NATURAL EQUIVALENCES FROM LATTICE QUASIORDERS
TO INVOLUTION LATTICES OF CONGRUENCES

GABOR CZzEDLI

ABSTRACT. The involution lattice Quord(A) of quasiorders of a lattice A is known to
be isomorphic to the involution lattices Con?(A) consisting of pairs of congruences of
A. Moreover, the isomorphism described in [9] is supplied by a natural equivalence
between the functors Quord and Con?. The aim of the present paper is to describe
and count the possible Quord — Con? natural equivalences. The answer depends
on the domain category L, always a prevariety of lattices with the surjective homo-
morphisms, of the functors Quord and Con?; and the problem is solved only for very
small prevarieties £. An overview on the most recent developments in the theory of
involution lattices and quasiorders is also presented.

To the memory of Milan Kolibiar

1. INTRODUCTION

The primary purpose of the present paper is to describe all possible natural
equivalences from the functor Quord to the functor Con?. Some new results on this
problem will be proved in the following section. This introductory section surveys
some related recent developments in the topic of involution lattices.

A quadruplet L = (L;V,A,*) is called an involution lattice if L = (L;V,A) is
a lattice and * : L — L is a lattice automorphism such that (z*)* = x holds for
all x € L. To present a natural example, let us consider an algebra A. A binary
relation p C A? is called a quasiorder of A if p is reflexive, transitive and compatible.
(Sometimes we consider a set A rather than an algebra, then all relations are
compatible.) Defining p* = {(z,y) : (y,x) € p}, the set Quord(A) of quasiorders
of A becomes an involution lattice Quord(A) = (Quord(A); V, A, *), where A is the
intersection and V is the transitive closure of the union. These involution lattices
were studied in [3, 6, 9] and Chajda and Pinus [4]. For an involution lattice I, the
subalgebra {x € I : * = z} is a lattice if we forget about the (trivial) involution
operation. In particular, {p € Quord(A) : p* = p} is just the congruence lattice
of A. For a lattice L, the direct square L? of L becomes an involution lattice if
we define (x,y)* = (y,z) for (z,y) € L?. The involution lattice arising from the
congruence lattice Con(A) of A this way will be denoted by Con?(A). There are
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many more examples for involution lattices as related structures, e.g., the ideal
lattice of a ring with involution, the lattice of all semigroup varieties, the lattice of
clones over a two-element set (the so-called Post lattice), etc., but only Con?(A)
and Quord(A) of them will be studied in the present note.

Motivated by the classical Gréatzer—Schmidt Theorem [10], Chajda and Pinus [4]
asked which involution lattices I are isomorphic to Quord(A). Some partial answer
to this question is given in the following four theorems. Note that an obvious
necessary condition on [ is that it has to be algebraic as a lattice. The simplest
case, when the involution is trivial (i.e. 2* = z for all x), is settled in

Theorem A. (/3] and Pinus [14], independently.) Let I be an algebraic involution
lattice such that x* = x for all x. Then there exists an algebra A such that I =

Quord(A).

When the involution is not assumed to be trivial, much less is known. The
quasiorders of an algebra A are called 3-permutable if « o foa = o ao 3 holds
for any «, 8 € Quord(A).

Theorem B. ([3]) For any finite distributive involution lattice I there exists a
finite algebra A such that I = Quord(A) and, in addition, the quasiorders of A are
3-permutable.

We remark that if the quasiorders of all algebras in a given variety V are 3-
permutable then Con(A) = Quord(A) for all A € V, ¢f. Chajda and Rachtnek [2].
Sharpening Whitman’s result in [18], Jénsson [11] has shown that each modular
lattice L has a type 2 representation. We say that an involution lattice I has a type
2 representation if for some set A the involution lattice Quord(A) has a subalgebra
S isomorphic to I such that a0 Boa = foao 3 holds for any o, 3 € S.

Theorem C. Fach distributive involution lattice L has a type 2 representation.

For a partial algebra A = (A, F'), a reflexive and symmetric relation p C A? is
called a quasiorder of A provided for any f € F, say n-ary, and (a1,b1), ..., (an, b,) €
pifboth f(ai,...,a,)and f(by,...,b,) are defined then (f(a,...,an), f(b1,... ,by)) €
p. The quasiorders of a partial algebra A still constitute an algebraic involution
lattice Quord(A) under the set-theoretic inclusion and p* = {(x,y) : (y,x) € p},
but the join is not the transitive closure of the union in general.

Theorem D. (/3]) For any algebraic involution lattice I there is a partial algebra
A such that I is isomorphic to Quord(A).

The proofs of the above four theorems are not very difficult, for we can borrow a
lot of ideas from their classical counterparts for congruences or equivalences. E.g.,
the yeast graph construction to prove Theorem A in [3] is taken from Pudldk and
Tuama [15].

The previous four theorems naturally lead to the question whether every alge-
braic involution lattice is isomorphic to Quord(A) for some algebra A. The af-
firmative answer would imply that any involution lattice I could be embedded in
Quord(A) for some set A, for I is embedded in the (algebraic) involution lattice of
its lattice ideals. Unfortunately, as the next few lines witness, this is not the case.

On the set {x,y, z,t,u,v,w} of variables let us define the following involution



INVOLUTION LATTICES OF QUASIORDERS 3

lattice terms

s1=(zVu) AW VeVt Vitr),
so=(yvVw)A(y* VaeVvue Vvwr),
ss3=(yVsi) AW VaVvzztVth)
sg=(uVs) Ay VaVvo Vuw").

I

Theorem E. ([6]) The Horn sentence
r<yVu&y<zVt&u<vVw=—x<s3VsVz"Vw"

holds in Quord(A) for any set A but does not hold in all involution lattices.

The proof of Theorem E needs a computer implementation of an algorithm to
solve the word problem for involution lattices (and also for lattices) This computer
program is based on [5] and is available from the author upon request.

The description of quasiorders of a lattice L is due to Szab6 [16]. Later, in
[9], this description was deduced from the following theorem, which made the proof
substantially easier. Let I denote an involution lattice and let L = {x € I : 2* = x}
be regarded as a lattice. As previously, L? is an involution lattice.

Theorem F. ([9]) Assume that I is a distributive involution lattice and p € I such
that p A\ p* =0 and pV p* =1. Then

w:l = L% = ((yAp) V(Y Ap"), (Y Ap" )V (v* Ap))
is an isomorphism. The inverse of u is the isomorphism
vil? =1, (a,f) = (anp)V(BApY).

Now let A be a lattice or, more generally, assume that A has a lattice reduct
such that the basic operations of A are monotone with respect to the lattice order.
Denoting the lattice order by p, we have pAp* = 0 and pV p* =1 in Quord(A). Put
I = Quord(A), then L = Con?(A). Since Quord(A) is distributive by [8], Theorem
F applies and gives a satisfactory description of (members of) Quord(A):

Corollary G. ([9], Szabé [16]) The quasiorders of a lattice A are exactly the
relations of the form (a A p) V (B A p*) where o, 3 € Con(A).

From this result it is quite straightforward to derive

Corollary H. (/9], Szabs [16], for finite lattices [7]) Every compatible (partial)
order v of a lattice A is induced by a subdirect representation of A as a subdirect
product of Ay and As such that (z,y) € v iff v1 < y1 in Ay and x9 > yo in
As. Conversely, any relation derived from a subdirect decomposition this way is a
compatible order of A.

Note that describing the compatible orders is an interesting task also for semilat-
tices; this was done by Kolibiar [13]. A very deep result of Tischendorf and Ttuma
[17] combined with Theorem F and the distributivity of Quord(A) easily yield
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Corollary 1. ([16]) An involution lattice I is isomorphic to Quord(A) for some
lattice A iff I is algebraic, distributive and x A x* = 0, z V * = 1 hold for some
x el

For lattices A the fact Quord(A) = Con?(A) can be stated in a stronger form. Let
us fix a prevariety L of lattices. I.e., £ is a class closed under forming sublattices,
homomorphic images and finite direct products. £ will be considered a category in
which the morphisms are the surjective lattice homomorphisms. The category of
all involution lattices with all homomorphisms will be denoted by V. For A, B € L
and a morphism f: A — B, let

Quord(f) : Quord(B) — Quord(A), v {(z,y) € A%: (f(2), f(y)) €7}

and

Con?(f) : Con?(B) — Con2(A) (a, B) — (f(a), £(B)),

where f(6) = {(x,y) € A% : (f(z), f(y)) € 6}. Then Quord and Con? are con-
travariant £ — V functors. For A € L let

7a : Quord(A) — Con*(A), vy ((YAp)V (Y Ap"), (v Ap")V (v* Ap))

and
va s Con?(4) — Quord(4), (a,8) > (@ Ap)V (BAp*),

where p is the lattice order of A.

Theorem J. 7 is a natural equivalence from the functor Quord to the functor
Con?. The inverse of T is v : Con? — Quord.

2. RESULTS AND PROOFS

As mentioned before, we intend to describe the natural equivalences Quord —
Con?. One natural equivalence, 7, is given in Theorem J. Evidently, the map
) — 1 o7 from the class of Con? — Con? natural equivalences to the class of
Quord — Con? natural equivalences is a bijection. Therefore it suffices to describe
the class T'(L) of natural equivalences from the contravariant functor Con? : £ — V
to the same functor. We are able to describe T'(£) for some very small prevarieties
L only. The fact that |T'(L)| heavily depends on L for these small £ indicates that
we are far from describing T'(£) for all L.

From now on let £ be a prevariety consisting of finite lattices only. Let S = S(L)
be the class of subdirectly irreducible lattices belonging to £. Note that the one-
element lattice is not considered subdirectly irreducible. A pair D = (D;,D3) of
subclasses of S is said to be an H-partition of S if D UDy = S, D1 N Dy = (), and
foranyi=1,2, A€ D; and B € § if B is a homomorphic image of A then B € D;.
An H-partition D is called trivial if D; = () or Dy = (). Since the D; are closed
under isomorphism and we consider finite lattices only, the H-partitions of & form
a set.

We always have at least two natural equivalences from Con? to Con?. The
identical Con? — Con? natural equivalence will be denoted by id; id 4 is the identical
Con?(A) — Con?(A) map for each A € L. Defining inv4 : Con?(A4) — Con?(A),

x — ¥, it is easy to see that inv : Con? — Con? is also a natural equivalence.
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With an H-partition D = (D;,D,) we associate a transformation (in fact a
natural equivalence) 1) = (D) : Con? — Con? as follows. Let A € £ and choose
a1, as € Con(A) such that ay A ag =0, A/a; is isomorphic to a (finite) subdirect
product of some lattices from D; and A/«s is isomorphic to a (finite) subdirect
product of some lattices from Dy. (The case a; = 1 is allowed since the empty
subdirect product is defined to be the one-element lattice. We will show soon that
a1 and ay exist and they are uniquely determined.) Let

Y4 : Con?(A) — Con?(A) (7,0) — (Vo) A6V az),(§Va)A(yVa)).
Conversely, given a natural equivalence 1) : Con? — Con?, we define D = D(1)) =
(D1,D3) by D1 ={A€S:¢g=ida} and Dy ={A € S: 14 =inva}.

Theorem 1. Given a prevariety L of finite lattices, the map D +— (D) from
the set of H-partitions of S to the set of Con? — Con? natural equivalences is a
bijection. The map ) — D(1) is the inverse of this bijection.

Proof. First we make some observations for an arbitrary natural equivalence v :
Con? — Con?. For A,B € L and a surjective homomorphism f : A — B with
kernel u € Con(A) let f denote the canonical lattice embedding Con(B) — Con(A),

a = {{z,y) : (f(2), f(y)) € a}. Then Con2(f) : (a,B) — (f(a), f(8)). Let us

consider the following diagram

Con?(B) —22— Con%(B)
(1) Con?(f)l lCOHQ(f)
Con2(4) —YA— Con%(A)

This diagram is commutative by the definition of a natural equivalence. Therefore,
for any (v, d) € Con?(B) we have

(2) Con®(f) (W5 ((7,8))) = Ya({f(7), F(8))).

Since 15((0,0)) = (0,0), we obtain from (2) that ¥4 ({u, u)) = (u, ). But any
member of Con(A) is the kernel of an appropriate surjective homomorphism, so we
obtain that

holds for every € Con(A). Now let w (( J)) resp. w (( ,0)) denote the first

resp. second component of 14 ((v,8)). Since 14 is monotone, ¥4 ((f(7), f(6))) >
W ({p, 1)) = (i, py. Therefore, factoring both sides of (2) by p componentwise, we
obtain

(4) UB((7,8)) = (WL (FOr, FO)) /1S (F (v, F8))/ )

Le., 4 determines g for any homomorphic image B of A. For (v, 3) € Con?(A)
such that (v, 3) > (u, u), we can rewrite (4) with the help of (2) into the following
form:

(5) ba((7,8)) = (F@S (V)1 8/, F@S (/11,8 1))))-
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Now we assert that
(6) (VAES)(¢A=idA or ¢A=inVA).

Let u € Con(A) be the monolith of A. To prove (6), first we observe that since )4
is monotone, bijective, and leaves (u, u) fixed, )4 permutes the subset

Y = {<u7 U) : <u7 U> Z <Maﬂ>}

of Con?(A). Since (1,0) and (0,1) are the only maximal elements of Y, 14
either interchanges these two elements or leaves both elements fixed. Suppose
1»4({0,1)) = (1,0). (This assumption will soon imply )4 = inv4 while the case
¥4((0,1)) = (0,1), not to be detailed, gives )4 = id4 analogously.) Let us
compute, using (3) frequently: ¥a((u,1)) = ¥a((0,1) V (u,p)) = ¥a({0,1)) V
Ya({p,p)) = (1,0) V {(u, ) = (1, u); applying the involution operation to both
sides we conclude ¥4 ({1, u)) = (u,1); for (o, B) > (u, n) we have 4((a, B)) =
Ba((( 1)V (@, a)) A (L) V (8, 7)) = (bl 1)V a (G a))) A (a((L, 1) v
a9 ~ (L) v o) (1) v (8, 8)) = (8,a); for any y € Con(A) we

obtain 124 ({7,00) = ({1, 00 A (7, 1)) = $a((1,00) Avra({y, 1)) = (0, 1) A {p1, ) =
(0,7); and ¥4((0,7v)) = (v,0) follows similarly. Having taken all elements of

Con?(A) into consideration we have shown that ¢4 = inv4. This proves (6).

Armed with (4) and (6) we conclude that D = D(¢) is an H-partition, provided
1 is a natural equivalence.

Now let us assume that D is an H-partition, and let ) = ¢(D). We have to
show that 1 is a natural equivalence. We claim that

If C' € § is a homomorphic image of A € £ such
(7) that A is isomorphic to a subdirect product of
finitely many B; € D; then C € D;.

Indeed, by the assumptions there are v, f1,. .., 5, € Con(A) such that A/B; € Dy,
A/y = C and A\, 5; = 0. By distributivity we have y =y V0=~V A, §; =
Ni_i (vVB;). Since C'is subdirectly irreducible, v is meet-irreducible in Con(A) and
we obtain v = vy V 3;, i.e. v > [3; for some i. Therefore C' = A/~ is a homomorphic
image of A/f; € D;. This yields C € D;, proving (7).

Now let A € L and let oy, a2 € Con(A) be the congruences from Theorem 1.
(Le., A/a; is a subdirect product of some members of D;, j = 1,2, and a; Aag = 0.)
We assert that

(8) ol Vag =1.

Suppose this is not the case. Then A/(a; V ag) is not the one-element lattice,
whence it has a homomorphic image C in §. (Indeed, A/(ca; V az2) is a subdirect
product of some lattices in & and C' can be any of the factors of this subdirect
decomposition.) But then, by (7), C belongs to D; for j = 1 and j = 2 since it is
a homomorphic image of A/a;. This contradicts D; N Dy = (), proving (8).

Now we claim that

9) aq and ag exist and they are uniquely determined.
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If 0 € Con(A) is meet-irreducible, i.e. A € S, then let (ay,as) be (0,1) or (1,0)
depending on A € Dy or A € D, respectively. Otherwise 0 is the meet 31 A...A S
of some meet-irreducible congruences ;, and we may put

Now, having seen the existence, suppose that besides aj,ay the pair of, o also
satisfies the corresponding definition. Hence there are congruences ;,;, ok, 0, €
Con(A) such that

/\%20‘1’ /\'Yj:a/b /\ O = a2, /\ 8 = as.

ied jeJ’ keK LEK’

and A/v;, A/v; € D1, A/k, A/ds € Dy. Put of = a1 Ao and off = as A afy. From
a1 A ag =0 we have of A aff = 0. Since

124 124
/\ Vi = Qq, /\ 5]620527

e JUJ’ ke KUK’

the pair of, of also meets the requirements of the definition. We obtain from (8)
that a1 Vay =1 and of Vaj = 1. By distributivity, oy = a1 Al = a1 A(af Val) =
(ar N a) V (ar A o). But ag Aol < ag Aas =0, whence ay = a; A . Hence
a1 = of, and as = of follows similarly. Therefore a; < o and as < o), and the
reverse inequalities follow similarly. This yields (9).

Now we are ready to prove that ¢» = (D) is a natural equivalence. Suppose
f: A — B is a surjective lattice homomorphism with kernel u € Con(A); we have
to show that the diagram (1) commutes. Consider the congruences a1, as € Con(A)
resp. «},al € Con(B) occurring in the definition of 14 resp. ¥p. For i = 1,2,
(A/p)/ (e vV p)/p) =2 A/(c; V p) can be decomposed into a subdirect product of
finitely many members of S. These subdirectly irreducible factors are homomorphic
images of A/(a; V p), so they are homomorphic images of A/a; as well. By (7),
they all belong to D;. Further, (a1 Vu)A(azVu) = (a1 Aag) Vi =0V = pyields
(ar V) /p A (g V )/ = 0. Therefore we infer from (9) that o} = (aq V )/ and
ay = (a2 V p)/p.

Now let (7/,4') € Con2(B), and denote f(7) and f(¢') by ~ and 8, respectively.
Then Con?(f)((v',&')) = (v,d). To check the commutativity of (1) we have to
show that Con?(f) sends ¢5((7/,8")) = (7' Vai) A (6" Vab), (8 Vai) A (Y Vah))
to 1a({(7,0)) = ((yVai) A0V az),(§V a1) A (v V as)). Since f : Con(B) —
Con(A) is a lattice homomorphism and sends o,v’, 9" to a; V p, 7,0 respectively,
Con®(f)(vB((v,d")) = (YVar V) A6V azV ), (8Var V) A(yVasVp).
But this equals ¥ 4({,0)) by v > p and § > p, indeed. We have seen that 1 is a
natural transformation.

Clearly, 1 4 is monotone and preserves the operation *. So, in order to show that
it is a lattice isomorphism, it suffices to show that 14 o1 4 = id4. Let us compute
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for (y,8) € Con?(A), using first modularity, then (8) and distributivity:

Yaoa((v,0)) =va({(YVa) A6V a),(GVai)A(yVas))) =
(((hVar) A6 Vaz)) Var) A Val)A(rVaz)) Vas),
((6Vvar) A(yVaz)) Va) A(((vVar) A8V az)) Vas)) =
((wVar)AN(BVasVa)A((6Var Va) Ay Vas)),
(OVa))A(yVasVar))A((yVar Vas) A0V ar))) =
((YVa) A@VI) AV A(YVaz)),
(OVa) A VI)A((YVD)AQBVas)) =
(YVar) AN(yVaz), (6Var) A(BV as)) =
(yV (g Aas),dV (a1 Aag))y =(yV0,6V0)=(y,d),
indeed. Thus, for every A € L, 14 is an isomorphism, whence ¢ = (D) is a
natural equivalence.

It is straightforward from the definitions that for any H-partition D we have
D(y(D)) =D.

Now let us assume that 1 is a natural equivalence and let ¢/ = ¥(D(¢))). We
have to show that, for any A € £, ¥4 = ¢,. This is clear if A € S; assume this is
not the case. Suppose A is a finite subdirect product of members of D; for some
7 =1,2. We claim that
(10) o =1idy for j =1 and ¥4 = invy4 for j = 2.

To show (10), observe that 0 = A_; 8; holds in Con(A) for some 3; such that
A/B; € D; for all i. We will detail the case j = 2 only, for the case j = 1 is quite
similar. For any (v,d) € Con?(A) we obtain (v,6) V.0 = (v,8) V A\, (B:, Bi) =
Niea (s 0) V (B, Bi)) = NiZi (v V Bi, 6V Bi), e
(11) (7,6) = /\(W’Vﬁzﬂ;\/ﬁi)-
i=1

Since Va5, = V) 5, = inVayg,, (5) yields va({yV Bi, 0V 3;)) = (6 V Bi, v V Bi),
whence (10) follows easily from (11).

Now let A € £ be arbitrary and let (v, d) € Con?(A). Similarly to (11) we have

(12) (7,0) = (y Va1, 6V ar) A {y Vg, 5V ).

From (5) and (10) we obtain ¢4 ({(yV a1,d Vag)) = (yV a1,0 Vay) and 4 ({y V
az,0 V o)) = (§ V ag, vV as). Therefore 14 ((7,d)) = ¢4 ({7,d)) follows from 12,
completing the proof. [

Since any finite lattice has a simple homomorphic image, we immediately obtain

Corollary 2. Given a prevariety L of finite lattices, if two Con? — Con? natural
equivalences coincide on every simple lattice of L then they coincide on the whole

L.

Now let £ be a prevariety generated by a finite set K of finite lattices!. By
a celebrated result of Jénsson [12], each subdirectly irreducible lattice in £ is a

1L is just the class of finite lattices of the variety generated by K; this follows from Jénsson
[12].
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homomorphic image of a sublattice of some lattice in K. Therefore, apart from
isomorphic copies, S = §(L) is finite. This short argument proves

Corollary 3. There is an algorithm which produces for any finite set K of finite lat-
tices, as input, a description of the (necessarily finitely many) natural equivalences
from the functor Quord : L — V (or, equivalently, from the functor Con? : L — V)
to the functor Con® : L — V where L denotes the prevariety generated by K.

In virtue of Corollary 3 it is quite easy to present some examples. Let ¢(£) =
|T(L)], the number of natural equivalences from the functor Quord : £ — V to the
functor Con? : £ — V. By M,, and N5 we denote the modular lattice of height two
with exactly n atoms and the five-element nondistributive lattice, respectively. For
1 <n<oolet L, resp. L be the prevariety generated by M, 1 resp. {M,11, N5}.
Note that £ is the class of finite distributive lattices. Clearly, Lx, = .~ £, and

/ o o0 / . .
%, = Un—; £,, are prevarieties, too.

Example 4. Forn=1,2,... Ry, t(L,) =t(L]) =2".

The straightforward proof, based on Corollary 3 and the aforementioned result
of Jénsson, is left to the reader.

To conclude the paper with an open problem we mention that t({all finite
lattices}), t({all lattices}) and t({all distributive lattices}) are still unknown.
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