on projective geometries, so we do not prove it. (The only non-trivial step in the
proof is to show that the set on the right-hand side is a subspace.) For later references we
formulate the

Exchange Property. If X is asubspace and p, ¢ are points of a projective geometry
G such that g € XV {p} and ¢ ¢ X then p € X V {¢}. (The join is understood in L(G).)

Proof.  We may assume that p # ¢. Clearly, p ¢ X. By the description of join in -
L(G) there is a point r € X such that ¢l¢,,, cf. Figure 4. Since r # ¢ by ¢ ¢ X, we infer
L., = L., Therefore pl£,, =£,,, and p € X V {¢} follows from the description of join. m

A projective geometry is called finite dimensional if P = [H| for some finite H C P.
If [{ao,@1,...,a,}] = P and, for 1 = 0,1,...,n, a; & [{ao,...,8i—1,Qi41,...,0,}| then
we say that the points ao,a,,...,a, form a basis in G. It is easy to see that if G is finite
dimensional than it has a finite basis. (Indeed, start from a finite H with [H] = P and
omit the “superfluous” points from H.) The dimension of G is defined to be the smallest
n such that G has an n-element basis. (It is known that the number of elements in a basis
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is unique. Yet, we will not use this fact in the sequel. We will deduce it from certain
properties of L£(G), i.e., with the help of lattice theory.)

3. Properties of £(G) ’

Lemma 1. For any projective space G, L(G) is a complemented lattice.

Proof. Let X € L(G) and consider the poset H = ({Y € L(G) : X nY = 0},Q).
H is not empty as § € H. If C = {Y; : ¢ € I'} is a chain in H then put Z = {J,., Y;. We
claim that Z € £(G). Suppose p # ¢ € Z and .a point r is on the line £,,, we have to show
that r € Z. Now.p € Y; and ¢ € Y; for some 7,7 € I. Since C is a chain, Y; C Y; can be
assumed. Then p,q € Y; and r € ¥; C Z follows from the fact that ¥; is a subspace. Thus
Z € L(G), and Z is evidently an uper bound of C. Therefore Zorn’s Lemma applies and
H has a maximal element. Let Y denote a maximal element of H. We claim that ¥ is a
complement of X. SinceY €¢ H, X AY =X NY = 0. Suppose X VY # P, and choose a
point p¢ X VY. Then Y C Y V{p} and the maximality of ¥ gives XN (Y V {p}) # (. So
we can choose a point ¢ from X N (Y V{p}). Now ¢ € Y V{p}) and, by XNY =0, ¢ ¢ Y.
The Exchange Property yields pe Y V{¢g} CYV X = X VY, a contradiction. m

A lattice L is called modular if for any z,y,z2 € L

z<z = (zVy)Az=zV (yA=2).

Sometimes we use modularity on complicated expressions where the subterms correspond- .

ing to z,y and z may occur in different order (as the operations are commutative). There-
fore it is worth adopting the following convention: whenever the modular law is applied
then (before its application, i.e. on the left-hand side of the “=") z is underlined and z is
doubly underlined. E.g., we may write

(anz)V ((avbVe)A(zAz)=(aVbVz)A((aAz)V(zAzZ).

(Here we used modularity “from right to left” with a Az, z A 2 and aV bV z acting as
z,y, 2, respectively.)

Another important class of lattices is the class of distributive lattices. A lattice L is
called distributive,if z A (yV 2) = (z Ay) V (z A 2) holds for any z,y,z € L. It is an easy
exercise to prove that any distributive lattice obeys the dual law zV (yAz) = (zVy)A(zV2)
and any distributive lattice is modular.

A non-empty subset H of a latice L is called a sublattice if (Vz,y € H)(z Ay €

H & zVvye€ H). (It is important to point out that here the meet and join are taken in
L not in H.) Two lattices, L; and L,, are said to be isomorphic if there is a bijection
a: Ly — L, such that (Vz,y € L;)(z < y <= za < ya). An equivalent definition:
L, £ L, iff there are monotone maps o: L, — L, and §: L, — L, such that a8 is the
identical map on L, and S« is the identical map on L,. Modularity can be characterized
by sublattices:




Dedekind’s Modularity Criterion. A lattice L is modular iff no sublattice of L
is isomorphic to N (cf. Figure 5). ' ,

For example, L, on Figure 6 is modular (and even distributive) while L, is not modular
as the indicated elements form a sublattice isomorphic to Ns.

Lemma 2. For any projective geometry G = (P, L,1), L(G) is modular

Proof. Let X,Y,Z € L(G) with X < Z,i.e., X C Z. First we show (XVY)AZ C
XV(YAZ). Let pe (X VY) A Z. We may assume that p ¢ X and p ¢ Y as otherwise
pEXU(YNZ)C XV (Y AZ). Then there are distinct points £ € X and y € Y such
that pl,,. Now z,y,p are three distinct points on the same line. Since z € X C Z and
pEZ, yeZ. HenceyeYNZ=YAZandpe XV (Y AZ).

The converse inclusion “D” will be shown in a much more general settmg Namely,
we show that every lattice satisfies the so-called modular inequality

z<z = (zVy)Az>zV(yAaz).

Indeed, we have to use only the definition of the operations to argue as follows: zVy >z
and z > zyield (zVy)Az>z,zVy>y>yAzandz>yAzimply (zVy)Az>yAz,
and now we conclude the desired inequality. m

4. More about modular lattices

Given a lattice L and e < b € L, the set {z€L:a<z<b}is called the interval
determined by a and b and is denoted by [a,b]. Clearly, any interval is a sublattice of L.

Theorem 2. (The Isomorphism Theorem for Modular Lattices) If L is a modular
lattice and a,b € L then the intervals [a A b,a] and [b,a V b] are isomorphic. The map
a: [a Ab,a] — [b,aV b], z— =V bis a lattice isomorphism whose inverse is 8: [b,a V b] —
[@ Ab,a], y — yAa (cf. Figure 7).

Proof. a is clearly monotone, ie., z;, < 2z, = z;a < z,a, and so is f. By
the absorption law, (¢ A b)a = b and aa = a V b. Since a is monotone, it maps [a A b, g
into [b,a V b]. Similarly, § maps [b,a V b] into [a A b,a]. For z € [a A b,a] we have
z(af) = (za)f = (zVb)B =(zVb) Aa=2zV (aAb) = z, thus of is the identical map,
and so is 8 by duality. @

If C is a chain then |C| — 1 is called te length of C. E.g., the length of {0,a,1} in

" Figure 2 is 2. The length of a lattice L is defined to be the supremum of {|C| : C is a

chain in L}, this is a non-negative integer or co.

Theorem 3. (Jordan —Holder Chain Condition for Modular Lattlces) IfLisa
modular lattice of finite length then any two maximal chains in L have the same length.

Proof. Consider a maximal chain C = {¢, < ¢; < -+ < cn} in L. Since C is
maximal, 0 = ¢y < ¢; -+ < ¢, = 1. (In fact, this is equivalent to the maximality of C.)
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E.g., if ¢, were not the least element of L then ¢y £ @ would hold for some ¢ € L and
coNa<cy << e, would be a larger chain. Via induction on n we are going to show
that for any maximal chain {0=dy, <d, <::-<dy =1} k=n.Ifn=0o0rn=1then
|L| = n+1 and C is the only maximal chain L. Assume, as an induction hypotheses, that
the theorem holds for all modular lattices having at least one maximal chain shorter than
n. First, let us consider the case ¢; # d;, cf. Figure 8. Put e; = ¢; V d;, and consider
a maximal chain {e, < €; < --- < e, = 1} in the interval [e,,1]. Since the intersection
of any two distinct atoms is zero, the Isomorhism Theorem yields [0,¢,] & [dy,e;] and
[0,d;] = [¢1,€z]. Therefore e, covers ¢; and d;. Applying the induction hypothesis to the
interval [e;, 1] we infer that the length ¢ — 1 of the maximal chain {¢; < e; < es -+ < e} is
n — 1. Therefore t = n. Since {d; < e; <e; < :+- < e; =1} is a maximal chain of length
t—~1 =n—1 again, the induction hypothesis applies to the interval [d,,1] and implies that
the length k& — 1 of the maximal chain {d; < d,--- < d.} is n — 1. Hence k = n, indeed.
The second case, when ¢; = d; is much simpler: we can apply the induction hypothesis to
the maximal chain {d; < d, < --- < d;} in the interval [¢;,1] and conclude k=n. g

In a modular lattice L of finite length we define the height h(a) of an element a € L
as the length of [0,a]. By the previous theorem, h(a) is the length of any maximal chain
between 0 and a. ’ :

Theorem 4. If a,b are elements in a modular lattice of finite length then h(a) +
h(b) = h(a Ab) + h(a V b).

Proof. Let 0 =20 <z, <+ <z, =aAbarNb=y <y <+ < Yn = a

and a Ab = 2z < 2 < -+ < z = b be maximal chains in the intervals [0,a A b,
[@ A b,a] and [a A b,b], respectively (cf. Figure 9). In particular, h{(a A b) = n. By
the isomorphism theorem, b = Yoo < Y10 < +++ < Yy, @ = aV b is a maximal chain in

[b,aVb. Now thechains 0 =2y < z; < -+ <z, =aAb=y <y <+ <Y, = q,
O=zy <2y <<z, =aNb=2 <2z, <<z, =band0 =2y <z, <--- <z, =
aNb=2y <2 <<z, =b=ya<ya< <y, =aVbare maximal in the
interval determined by their first and last members, whence h(a) = n +m, h(b) = n + k,
h(aV b) = n + k + m, and the theorem follows. m

Lemma 3. Leta;,a;,...,q, be atoms in a modular lattice such that,for1 <z < n,
arV...Va;_1Vay...Va, #a, Vaz V...Va,. then h(a; Va, V... Va,)=n.

Proof.  The statement is evident for n < 1. Assume that it is true for the join of
n—1 atoms. Sincea; Va, V...Va,_1 #a;Va, V...Va,, a, £a,Va,V...Va,_;. Thus
a, A{a1Vaz V... Va,_1) < a,,soa,A(a;VazV...Va,_;) =0as a, is an atom. Therefore,
applying the induction hypothesis and Theorem 4, we can compute: h(a; Va, V...V a,) =
h{a; Vay V...Va,_1)+h(a,)—h((a; Vaz V...Va,_1)Aa,)=(n—1)+1—-h(0)=n. m

Lemma 4. Let a < b in a modular lattice. Then A(a) = k(b)) => a=1b and
h(a) =h(b) —1 = a <b. . : .

Proof. Obvious by definitions and Theorem 3. g
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A lattice is called relatively complemented if any of its intervals is a complemented
lattice.

Theorem 5. Every complemented modular lattice is relatively complemented.

Proof.  Let [a,b] be an interval and let z € [a,b]. By the assumption, z has a
complement y € L. Since zV ((aVy)Ab) = (zV(aVy))Ab= ((zVa)Vy))Ab= (zVy)Ab=
IANb=bandzA((aVy)Ab)=(zAb)A(aVy) =zA(aVy)=(zAy)Va=0Va=a,
((a V y) A D) is a relative complement of z in [a,b]. m

5. A lattice characterization of projective geometries

For a modular lattice M let P be the set of atoms in M, let L = {aVb : a,b € P, a # b},
and define G(M) as (P, L,<). According to the following theorem, the study of projective
geometries is equivalent to that of complemented modular lattices.

Theorem 6. Let n be a natural number. If G is an n-dimensional projective
geometry then £(G) is a complemented modular lattice of length n 4+ 1 and G = G(L(G)).
Conversely, if M is a complemented modular lattice of length » + 1 then (M) is an

o~

' n-dimensional projective geometry and L(g(M)) = M.

Proof. By Lemmas 1 and 2, £(G) is a complemented modular lattice. We claim
that :
(1) if {ap,a1,...,a,} is a basis in G then the length of £L(G) is n + 1.
To verify (1) first we observe that for j > 1 the subspaces {ao}, {a1},..., {a;} satisfy
the premises of Lemma 3 since for 0 < 7 < j we have a; ¢ [{ao, .-+ ,8i—1,8i41, --+
2@t 2 [{aos --v y@im1y@igay -o- ya;1] = {ao}V ... V{a_1} V{ar1}V ... V{a;} but
a; € {ao}V{a}v ... V{a;}. Thus h({ao}V{a}V ... V{a;}) =7+ 1 by Lemma 3, and
B <{a} < {a}Vv{a} < <{a}Vv{a}v ... V{a.} = P by by Lemma 4. This
maximal chain shows that the length of M is n + 1. : ‘

It is clear from the definitions that G & G(L(G)).

Now let M be a complemented modular lattice of length n+1. Clearly, (M) satisfies
(i) in the definition of projective geometries. If a and b are distinct points on a line £ = ¢V d
then a < £ & b <€ = aVb<{ Therefore aVb=cVd={Dby Lemmas 3 and 4,
showing the uniqueness of £. Thus (ii) is fulfilled. In order to check (iii) let p,q,r,z,y € P
such that p, ¢,z and p,r,y are colinear, cf. Figure 3. It is easy but a bit long to see that
(iii) holds when |{p, ¢,7,z,y}| < 5 or p, q,r are colinear; we omit these details. (Note that
in this case we can always choose z € {p,q,r,z,y}.) Suppose |{p,q,7,z,y}| =5 and p,q,r
are not colinear, i.e. r L pV q. Then £, =pV ¢, £, = pV r and we may chose &5 = qV r,
£, =zVyand z=1{3Al,. Since 3 VL, =qVrVzVy = (qgVz)V(rvy) = (¢gvVp)V(pVr) =
(pVp)VgVr=pVgVr, weobtain h(f; V £,) = 3 from Lemma 3. From Theorem 4 it
follows h(z) = h(€s ALy) = h(ls) + h(Ly) —h(s VL) =242 —3 =1, implying that z is a
point. This proves (iii). ’

We have seen that §(M) is a projective geometry. Let S be a subspace in G(M).
Consider the set U = {a; V...Va, :0< k < o, ai,...,a, € S}. (Here the empty join,
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where k£ = 0, is 0.) Since U C M and M is of finite length, there exists a finite maximal

chain in U. The greatest element, denoted by v, of this maximal chain is clearly VSs.

(Here and in the sequel the lattice operations are taken in M.) Indeed, if v 2 b for some

b-€ S then the chain could be extended by adding v V b to it. o
The argument above shows that

(2) - \/ S can be represented as a; V...V a.

Suppose k is minimal, then for ¢« = 1,2,...,k aV...Va;_y1Vai1...Vap #Fa; V

az V...V a,. We claim that

(3) S={peP:p<\S}

which we show for any subspace S via induction on k. If k =0 or k =1 then S = 0 or

S = {a,} and (3) is evident. Assume that (3) is valid for £ — 1 (and for any subspace)

where k > 1. To show the D inclusionin (3),letpe Pand p<\/S. Ifp<a1V...Vap_;

then p € [{a1,...,ak-1}] € S. Therefore we may assume that p € a; V...V az_;

and, of course, also that p # a,. Thenp < pVa, = (pVa)AVS = (pVa)A

(ar V...Vag_1 Vay) =a, V((pVar) A(ar V...Vag_1)) = a V¢ where ¢ denotes
(pVar)A(ar V...Vag_y1). Since h(a; V...Var_y) = k—1, h(pV ax) = 2, and
h(pVa,VaV...Vag1)=h(pVv\C)=~h(\C)=h(a,V...Va) =k by Lemma 3,
h(c) = h((pVar)A(a1V...Va,_1)) = (k—1)+2—k = 1 follows from Theorem 4. Hence cis a
point. Since ¢ < a; V...Va,_, the induction hypothesis implies ¢ € [{a1,...,a,-,}] C S.
Since p < a; V¢ and a; # ¢, p is on the line a, Ve =4, .. Then p € S follows from the
fact that S is a subspace. The converse inclusion S C {p € P: p < \/ S} being trivial, we
have shown (3).

Now it is clear from (3) that the map o: L(G(M)) — M, S +— \/S is monotone
and injective. (Note that \/ S exists by (2), so a is well-defined.) To show that e is
surjective first we show that each element d of M is the join of certain atoms. In fact,
with e = \/{p:p € P & p < d} we claim d = ¢. Clearly, ¢ < d. Suppose ¢ # d, then ¢ < d.

By Theorem 6, ¢ has a complement e in the interval [0,d]. Since ¢ # d = c Ve, e # 0.
" Let ¢ be an atom in [0,e]. (Since h(e) < h(1) < oo, any finite maximal chain in [0, €]
contains an atom, so this ¢ exists.) From ¢ < e < d we infer ¢ < ¢, whence g < e¢Ae=0 .
is a contradiction. Therefore ¢ = d. It is evident that {p: p < d & p € P} € L(G(M)),
and by ¢ = d this is an a-preimage of d. Therefore o is surjective. Suppose now that
for Sy,8, € L(G(M)) Sia < Sy Then \/ S, <V S, and S; C S, is implied by (3).
Therefore « is an isomorphism.

Since any element of M is a join of atoms, \/ P = 1. Applying (2) to S = P we obtain
Qy,Qy,...,8 € PsuchthatayV...Va, =1and,foreverys,aoV...Va;_;Va;11V...Va, #
1. From Lemma 3 and A(1) = n + 1 (the length of M) it follows that ¥ = n. Further,
(3) implies that [ae,a;,...,a,] = P. (Indeed, if S € L(G(M)) contains all the a; then
1>VS8>a Va V...Va, >1yields \/ S = 1, which implies S = P by (3).) For any
L{peP:p<aV...Va_1 Va4 V...Va,} is a subspace (by the surjectivity of
o) which contains all a; but a;. Hence a; ¢ [{ao,...,8;-1,8;41,...,0,}]. Consequently
{ao,a1,...,0a,} is a basis in §(M), proving that §(M) is n-dimensional. m

Corollary 1. Any two bases in a finite dimensional projective geometry have the
same number of elements.




 (n-DE) means \/,_, b; = v and b, A Y/,

Proof.  This follows from (1) in the previous proof. m

Although Corollary 1 is a well-known fact in projective geometry, it is worth mention-
ing that we have proved it by means of lattice theory.

6. n-distributivity and n-diamonds

Let n be a fixed positive integer. After A. P. Huhn, a lattice called n-distributive, if
it satisfies the identity

(D.) \7 =V

Note that (D;) is £A (o Vi) = (£ Ay1) V (z A yo), which is (equivalent to) the usual
distributive law z A (y V 2) = (z Ay) V (z A 2) (modulo lattice theory). While (D,) implies
modularity, for n > 1 (D,) does not. Our aim is to characterize modular n-distributive
lattices similarly to Dedekind’s Criterion.

Let b = (by,by,...,b,41) € L**2. We say that b satisfies the n-diamond identities,
in short (n-DE) holds for b, if for any I,J C {0,1,...,n+ 1} and k € {0,1,...,n + 1}
such that [I| =n +1, |J[-nandk¢.]wehave v

n+1 n+1

Vb= \/band be A\ b= /\ b
i=0

i€l i€J

From now on let us fix the notations v = up, = /\”+1 b; and v = v, = V""'1 b;. Then
ieJ b = u.

Ifb e L2 satisﬁes (n-DE) and bg,by,... ,b,41 are pairwise distinct then we say
that b is an n-diamond (or, if we do not want to specify n, a Huhn diamond) in L. The
elements u and v are called the bottom and top of b, respectively.

For example, consider the lattice M; in Figure 10. The triple (b, , by, b,) is a 1-diamond
in M. In the literature, the lattice M; is frequently referred to as a diamond.

Example 4. If G is an n-dimensional projective geometry and a¢,a;, ... ,a,,, are.

points of G such that any n + 1 of them form a basis then ({a,}, {al}, c{@p+1}) is an
n-diamond in L(G).

Theorem 7. (Huhn’s n-distributivity Criterion) For a modular lattice L, L is
n-distributive iff L contains no n-diamond. '

Since the only difference between a 1-diamond and a diamond (i.e. Mj;) is the lack or
presence of u and v, a lattice contains a 1-diamond iff it has a sublattice isomorphic to M;.
Further, as we have mentioned already, (1-)distributivity implies modularity. Therefore
the following theorem is a particular case, namely the case n = 1, of the previous one.
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Birkhoff’s Distributivity Criterion. A modular lattice is distributive iff it

contains no sublattice isomorphic to M;. In other words (including Dedekind’s Criterion): |

a lattice is distributive iff it has neither a sublattice isomorphic to N; nor a sublattice
isomorphic to M;. '

We will prove Huhn’s Criterion for n =1 only. However, the basic properties of n-
diamonds we are going to develop in the sequel are needed in the general proof (for n > 1).
From now on let L be a fixed modular lattice. :

Lemma 5. Ifb = (by,...,b,+1) satisfies (n-DE) then either by,b;, ... ,bpt1, u, v
- are pairwise distinct and b is an n-diamond, or by =b; =+ =b,,.; =u=v.

Proof.  Suppose the first possibility fails. If two of the b;, say b, and b;, coincide
then u = /\:.:Lol by <bg Aby =by Aby =by =by Aby < by AV,_, b; = u, whence one of
the b; coincides with u. Since u < b; < v, the same is true when u = v. If one of the b;,
say by, coincides with v then u = by A \V_, b = v AV, b =\_, b > b, > u, whence
one of the b;, namely b,, coincides with v. So we may assume that v = b,. Since the
role of by,b1,...,b, 1 is symmetric, it suffices to show that another b;, say b, 41, equals u.
Indeed, b, 1 =bpy 1 AV =D, 1 AVi b =bori AloVVie b)) =bari A(uVVi_, b)=
b.+1 AV}, b = u. Finally, since all the b; are equal, their join v also equals them. n

‘ The proof of Theorem 7 forn = 1. If b = (by, b, b;) is an 1-diamond in L:then, using
(1-DE), we have by A (b; Vby) = by Av=1by and (bp Aby) V (b Ab;) =u Vu = u. Since
by # u by Lemmma 5, L is not distributive.

To show the converse, for an arbitrary (zo,z;,2,) € L* we define u = (2o A 21) V
(o Az3) V (zy A3y), v = (2o VIi) A(Zo VZ2) Az V z5), and for ¢ = 0,1,2 b, =
(uV z;) Av. Since any member of the meet in v is greater than or equal to any member
of the join in u (e.g., o Az < z; < z; V ,), We conclude that v < v. Now u and
v are duals of each other. The dual of b; is (uAz)Vu = vA(z; Vu) = b. We
claim that b = (bo, b:,b;) satisfies (1-DE). Since the role of by, b, and b, are symmetric,
we need to check by A b; = u and b, V b; = v. But the second equation is just the
dual of the first, whence, by the Duality Principle, it suffices to verify the first equation.
Let us compute: by Ab; = (uVzo) AvA(uVz)Av=(uVz)A(uVz)Av. Since
To > (To A1) V(T AZ2) = uVzo = (21 AZ2) Vo and, similarly, uVz, = (2o Az,) Vg,
we have by Ab; = (71 Az2) Vo ) A((zo Aza)VEL ) A (20 VEL ) A(Z0 VE2 )A(Z1 VE,). Omitting all
meetands for which there is a smaller one we obtain by Ab; = ((z3 A 22) V 2o ) A((Zo A z2)V
z1) = (Zo Az2) V (((z1 Aza) Vzo) Azi) = (20 Aza) V (21 Az2) V (20 AZy) = u, indeed.
Therefore b satisfies (1-DE). We also need the following calculations: (zo A (z; Vz,)) Av =
To ANz VE) A (2o VEL) A (T VE) A (2L V) = 2o Az VEp),  and (2o Az, V) Au=
To Az V) A((zo Aza) V(T AZ2) V(21 Ap)) = T A ((zo A1) V(zo Aza) V(z1Ay)) =
(Zo Ay Aza) V (To Azy) V(To Axp) = (2o Azy) V(20 A za).

Now assume that there is no 1-diamond in L. Then v = v by Lemma 5 and we obtain
To ATy V) = (20 A (2 VI2)) Av = (2o Azy VZ3)) Au= (Zo Azy) V(2o A ;). Since
Zo,Z, and z, were arbitrary, L is distributive. m

For tough calculations in modular lattices we often need
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Lemma 6. Any modular lattice satisfies the so-called shearing identity zA(yVz) =
A A 2V 2) v 2).

Proof. zA([yA(zV2)Vz)=zA(yV)A(zVz)=zA(yVz). m

The following statements helps to understand how an n-diamond looks like.

Theorem 8. Let b = (by,b1,...,0,41) be an n-diamond in a modular lattice L,
and let I be an n + 1 element subset of {0,1,...,n + 1}. Let S denote the sublattice
generated by {b; : ¢ € I'}. Then S is isomorphic to the lattice (P(I),C) (cf. Example 1)
and the atoms of S are exactly the b; (Z € I).

Proof.  We may assume that I = {0,1,...,n}. Consider the map a: P(I) — L,
X = V,cx bi. (The empty join, when I = @, is understod as u.) Clearly, a preserves
the joins, i.e., (X UY)a = XaV Ya. The case of the meets will be settled in two steps,
first only for the special case X NY = @. Assume XNY =0. f X =Y = 0 then

(X'NY)a = XaAYa is evident, so assume this is not the case and let k be the largest

element of X UY. Via induction on k we show that XaAYa=u (=0a= (XNY)a).
This is clear when &£ = 1, for X or Y is empty. For £ > 1 we may assume that k € Y,
define Z = Y \ {k} and, by using the shearing identity, the k£ — 1 — k step runs as follows:

(u<) XaAYa = \/b,-/\vb,-= vbi/\(bkv\/bi)’_"

] ieXxX 1€Y ieX i€Z
Von(@a(\VovVoe)vVe)<
ieXx ieX i€EZ i€Z
\/ b A (( bk/\\/b vVb)=
i€X i€z

1¢Ic
\/ b A (uV Vbi):v b; A \/bia
TEX t€Z te€X i€EZ

which is u by the induction hypothesis.

Now let X,Y C I be arbitrary. Then there are pairwise disjoint sets A,B,C C I
such that X = AUC and Y = BUC. Then XaAYa = (AUC)aA(BUCla =
(AaVv Ca) A (BaV Ca) = (AaA (BaV Ca))VCa= (AaA(BUC)a))VCa. But A and
BUC being disjoint this equals uVCa = Ca = (XNY ). Therefore a is a homomorphism.

Suppose « is not injective, say Ca = Da for some C # D € P(I). Put A=CnND
and B=CUD. Then Aa = (CND)a=CaADa=CaACa=CaVCa=CaVDa=
(C U D)o = Ba. Choose a k € B\ A. Then

ugbk-/\Aa:bk/\\/bigbk/\\n/'bi=u

i€A - i=0
i#k

yields u = b, AAc. Since byABa = b, A\, 5 b; = b;, weobtainb, = byABa=bNAa=u
which, in virtue of Lemma 5, contradicts the fact that b is an n diamond. This proves the
injectivity of c. ’

11




Now « maps the atoms (i.e. the singleton subsets) of P(I) onto the b; (¢ =0,1,...
,n). Clearly, {Xo: X € P(I)} is the smallest sublattice of L containing all the b; as P(I)
is the smallest sublattice of itself containing all the atoms. Thus S = {Xa: X € P(I)}
and a: P(I) — S is surjective. m ‘

In the view of Theorem 8 a 2-diamond can be imagined as the collection of the atoms
of four “cubes”, (i.e., sublattices isomorphic to the lattice on Figure 1) such that any two
of these cubes have two atoms in common (visually, any two cubes have a common face),
and these four cubes have the same top and bottom, cf. Figure 11.

On some further results

The connection between projective geometries and n-distributive lattices is much
deeper than one may perhaps guess from Example 4. First we need some definitions.
An element a in a complete lattice L is called compact if, for any @ # H C L, a < \V H
implies the existence of a finite subset X of H such that a < \/ X. If each element of a
complete lattice L'is can be represented as a join of certain set of compact elements then
L is said to be an algebraic latice. E.g., all lattices in Example 3 are algebraic.

A projectiv geometry is called non-degenerate if any of its lines goes through at least
three distinct points. From lattice theoretic point of view nondegenerate projective geome-
tries are the building stones of all projective geometries, for it is known (from F. Maeda’s
or J. Hashimoto’s stronger results, cf. [2] or [5]) that for any projective geometry G there
is a set of non-degenerate projective geometries {G; : ¢ € I'} such that £(G) is the direct
product of the lattices £(G;), €I :

Now the connection between projective geometries and n-distributive lattices is re-
vealed by

Theorem 9. (A. P. Huhn) Let M be an algebraic lattice. Then M is n-
distributive iff no sublattice of M is isomorphic to the lattice of subspaces of an n-
dimensional non-degenerate projective geometry.

Since for n > 3 the subspace lattice of an n-dimensional nondegenerate projective
geometry is isomorphic to the lattice of all subspaces of an (n +1)-dimensional vectorspace
over an appropriate skew field (van Staudt, O. Veblen and W. H. Young, O. Frink, etc.,

. cf. [2] or [5]), the theorem above is particularly strong when n > 3.

To conlide this notes let us mention one recent direction where Theorem 9 and the
theory of n-diamonds have found some applications. This is the theory of congruence
implications.

The type of an algebra is the set of operation symbols (together with their arities)
which we use to denote the fundamental operations. E.g., the type of lattices is {A,V}
where the arity of both operation symbols is 2 (i.e., they are binary operations). If two
algebras are of the same type then they are called similar. For example, a ring and a field
are similar but a lattice and a ring are not. Let 7 be a type and I' be a set of identities
corresponding to 7. The class of algebras of type 7 satisying I is called the equational
class determined by I'. E.g., the class of distributive lattices is an equational class while
the class of complemented lattices is not (because the satisfaction of identities is inherited
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by sublattices but complementedness does not). The congruence relations of an algebra A
form an algebraic lattice, denoted by (Con(A4),C). Let x and v be two lattice identities.
We write p = v iff for any equational class V if (Con(4), C) satisfies u for every algebra
A € 7V then (Con(A),C) satisfies v for every algebra A € V. This is an interesting
implication among lattice identities, e.g. (D,) = (D,) for any n > 1, although there are
lattices (e.g. M;) that satisfy (D ) but fail to satisfy (Dy). '

Many of the results on = are deduced from Theorem 9 and the propertles of n-
diamonds, cf., e.g., [8-10].
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