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Abstract. The partitions of a finite set form a so-called partition lattice.

Henrik Strietz proved that this lattice has a four-element generating set; his
paper has been followed by a dozen others. Two recent papers of the present

author indicate that small generating sets of these lattices can be applied

in cryptography. The block count of a partition is the number of its blocks.
Given a four-element set of partitions, list the block counts of its members in

increasing order. Then subtract the first (i.e., the smallest) block count from

all four to obtain the components of a four-dimensional vector. This vector and
its last component are called the block count type and the block count width,

respectively, of the given four-element set in question. There are exactly ten
block count types of width at most two. We prove that for any partition lattice

over a finite base set with at least eight elements, each of the ten block count

types of width at most two is the block count type of a four-element generating
set of the partition lattice; moreover, we give a lower bound of the number of

these generating sets.

1. Introduction

The present writing is intended to be self-contained modulo an average MSc cur-
riculum. Even though this introductory section can contain some concepts known
only by experts, the notions needed in the statements and their proofs will be
defined in due course.

Recent developments show that some lattices like partition lattices could have
applications in (the algebraic methods of) computer science and information pro-
cessing, namely, in cryptography; see [2]1 and mainly [3]. Even though [3] would
probably need further development and analysis before implementation, it is an
important constituent of our motivation.

The second part of the motivation for this paper lies in the rich literature on
the topic, which is worth continuing. By an old result of Strietz [6], finite partition
lattices with at least five elements can be generated by four of their elements. His
result has been followed by more than half a dozen papers devoted to four-element
generating sets of partition lattices and also by half a dozen papers devoted to the

1991 Mathematics Subject Classification. 06B99, 06C10.
Key words and phrases. equivalence lattice, four-element generating set, partition lattice, many

small generating sets.
This research was supported by the National Research, Development and Innovation Fund of

Hungary, under funding scheme K 138892.
1The cited papers or their preprints of mine are available from my website,

https://www.math.u-szeged.hu/∼czedli/ = https://tinyurl.com/g-czedli/

1

https://www.math.u-szeged.hu/~czedli/
https://tinyurl.com/g-czedli/


2 G. CZÉDLI

closely related topic of four-element (or small) generating sets of quasiorder lattices.
To keep the size of the References section limited, here we mention only Zádori’s
pioneering 1986 paper [7] and Kulin [5], as their methods influenced many other
papers. The rest of the literature is surveyed in [1], [3], and [4] (with overlappings).

We know from [4] that many four-element generating sets of a given partition
lattice can be constructed feasibly; let X denote the collection of these four-element
generating sets. However, the statistical analysis presented in [4] shows with high
confidence level (but does not prove rigorously) that the collection of four-element
generating sets is much larger than X. Since the cryptographic applicability de-
pends on the size of X, any argument that increases X makes sense; this idea also
belongs to our motivation.

Next, we fix some notations and recall some well-known concepts.

Notations. As it is usual in lattice theory, X ⊂ Y denotes that X is a proper subset
of Y , that is, X ⊆ Y and X 6= Y .

For a set A, let Part(A) stand for the collection of all partitions of A. That is,
B ∈ Part(A) if and only if B is a set of pairwise disjoint nonempty subsets of A
such that A is the union of the members of B.

For a natural number n ∈ N+ := {1, 2, 3, . . . }, let [n] := {1, 2, . . . , n}. Instead of
Part([n]), we will often write Part(n).

Let {Si : i ∈ K} be a finite collection of nonempty sets. We say that
⋃

i∈K Si is
a connected overlapping union if either |K| = 1, or |K| > 1 and the following two
conditions hold:

(a) for each i ∈ K, there is a j ∈ K \ {i} such that Si ∩ Sj 6= ∅, and
(b) there is no nonempty proper subset I of K such that Si ∩ Sj = ∅ for every

i ∈ I and j ∈ K \ I.

For example, {1, 2} ∪ {2, 3} ∪ {3, 4} is a connected overlapping union but {1, 2} ∪
{2, 3}∪ {4, 5}∪ {5, 6} is not. The forthcoming description of the join in a partition
lattice might look unusual but it has the advantage of showing how one can compute
it. Hence, for those familiar with other definitions, it is trivial that our definition
is equivalent to the standard ones.

Definition 1. For B ∈ Part(A), the members of B are called the blocks of B. For
X,Y, U, V ∈ Part(A),

X ≤ Y def⇐⇒ each block of X is a subset of some block of Y ;

U = X ∧ Y def⇐⇒ the blocks of U are exactly the nonempty E ∩ F
where E is a block of X and F is a block of Y ;

V = X ∨ Y def⇐⇒ the blocks of V are exactly the maximal connected

overlapping unions of sets belonging to X ∪ Y.
Then ∧ and ∨ are operations on Part(A), and the structure (Part(A),∧,∨) is the
partition lattice of A. As usual, we write Part(A) rather than writing (Part(A),∧,∨).
In particular, if n ∈ N+ and A = [n], then Part(n) := Part([n]) stands for the par-
tition lattice of {1, . . . , n}.

Definition 2. For a set A, a nonempty subset S of Part(A) is a sublattice of
Part(A) if for any X,Y ∈ S, both X ∧ Y and X ∨ Y are in S. A subset G of
Part(A) is a generating set of Part(A) or, in other words, G generates Part(A) if
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there is no proper sublattice S of Part(A) such that G ⊆ S. For k ∈ N+, Part(A)
is k-generated if it is generated by a k-element subset.

With reference to Strietz [6], we have already mentioned that for 3 ≤ n ∈ N+,
Part(n) is four-generated. Note that Strietz also proved that Part(n) is not three-
generated for 3 ≤ n ∈ N+.

2. Methods

In addition to using or developing some lemmas proved in earlier papers, an
integral part of our method is the following notation of the elements of Part(A) and
(in particular) Part(n) for |A|, n ∈ N+. Namely, for X ∈ Part(A), we denote X by
listing its non-singleton blocks and the elements of these blocks in the lexicographic
order. We separate the blocks by semicolons. Within a block, we can separate the
elements by commas; these commas are often dropped when no ambiguity threatens.
For example,

pt(bd) = {{a}, {b, d}, {c}} ∈ Part({a, b, c, d}), (2.1)

pt(bd) = {{a}, {b, d}, {c}, {e}} ∈ Part({a, b, c, d, e}), (2.2)

pt(be; cd) = {{a}, {b, e}, {c, d}} ∈ Part({a, b, c, d, e}),
pt(11, 14; 12, 13) = {{11, 14}, {12, 13}} ∈ Part({11, 12, 13, 14}),

pt() = {{1}, {2}, {3}, {4}, {5}, {6}} ∈ Part(6).

The acronym pt in the notation comes from partition; we can add A or n, rather

than [n], to it as a subscript. The advantage of our notation is that for any n ∈ N+,

if A ⊆ B, then Part(A) is a sublattice of Part(B) (2.3)

in the natural way exemplified by (2.1) and (2.2). For X ⊆ Part(n), the sublattice
generated by X consists of those partitions that can be obtained from the members
of X by using meets and joins in a finite number of steps. The following easy lemma
is Lemma 2.5 from [4].

Lemma 1 (“Circle Principle”). For 2 ≤ n ∈ N+ and an n-element set A, let
a1, a2, . . . , an be a repetition-free list of the elements of A, that is, let {a1, a2, . . . , an} =
A. Let X ⊆ Part(A). If each of pt(a1a2), pt(a2a3), pt(a3a4), . . . , pt(an−1an), and
pt(ana1) belongs to the sublattice generated by X, then X generates Part(A).

To find the generating sets occurring in Lemmas 4–23, we used a variant of the
mini-package ‘‘equ2024p’’ of programs developed by the author; it is available from
the author’s website2. (This explains how the components of ~α in Lemmas 4–23
will be listed.) On the other hand, finding computer-free and humanly readable
proofs of the fact that the four-element sets in these lemmas are generating sets
required to add a lot of human effort. This fact can be (and has been) verified in
two independent ways. First, ‘‘equp2024reduced.exe’’ in the mini-package can be
used to verify whether a four-element subset of Part(n), for n ≤ 9, is a generating
set. Second, even though the humanly readable proofs that we present are long and
technical, it is substantially faster to verify them than to find a rigorous verification
of the correctness of the computer program.

2https://www.math.u-szeged.hu/∼czedli/ = http://tinyurl.com/g-czedli/
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3. Our theorem

For µ ∈ Part(n), let nbl(µ) denote the number of blocks of µ. For example,
nbl(prt7(25, 367)) = 4 and nbl(prt8(25, 367)) = 5.

Definition 3. For a finite set A, let X be a four-element subset of Part(A). Denote
the elements of X so that X = {α1, α2, α3, α4} and the inequalities nbl(α1) ≤
nbl(α2) ≤ nbl(α3) ≤ nbl(α4) hold. Then the block count type of X, denoted by
bctyp(X), is defined to be the following vector:

bctyp(X) :=
(
0,nbl(α2)− nbl(α1),nbl(α3)− nbl(α1),nbl(α4)− nbl(α1)

)
.

The block count width of X is nbl(α4) − nbl(α1). If X = {β1, . . . , β4} (without

assuming any inequalities among the nbl(βi)s) generates Part(A), then ~β is called

a generating vector and bctyp(~β) is defined to be bctyp(X).

The components of bctyp(X) above are in N0 := {0} ∪ N+ = {0, 1, 2, . . . }. If
X is of block count width at most k, then bctyp(X) = (0, i2, i3, i4) such that
0 ≤ i2 ≤ i3 ≤ i4 ≤ k. For k = 2, we will prove the converse: if (0, i2, i3, i4) satisfies
these inequalities, then it is of the form bctyp(X); furthermore, this is witnessed
by very many four-element generating sets X of Part(n). To be more precise, we
formulate the result of the paper as follows; the lower integer part of a real number
x will be denoted by bxc.

Theorem 1. Whenever i2, i3, i4 ∈ N0 such that i2 ≤ i3 ≤ i4 ≤ 2 and 8 ≤ n ∈ N+,
then Part(n) has a four-element generating set X with block count type (0, i2, i3, i4).
Furthermore, if n ≥ 10, then Part(n) has at least

22b(n−8)/2c−3 · (2b(n− 8)/2c − 1)!

3 · (2b(n− 8)/2c+ 1)
(3.1)

four-element generating sets X such that bctyp(X) = (0, i2, i3, i4).

Remark 1. If m denotes the largest even integer such that m ≤ n − 8, then (3.1)
turns into 2(m−3) · (m − 1)!/(3m + 3). This is a huge number. For example, for
n = 20 and n = 100, (3.1) is 524 035 939 and (rounded to three decimal places in
its exponential form) 2.999 · 10164, respectively.

4. A lemma to support induction

The proof of Theorem 1 requires several lemmas. Although the present paper
does not rely on the author’s preprint https://tinyurl.com/czg-h4gen, we borrow
the following concept from this preprint and the subsequent Lemma 2 is a slight
generalization of a lemma in the preprint. The proof of Lemma 2 here is shorter
than its precursor in the preprint. For a set A and u0 6= u1 ∈ A, we denote the
least element of Part(A), the greatest element of Part(A), and the partition with
{u0, u1} as the only non-singleton block by 0Part(A), 1Part(A), and pt(u0, u1) or
pt(u0u1), respectively.

Definition 4. For a finite set A, α0,0, α0,1, α1,1, α1,0 ∈ Part(A), and u0, u1 ∈ A,
we say that A = (A;α0,0, α0,1, α1,0, α1,1;u0, u1) is an eligible system if it satisfies
the following conditions:

{α0,0, α0,1, α1,1, α1,0} is a four-element generating set of Part(A), (4.1)

α0,0 ∨ α0,1 = 1Part(A), α0,0 ∧ α0,1 = 0Part(A), (4.2)

https://tinyurl.com/czg-h4gen
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α1,i ∧
(
α1,1−i ∨ pt(u0, u1)

)
= 0Part(A) for i ∈ {0, 1}, and (4.3)

α1,0 ∨ α1,1 ∨ pt(u0, u1) = 1Part(A). (4.4)

With the vector ~α := (α0,0, α0,1, α1,0, α1,1), we often denote A also by (A; ~α;u0, u1).
The vector ~α, the set {α0,0, α0,1, α1,0, α1,1}, its block count type, and A are called
the partition vector, the partition set, the block count type, and the base set of A,
respectively.

By definition, the base sets of eligible systems are finite. The following lemma
benefits from (2.3).

Lemma 2. Let A = (A;α0,0, α0,1, α1,0, α1,1;u0, u1) be an eligible system, and let
k ∈ {0, 1}. Let a′ be an element outside A, and let A′ := A ∪ {a′}. For i ∈ {0, 1},
we define

α′0,i := α1,i ∨ pt(ui, a
′) ∈ Part(A′) and α′1,i := α0,i ∈ Part(A′), (4.5)

and let u′k := uk and u′1−k = a′. Then

A′ = (A′;α′0,0, α
′
0,1, α

′
1,0, α

′
1,1;u′0, u

′
1)

is also an eligible system.

Proof of Lemma 2. Let S denote the sublattice of Part(A′) generated by {α′i,j :
i, j ∈ {0, 1}}. Then (4.2) applied to Part(A) and the fact that Part(A) is a sublattice
of Part(A′) yield that

1Part(A) = α0,0 ∨ α0,1 = α′1,0 ∨ α′1,1 ∈ S. (4.6)

Hence, using Definition 1, we obtain that αi,j = 1Part(A) ∧ α′1−i,j ∈ S for all
i, j ∈ {0, 1}. Thus, (4.1) implies that Part(A) ⊆ S; in particular, pt(u0, u1) ∈ S.
For i ∈ {0, 1}, we claim that

pt(ui, a
′) = α′0,i ∧

(
α′0,1−i ∨ pt(u0, u1)

)
∈ S. (4.7)

It suffices to deal with the equality in (4.7). For i ∈ {0, 1}, let Ui ⊆ A be the
(unique) α1,i-block of ui; see Figure 1. (Note that |Ui| = 1 is not excluded.)
By Definition 1 and (4.5), U ′i := Ui ∪ {a′} is the α′0,i-block of ui; see the figure.
We claim that U0 ∩ U1 = 0. Suppose the contrary, and let x ∈ U0 ∩ U1. Then
(x, ui) ∈ α1,i ∧

(
α1,1−i ∨ pt(u0, u1)

)
, and so (4.3) yields that x = ui for both

i ∈ {0, 1}. This contradicts that u0 6= u1, and we conclude that U0 ∩U1 = 0. Thus,
the figure visualizes the relation between U0 and U1 correctly, and so (4.7) follows
by Definition 1.

Next, the inclusion Part(A) ⊆ S, (4.7), and Lemma 1 imply that S = Part(A′),
that is, A′ satisfies (4.1). Let i ∈ {0, 1}. As (4.2) holds for A, α1,0∧α1,1 = 0Part(A).
Since the blocks of α′0,i are those of α1,i except that U ′i replaces Ui, the just-
mentioned equality, the already established U0 ∩ U1 = ∅, and Definition 1 imply
that the second half of (4.2) holds for A. The first half of (4.2) follows similarly
from {u0, u1} ⊆ U ′0 ∪ U ′1 and the property (4.4) of A. The blocks of α′1,i are those
of α0,i and the singleton block {a′}. Hence, the property (4.2) of A and Definition
1 imply that A′ satisfies (4.3). Similarly, as every block of α0,i is a block of α′1,i,
(4.4) for A′ follows from the property (4.2) of A, completing the proof of Lemma
2. �
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Figure 1. Illustrating the proof of the equality in (4.7)

Lemma 3. Assume that the base set of an eligible system A′ has at least three
elements. Then there exists at most one eligible system A and at most one k ∈ {0, 1}
such that A′ is obtained from A in the way described by Lemma 2.

Proof. Assume that A′ is obtained from A and the notations used in Lemma 2 are
in effect. It follows from (4.6) and the sentence right after (4.6) that A′ determines
1Part(A) and the αi,js. As 1Part(A) determines A and a′, so does A′. Finally, k is
determined by the condition that u′k ∈ A. �

5. Twenty more lemmas

The possible triplets of (i2, i3, i4) ∈ N0
3 with i2 ≤ i3 ≤ i4 ≤ 2 are the following:

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2),
(0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2).

(5.1)

The corresponding cases for the “smallest” possible even values and odd values of
n will be taken care of by consecutive pairs of the following twenty lemmas; their
order corresponds to (5.1). Here “smallest” means that “the smallest we have found
and probably the smallest”. In some cases, simple arguments show that “smallest”
is indeed the smallest, but we do not include these arguments in the paper. The
twenty proofs are so similar that reading all of them would be boring; furthermore,
space considerations do not allow us to include all of them in the journal version of
the paper. Hence, only one of the twenty lemmas is proved in the present section.
The remaining ones are proved in the Appendix of the extended version3 of the
paper; see https://tinyurl.com/czg-4gw2 or https://www.arxiv.org/. Note that the
first two lemmas out of the twenty could be replaced by similar lemmas occurring
in the already-mentioned preprint https://tinyurl.com/czg-h4gen. The components
of ~α will be displayed so that the α0,is are listed from northwest to southeast and
the α1,is from northeast to southwest.

3This is the extended version.

https://tinyurl.com/czg-4gw2
https://www.arxiv.org/
https://tinyurl.com/czg-h4gen
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Lemma 4. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(14; 37; 56), α1,0 = pt(15; 23; 46),

α1,1 = pt(12; 367), and α0,1 = pt(26; 457).

Then ([7]; ~α; 1, 4) is an eligible system with block count type (0, 0, 0, 0).

Lemma 5. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(168; 237), α1,0 = pt(178; 345),

α1,1 = pt(12; 467; 58), and α0,1 = pt(135; 26; 47).

Then ([8]; ~α; 2, 3) is an eligible system with block count type (0, 0, 0, 0).

Lemma 6. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(16; 234), α1,0 = pt(12; 45),

α1,1 = pt(134; 56), and α0,1 = pt(14; 26; 35).

Then ([6]; ~α; 2, 6) is an eligible system with block count type (0, 0, 0, 1).

Lemma 7. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(146; 27; 35), α1,0 = pt(26; 34; 57),

α1,1 = pt(15; 247; 36), and α0,1 = pt(123; 47; 56).

Then ([7]; ~α; 1, 3) is an eligible system with block count type (0, 0, 0, 1).

Lemma 8. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(123; 45), α1,0 = pt(35),

α1,1 = pt(15; 246), and α0,1 = pt(14; 25; 36).

Then ([6]; ~α; 1, 2) is an eligible system with block count type (0, 0, 0, 2).

Lemma 9. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(12; 37; 456), α1,0 = pt(13; 67),

α1,1 = pt(156; 23; 47), and α0,1 = pt(157; 234).

Then ([7]; ~α; 2, 4) is an eligible system with block count type (0, 0, 0, 2).

Lemma 10. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(12; 34; 56), α1,0 = pt(13; 26),

α1,1 = pt(24; 56), and α0,1 = pt(146; 35).

Then ([6]; ~α; 1, 2) is an eligible system with block count type (0, 0, 1, 1).

Lemma 11. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(124; 37; 56), α1,0 = pt(237; 46),

α1,1 = pt(256; 34), and α0,1 = pt(13; 25; 467).

Then ([7]; ~α; 1, 2) is an eligible system with block count type (0, 0, 1, 1).

Lemma 12. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(15; 234; 67), α1,0 = pt(36; 45),

α1,1 = pt(12; 47; 56), and α0,1 = pt(126; 35; 47).

Then ([7]; ~α; 1, 3) is an eligible system with block count type (0, 0, 1, 2).
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Lemma 13. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(138; 246; 57), α1,0 = pt(235; 46),

α1,1 = pt(26; 37; 458), and α0,1 = pt(12; 356; 478).

Then ([8]; ~α; 1, 2) is an eligible system with block count type (0, 0, 1, 2).

Lemma 14. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(167; 234; 58), α1,0 = pt(12; 36; 57),

α1,1 = pt(267; 45), and α0,1 = pt(148; 26; 357).

Then ([8]; ~α; 1, 8) is an eligible system with block count type (0, 0, 2, 2).

Lemma 15. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(125; 346; 789), α1,0 = pt(267; 34; 89),

α1,1 = pt(158; 239), and α0,1 = pt(147; 238; 569).

Then ([9]; ~α; 1, 4) is an eligible system with block count type (0, 0, 2, 2).

Lemma 16. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(26; 35), α1,0 = pt(15; 24),

α1,1 = pt(23; 45), and α0,1 = pt(12; 346).

Then ([6]; ~α; 1, 6) is an eligible system with block count type (0, 1, 1, 1).

Lemma 17. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(145; 36), α1,0 = pt(16; 245),

α1,1 = pt(17; 26; 35), and α0,1 = pt(13; 257; 46).

Then ([7]; ~α; 1, 3) is an eligible system with block count type (0, 1, 1, 1).

Lemma 18. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(16; 24; 35), α1,0 = pt(14; 35),

α1,1 = pt(16; 23; 45), and α0,1 = pt(125; 346).

Then ([6]; ~α; 1, 2) is an eligible system with block count type (0, 1, 1, 2).

Lemma 19. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(36; 45), α1,0 = pt(126; 57),

α1,1 = pt(17; 24; 35), and α0,1 = pt(15; 23; 467).

Then ([7]; ~α; 2, 3) is an eligible system with block count type (0, 1, 1, 2).

Lemma 20. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(16; 45), α1,0 = pt(16; 24),

α1,1 = pt(12; 36; 45), and α0,1 = pt(134; 256).

Then ([6]; ~α; 3, 4) is an eligible system with block count type (0, 1, 2, 2).

Lemma 21. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(13; 57), α1,0 = pt(12; 34),

α1,1 = pt(156; 47), and α0,1 = pt(17; 236; 45).

Then ([7]; ~α; 1, 3) is an eligible system with block count type (0, 1, 2, 2).
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Lemma 22. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(12; 36), α1,0 = pt(13; 46),

α1,1 = pt(14; 56), and α0,1 = pt(16; 2345).

Then ([6]; ~α; 1, 2) is an eligible system with block count type (0, 2, 2, 2).

Proof of Lemma 22. It is easy to see that (4.2)–(4.4) hold; so we present an argu-
ment only for (4.1). That is, we show that {α0,0, α0,1, α1,0, α1,1} generates Part(6).
Let S denote the sublattice generated by this four-element subset of Part(6). Then
the following partitions are all in S:

α0,0 = pt(12; 36), as it is one of the generators, (5.2)

α1,0 = pt(13; 46), as it is one of the generators, (5.3)

α1,1 = pt(14; 56), as it is one of the generators, (5.4)

α0,1 = pt(16; 2345), as it is one of the generators, (5.5)

pt(12346) = pt(12; 36) ∨ pt(13; 46) by (5.2) and (5.3), (5.6)

pt(124; 356) = pt(12; 36) ∨ pt(14; 56) by (5.2) and (5.4), (5.7)

pt(13456) = pt(13; 46) ∨ pt(14; 56) by (5.3) and (5.4), (5.8)

pt(36) = pt(12; 36) ∧ pt(13456) by (5.2) and (5.8), (5.9)

pt(14) = pt(14; 56) ∧ pt(12346) by (5.4) and (5.6), (5.10)

pt(24; 35) = pt(16; 2345) ∧ pt(124; 356) by (5.5) and (5.7), (5.11)

pt(24; 356) = pt(36) ∨ pt(24; 35) by (5.9) and (5.11), (5.12)

pt(124; 35) = pt(14) ∨ pt(24; 35) by (5.10) and (5.11), (5.13)

pt(12) = pt(12; 36) ∧ pt(124; 35) by (5.2) and (5.13), (5.14)

pt(56) = pt(14; 56) ∧ pt(24; 356) by (5.4) and (5.12), (5.15)

pt(123; 46) = pt(13; 46) ∨ pt(12) by (5.3) and (5.14), (5.16)

pt(13; 456) = pt(13; 46) ∨ pt(56) by (5.3) and (5.15), (5.17)

pt(23) = pt(16; 2345) ∧ pt(123; 46) by (5.5) and (5.16), (5.18)

pt(45) = pt(16; 2345) ∧ pt(13; 456) by (5.5) and (5.17). (5.19)

In particular, pt(14) ∈ S by (5.10), pt(45) ∈ S by (5.19), pt(56) ∈ S by (5.15),
pt(63) ∈ S by (5.9), pt(32) ∈ S by (5.18), and pt(21) ∈ S by (5.14). Consequently,
Lemma 1 completes the proof. �

Lemma 23. Let ~α = (α0,0, α0,1, α1,0, α1,1) be given by

α0,0 = pt(134; 2567), α1,0 = pt(14; 36; 57),

α1,1 = pt(127; 56), and α0,1 = pt(15; 24; 37).

Then ([7]; ~α; 1, 3) is an eligible system with block count type (0, 2, 2, 2).

To conclude this section, note the following. The proof of Lemma 22 needed
fourteen equations, (5.6)–(5.19). The proof of Lemma 14 needs forty-eight. The
number of equations that the proof of any other lemma in this section needs is
(strictly) between 14 and 48; the average is 26.5.
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6. The rest of the proof of Theorem 1

Using our lemmas, now we can prove the theorem.

Proof of Theorem 1. Assume that (A; ~α;u0, u1) is an eligible system, a′ and a′′ are
distinct elements outside A, A′ := A∪{a′}, and A′′ := A′∪{a′′}. Let (A′; ~α ′;u′0, u

′
1)

and (A′′; ~α ′′;u′′0 , u
′′
1) be the eligible systems obtained from (A; ~α;u0, u1) and (A′; ~α ′;u0, u1)

applying Lemma 2, respectively. (Their dependence on the parameter k occur-
ring in the lemma is irrelevant for a while.) For the α′i,js in (4.5), we have that
nbl(α′0,j) = nbl(α1,j) and nbl(α′1,j) = nbl(α0,j) + 1 for j ∈ {0, 1}. Applying (4.5)
to the primed αs, we obtain that nbl(α′′i,j) = nbl(αi,j) + 1 for all i, j ∈ {0, 1}.
Therefore,

|A′′| = |A|+ 2 and bctyp(A′′; ~α ′′;u′′0 , u
′′
1) = bctyp(A; ~α;u0, u1). (6.1)

For the rest of the proof, we fix a possible triplet (i2, i3, i4) in the scope of the
theorem. Lemmas 4–23, (5.1), and (6.1) yield two eligible systems

A0 = ([8]; ~α;u0, u1) and B0 = ([9]; ~α∗;u∗0, u
∗
1)

of block count type (0, i2, i3, i4). Depending on the parity of n, we start from A or
B depending on whether n is even or odd, respectively. The repeated use of (6.1)
gives that for any n ≥ 8, Part(n) has a four-element generating set X such that
bctyp(X) = (0, i2, i3, i4). More effort is needed to prove that there are many such
X.

Let m := 2b(n − 8)/2c. Observe that m = n − 8 for n even and m = n − 9 for
n odd. Importantly, m is even. We will give the details on how to use A0 for an
even n, since B0 could be used similarly for an odd n. We are going to construct
2m ·m! eligible systems such that each of them is obtained from A0 by using the
constructive step offered by Lemma 2 m times and it has [n] as its base set.

So n ≥ 10 is even. Pick an m-dimensional vector ~k = (k1, . . . , km) in {0, 1}m.

Let ~b = (b1, . . . , bm) be a permutation of the set [n] \ [8] = {9, 10, . . . , n}. So
[n] = [8] ∪ {(b1, . . . , bm}. Using k1, b1, and the (parenthesized) superscript 1 in-
stead of k, a′, and the prime symbol ′, respectively, Lemma 2 yields an eligible

system A1 = ([8] ∪ {b1}; ~α(1);u
(1)
0 , u

(1)
1 ). In the next step, we use k2, b2, and

the parenthesized 2. And so on; we use ki, bi, and (i) in the ith step to obtain

Ai = ([8] ∪ {b1, . . . , bi}; ~α(i);u
(i)
0 , u

(i)
1 ) from Ai−1. The base set of Am is [n]. Since

we have made an even number of steps to obtain Am from A0, Lemma 2 and (6.1)
imply that the partition set of Am is a generating set of Part(n) of block count

type (0, i2, i3, i4). There are 2m · m! vectors (~k,~b). So we can construct 2m · m!
eligible systems in this way; call them the constructed systems. To show that they

are pairwise distinct, it is sufficient to show that Am determines both ~k and ~b.
To do so, assume that Am is given, and let Bi denote the base set of Ai for

i ∈ {0, . . . ,m}; in particular, B0 = [8] and Bm = [n]. By Lemma 3, Am−1 and km
are uniquely determined. Applying Lemma 3 to Am−2 and Am−1, we obtain that
Am−2 and km−1 are uniquely determined, too. Next, the same lemma applied to
Am−3 and Am−2 yields that Am−3 and km−2 are uniquely determined. And so on;

after m applications of Lemma 3, we obtain that ~k and all the Ai, i ∈ {0, . . . ,m},
are uniquely determined. For i ∈ [m], bi is the unique element that belongs to (the

base set of) Ai but not to Ai−1. Hence, ~b is uniquely determined, too.
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Next, we give an upper estimate of how many constructed systems Am give rise
to the same generating set. First, 24 = 4! different generating vectors give the same

four-element generating set. Second, we claim that (u
(m)
0 , u

(m)
1 ) can be chosen in

at most m(m + 1) ways. (We have added ‘‘at most’’ since the generating set can

exclude some choices.) Indeed, there are (at most) m(m−1) pairs (u
(m)
0 , u

(m)
1 ) such

that none of their components is in [8]. If u
(m)
0 ∈ [8], then u

(m)
0 = u0 and we can

choose u
(m)
1 in (at most) m ways, and similarly if u

(m)
1 ∈ [8]. So the number of

possible pairs (u
(m)
0 , (u

(m)
1 ) is at most m(m− 1) +m+m = m(m+ 1), indeed.

Finally, if we divide the number 2m ·m! of the constructed systems by the just-
obtained number 24m(m+ 1), then we obtain a lower estimate of the four-element
generating sets of Part(n) with block count type (0, i2, i3, i4). Since this division
results in the number given in (3.1), the proof of Theorem 1 is complete. �

7. Appendix

In all of the proofs below, the trivial verification of (4.2)–(4.4) will be omitted.
We present the proof of (4.1) only, that is, we show that X := {α0,0, α0,1, α1,0,
α1,0} generates Part(n). Each numbered equation shows that the partition on its
left belongs to the sublattice S generated by X.

Proof of Lemma 4.

α0,0 = pt(14; 37; 56), (7.1)

α1,0 = pt(15; 23; 46), (7.2)

α1,1 = pt(12; 367), (7.3)

α0,1 = pt(26; 457), (7.4)

pt(1456; 237) = pt(14; 37; 56) ∨ pt(15; 23; 46) by (7.1) and (7.2), (7.5)

pt(124; 3567) = pt(14; 37; 56) ∨ pt(12; 367) by (7.1) and (7.3), (7.6)

pt(37) = pt(14; 37; 56) ∧ pt(12; 367) by (7.1) and (7.3), (7.7)

pt(15; 237; 46) = pt(15; 23; 46) ∨ pt(37) by (7.2) and (7.7), (7.8)

pt(45) = pt(26; 457) ∧ pt(1456; 237) by (7.4) and (7.5), (7.9)

pt(57) = pt(26; 457) ∧ pt(124; 3567) by (7.4) and (7.6), (7.10)

pt(1456; 37) = pt(14; 37; 56) ∨ pt(45) by (7.1) and (7.9), (7.11)

pt(14; 3567) = pt(14; 37; 56) ∨ pt(57) by (7.1) and (7.10), (7.12)

pt(1456; 23) = pt(15; 23; 46) ∨ pt(45) by (7.2) and (7.9), (7.13)

pt(12; 3567) = pt(12; 367) ∨ pt(57) by (7.3) and (7.10), (7.14)

pt(12357; 46) = pt(15; 237; 46) ∨ pt(57) by (7.8) and (7.10), (7.15)

pt(457) = pt(45) ∨ pt(57) by (7.9) and (7.10), (7.16)

pt(14; 56) = pt(14; 37; 56) ∧ pt(1456; 23) by (7.1) and (7.13), (7.17)

pt(15; 46) = pt(15; 23; 46) ∧ pt(1456; 37) by (7.2) and (7.11), (7.18)

pt(14567; 23) = pt(15; 23; 46) ∨ pt(457) by (7.2) and (7.16), (7.19)

pt(367) = pt(12; 367) ∧ pt(14; 3567) by (7.3) and (7.12), (7.20)

pt(12; 37) = pt(12; 367) ∧ pt(12357; 46) by (7.3) and (7.15), (7.21)
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pt(56) = pt(1456; 23) ∧ pt(12; 3567) by (7.13) and (7.14), (7.22)

pt(15; 23467) = pt(15; 23; 46) ∨ pt(367) by (7.2) and (7.20), (7.23)

pt(125; 3467) = pt(12; 367) ∨ pt(15; 46) by (7.3) and (7.18), (7.24)

pt(67) = pt(12; 367) ∧ pt(14567; 23) by (7.3) and (7.19), (7.25)

pt(124567) = pt(26; 457) ∨ pt(14; 56) by (7.4) and (7.17), (7.26)

pt(126; 3457) = pt(26; 457) ∨ pt(12; 37) by (7.4) and (7.21), (7.27)

pt(12; 67) = pt(12; 367) ∧ pt(124567) by (7.3) and (7.26), (7.28)

pt(26; 47) = pt(26; 457) ∧ pt(15; 23467) by (7.4) and (7.23), (7.29)

pt(12) = pt(12; 37) ∧ pt(124567) by (7.21) and (7.26), (7.30)

pt(12; 347) = pt(125; 3467) ∧ pt(126; 3457) by (7.24) and (7.27), (7.31)

pt(12347; 56) = pt(14; 37; 56) ∨ pt(12; 347) by (7.1) and (7.31), (7.32)

pt(12467) = pt(12; 67) ∨ pt(26; 47) by (7.28) and (7.29), (7.33)

pt(14) = pt(14; 37; 56) ∧ pt(12467) by (7.1) and (7.33), (7.34)

pt(23) = pt(15; 23; 46) ∧ pt(12347; 56) by (7.2) and (7.32). (7.35)

In particular, pt(12) ∈ S by (7.30), pt(23) ∈ S by (7.35), pt(37) ∈ S by (7.7),
pt(76) ∈ S by (7.25), pt(65) ∈ S by (7.22), pt(54) ∈ S by (7.9), and pt(41) ∈ S by
(7.34). Consequently, Lemma 1 completes the proof. �

Proof of Lemma 5.

α0,0 = pt(168; 237), (7.36)

α1,0 = pt(178; 345), (7.37)

α1,1 = pt(12; 467; 58), (7.38)

α0,1 = pt(135; 26; 47), (7.39)

pt(18) = pt(168; 237) ∧ pt(178; 345) by (7.36) and (7.37), (7.40)

pt(134578; 26) = pt(178; 345) ∨ pt(135; 26; 47) by (7.37) and (7.39), (7.41)

pt(35) = pt(178; 345) ∧ pt(135; 26; 47) by (7.37) and (7.39), (7.42)

pt(47) = pt(12; 467; 58) ∧ pt(135; 26; 47) by (7.38) and (7.39), (7.43)

pt(18; 37) = pt(168; 237) ∧ pt(134578; 26) by (7.36) and (7.41), (7.44)

pt(168; 2357) = pt(168; 237) ∨ pt(35) by (7.36) and (7.42), (7.45)

pt(168; 2347) = pt(168; 237) ∨ pt(47) by (7.36) and (7.43), (7.46)

pt(134578) = pt(178; 345) ∨ pt(47) by (7.37) and (7.43), (7.47)

pt(1258; 467) = pt(12; 467; 58) ∨ pt(18) by (7.38) and (7.40), (7.48)

pt(47; 58) = pt(12; 467; 58) ∧ pt(134578; 26) by (7.38) and (7.41), (7.49)

pt(18; 35) = pt(18) ∨ pt(35) by (7.40) and (7.42), (7.50)

pt(12358; 467) = pt(12; 467; 58) ∨ pt(18; 35) by (7.38) and (7.50), (7.51)

pt(135; 47) = pt(135; 26; 47) ∧ pt(134578) by (7.39) and (7.47), (7.52)

pt(18; 25) = pt(168; 2357) ∧ pt(1258; 467) by (7.45) and (7.48), (7.53)

pt(178; 2345) = pt(178; 345) ∨ pt(18; 25) by (7.37) and (7.53), (7.54)
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pt(123568; 47) = pt(135; 26; 47) ∨ pt(18; 25) by (7.39) and (7.53), (7.55)

pt(168; 23) = pt(168; 237) ∧ pt(123568; 47) by (7.36) and (7.55), (7.56)

pt(12; 47; 58) = pt(12; 467; 58) ∧ pt(123568; 47) by (7.38) and (7.55), (7.57)

pt(18; 234) = pt(168; 2347) ∧ pt(178; 2345) by (7.46) and (7.54), (7.58)

pt(1678; 2345) = pt(178; 345) ∨ pt(168; 23) by (7.37) and (7.56), (7.59)

pt(67) = pt(12; 467; 58) ∧ pt(1678; 2345) by (7.38) and (7.59), (7.60)

pt(18; 25; 67) = pt(1258; 467) ∧ pt(1678; 2345) by (7.48) and (7.59), (7.61)

pt(18; 235; 67) = pt(12358; 467) ∧ pt(1678; 2345) by (7.51) and (7.59), (7.62)

pt(123678) = pt(168; 237) ∨ pt(67) by (7.36) and (7.60), (7.63)

pt(1235678) = pt(168; 237) ∨ pt(18; 25; 67) by (7.36) and (7.61), (7.64)

pt(135; 2467) = pt(135; 26; 47) ∨ pt(67) by (7.39) and (7.60), (7.65)

pt(18; 23567) = pt(18; 37) ∨ pt(18; 235; 67) by (7.44) and (7.62), (7.66)

pt(26; 35) = pt(135; 26; 47) ∧ pt(18; 23567) by (7.39) and (7.66), (7.67)

pt(58) = pt(47; 58) ∧ pt(1235678) by (7.49) and (7.64), (7.68)

pt(13) = pt(135; 47) ∧ pt(123678) by (7.52) and (7.63), (7.69)

pt(24) = pt(18; 234) ∧ pt(135; 2467) by (7.58) and (7.65), (7.70)

pt(123; 467; 58) = pt(12; 467; 58) ∨ pt(13) by (7.38) and (7.69), (7.71)

pt(126; 358; 47) = pt(12; 47; 58) ∨ pt(26; 35) by (7.57) and (7.67), (7.72)

pt(23) = pt(168; 237) ∧ pt(123; 467; 58) by (7.36) and (7.71), (7.73)

pt(16) = pt(168; 237) ∧ pt(126; 358; 47) by (7.36) and (7.72). (7.74)

In particular, pt(18) ∈ S by (7.40), pt(85) ∈ S by (7.68), pt(53) ∈ S by (7.42),
pt(32) ∈ S by (7.73), pt(24) ∈ S by (7.70), pt(47) ∈ S by (7.43), pt(76) ∈ S by
(7.60), and pt(61) ∈ S by (7.74). Thus, Lemma 1 completes the proof. �

Proof of Lemma 6.

α0,0 = pt(16; 234), (7.75)

α1,0 = pt(12; 45), (7.76)

α1,1 = pt(134; 56), (7.77)

α0,1 = pt(14; 26; 35), (7.78)

pt(34) = pt(16; 234) ∧ pt(134; 56) by (7.75) and (7.77), (7.79)

pt(14) = pt(134; 56) ∧ pt(14; 26; 35) by (7.77) and (7.78), (7.80)

pt(12346) = pt(16; 234) ∨ pt(14) by (7.75) and (7.80), (7.81)

pt(12; 345) = pt(12; 45) ∨ pt(34) by (7.76) and (7.79), (7.82)

pt(1345; 26) = pt(14; 26; 35) ∨ pt(34) by (7.78) and (7.79), (7.83)

pt(12) = pt(12; 45) ∧ pt(12346) by (7.76) and (7.81), (7.84)

pt(45) = pt(12; 45) ∧ pt(1345; 26) by (7.76) and (7.83), (7.85)

pt(14; 26) = pt(14; 26; 35) ∧ pt(12346) by (7.78) and (7.81), (7.86)

pt(35) = pt(14; 26; 35) ∧ pt(12; 345) by (7.78) and (7.82), (7.87)
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pt(12456) = pt(12; 45) ∨ pt(14; 26) by (7.76) and (7.86), (7.88)

pt(13456) = pt(134; 56) ∨ pt(45) by (7.77) and (7.85), (7.89)

pt(16; 34) = pt(16; 234) ∧ pt(13456) by (7.75) and (7.89), (7.90)

pt(14; 56) = pt(134; 56) ∧ pt(12456) by (7.77) and (7.88), (7.91)

pt(1456) = pt(12456) ∧ pt(13456) by (7.88) and (7.89), (7.92)

pt(16) = pt(16; 234) ∧ pt(1456) by (7.75) and (7.92), (7.93)

pt(14; 2356) = pt(14; 26; 35) ∨ pt(14; 56) by (7.78) and (7.91), (7.94)

pt(126; 34) = pt(12) ∨ pt(16; 34) by (7.84) and (7.90), (7.95)

pt(23) = pt(16; 234) ∧ pt(14; 2356) by (7.75) and (7.94), (7.96)

pt(26) = pt(14; 26; 35) ∧ pt(126; 34) by (7.78) and (7.95). (7.97)

In particular, pt(16) ∈ S by (7.93), pt(62) ∈ S by (7.97), pt(23) ∈ S by (7.96),
pt(35) ∈ S by (7.87), pt(54) ∈ S by (7.85), and pt(41) ∈ S by (7.80). Consequently,
Lemma 1 completes the proof. �

Proof of Lemma 7.

α0,0 = pt(146; 27; 35), (7.98)

α1,0 = pt(26; 34; 57), (7.99)

α1,1 = pt(15; 247; 36), (7.100)

α0,1 = pt(123; 47; 56), (7.101)

pt(27) = pt(146; 27; 35) ∧ pt(15; 247; 36) by (7.98) and (7.100), (7.102)

pt(47) = pt(15; 247; 36) ∧ pt(123; 47; 56) by (7.100) and (7.101), (7.103)

pt(12467; 35) = pt(146; 27; 35) ∨ pt(47) by (7.98) and (7.103), (7.104)

pt(26; 3457) = pt(26; 34; 57) ∨ pt(47) by (7.99) and (7.103), (7.105)

pt(12347; 56) = pt(123; 47; 56) ∨ pt(27) by (7.101) and (7.102), (7.106)

pt(35) = pt(146; 27; 35) ∧ pt(26; 3457) by (7.98) and (7.105), (7.107)

pt(14; 27) = pt(146; 27; 35) ∧ pt(12347; 56) by (7.98) and (7.106), (7.108)

pt(26) = pt(26; 34; 57) ∧ pt(12467; 35) by (7.99) and (7.104), (7.109)

pt(34) = pt(26; 34; 57) ∧ pt(12347; 56) by (7.99) and (7.106), (7.110)

pt(12; 47) = pt(123; 47; 56) ∧ pt(12467; 35) by (7.101) and (7.104), (7.111)

pt(12457; 36) = pt(15; 247; 36) ∨ pt(14; 27) by (7.100) and (7.108), (7.112)

pt(345) = pt(35) ∨ pt(34) by (7.107) and (7.110), (7.113)

pt(134; 27) = pt(14; 27) ∨ pt(34) by (7.108) and (7.110), (7.114)

pt(126; 47) = pt(26) ∨ pt(12; 47) by (7.109) and (7.111), (7.115)

pt(16) = pt(146; 27; 35) ∧ pt(126; 47) by (7.98) and (7.115), (7.116)

pt(57) = pt(26; 34; 57) ∧ pt(12457; 36) by (7.99) and (7.112), (7.117)

pt(13) = pt(123; 47; 56) ∧ pt(134; 27) by (7.101) and (7.114), (7.118)

pt(45) = pt(12457; 36) ∧ pt(345) by (7.112) and (7.113). (7.119)
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In particular, pt(16) ∈ S by (7.116), pt(62) ∈ S by (7.109), pt(27) ∈ S by (7.102),
pt(75) ∈ S by (7.117), pt(54) ∈ S by (7.119), pt(43) ∈ S by (7.110), and pt(31) ∈ S
by (7.118). Therefore, Lemma 1 completes the proof. �

Proof of Lemma 8.

α0,0 = pt(123; 45), (7.120)

α1,0 = pt(35), (7.121)

α1,1 = pt(15; 246), (7.122)

α0,1 = pt(14; 25; 36), (7.123)

pt(12345) = pt(123; 45) ∨ pt(35) by (7.120) and (7.121), (7.124)

pt(135; 246) = pt(35) ∨ pt(15; 246) by (7.121) and (7.122), (7.125)

pt(14; 2356) = pt(35) ∨ pt(14; 25; 36) by (7.121) and (7.123), (7.126)

pt(13) = pt(123; 45) ∧ pt(135; 246) by (7.120) and (7.125), (7.127)

pt(23) = pt(123; 45) ∧ pt(14; 2356) by (7.120) and (7.126), (7.128)

pt(26) = pt(15; 246) ∧ pt(14; 2356) by (7.122) and (7.126), (7.129)

pt(14; 25) = pt(14; 25; 36) ∧ pt(12345) by (7.123) and (7.124), (7.130)

pt(135) = pt(35) ∨ pt(13) by (7.121) and (7.127), (7.131)

pt(235) = pt(35) ∨ pt(23) by (7.121) and (7.128), (7.132)

pt(15; 2346) = pt(15; 246) ∨ pt(23) by (7.122) and (7.128), (7.133)

pt(1346; 25) = pt(14; 25; 36) ∨ pt(13) by (7.123) and (7.127), (7.134)

pt(134; 25) = pt(13) ∨ pt(14; 25) by (7.127) and (7.130), (7.135)

pt(15) = pt(15; 246) ∧ pt(135) by (7.122) and (7.131), (7.136)

pt(46) = pt(15; 246) ∧ pt(1346; 25) by (7.122) and (7.134), (7.137)

pt(25) = pt(14; 25; 36) ∧ pt(235) by (7.123) and (7.132), (7.138)

pt(34) = pt(15; 2346) ∧ pt(134; 25) by (7.133) and (7.135). (7.139)

In particular, pt(13) ∈ S by (7.127), pt(34) ∈ S by (7.139), pt(46) ∈ S by (7.137),
pt(62) ∈ S by (7.129), pt(25) ∈ S by (7.138), and pt(51) ∈ S by (7.136). Hence,
Lemma 1 completes the proof. �

Proof of Lemma 9.

α0,0 = pt(12; 37; 456), (7.140)

α1,0 = pt(13; 67), (7.141)

α1,1 = pt(156; 23; 47), (7.142)

α0,1 = pt(157; 234), (7.143)

pt(56) = pt(12; 37; 456) ∧ pt(156; 23; 47) by (7.140) and (7.142), (7.144)

pt(15; 23) = pt(156; 23; 47) ∧ pt(157; 234) by (7.142) and (7.143), (7.145)

pt(1235; 67) = pt(13; 67) ∨ pt(15; 23) by (7.141) and (7.145), (7.146)

pt(1567; 234) = pt(157; 234) ∨ pt(56) by (7.143) and (7.144), (7.147)

pt(156; 23) = pt(56) ∨ pt(15; 23) by (7.144) and (7.145), (7.148)

pt(12) = pt(12; 37; 456) ∧ pt(1235; 67) by (7.140) and (7.146), (7.149)
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pt(67) = pt(13; 67) ∧ pt(1567; 234) by (7.141) and (7.147), (7.150)

pt(123567) = pt(13; 67) ∨ pt(156; 23) by (7.141) and (7.148), (7.151)

pt(12; 34567) = pt(12; 37; 456) ∨ pt(67) by (7.140) and (7.150), (7.152)

pt(12; 37; 56) = pt(12; 37; 456) ∧ pt(123567) by (7.140) and (7.151), (7.153)

pt(123; 67) = pt(13; 67) ∨ pt(12) by (7.141) and (7.149), (7.154)

pt(12356; 47) = pt(156; 23; 47) ∨ pt(12) by (7.142) and (7.149), (7.155)

pt(14567; 23) = pt(156; 23; 47) ∨ pt(67) by (7.142) and (7.150), (7.156)

pt(123457) = pt(157; 234) ∨ pt(12) by (7.143) and (7.149), (7.157)

pt(456) = pt(12; 37; 456) ∧ pt(14567; 23) by (7.140) and (7.156), (7.158)

pt(13) = pt(13; 67) ∧ pt(12356; 47) by (7.141) and (7.155), (7.159)

pt(23) = pt(156; 23; 47) ∧ pt(123; 67) by (7.142) and (7.154), (7.160)

pt(34; 57) = pt(157; 234) ∧ pt(12; 34567) by (7.143) and (7.152), (7.161)

pt(12; 37) = pt(12; 37; 56) ∧ pt(123457) by (7.153) and (7.157), (7.162)

pt(1457; 23) = pt(14567; 23) ∧ pt(123457) by (7.156) and (7.157), (7.163)

pt(45) = pt(12; 37; 456) ∧ pt(1457; 23) by (7.140) and (7.163), (7.164)

pt(1456; 23) = pt(15; 23) ∨ pt(456) by (7.145) and (7.158), (7.165)

pt(34567) = pt(456) ∨ pt(34; 57) by (7.158) and (7.161), (7.166)

pt(134; 57) = pt(13) ∨ pt(34; 57) by (7.159) and (7.161), (7.167)

pt(37) = pt(12; 37) ∧ pt(34567) by (7.162) and (7.166), (7.168)

pt(14) = pt(1456; 23) ∧ pt(134; 57) by (7.165) and (7.167). (7.169)

In particular, pt(12) ∈ S by (7.149), pt(23) ∈ S by (7.160), pt(37) ∈ S by (7.168),
pt(76) ∈ S by (7.150), pt(65) ∈ S by (7.144), pt(54) ∈ S by (7.164), and pt(41) ∈ S
by (7.169). Consequently, Lemma 1 completes the proof. �

Proof of Lemma 10.

α0,0 = pt(12; 34; 56), (7.170)

α1,0 = pt(13; 26), (7.171)

α1,1 = pt(24; 56), (7.172)

α0,1 = pt(146; 35), (7.173)

pt(1234; 56) = pt(12; 34; 56) ∨ pt(24; 56) by (7.170) and (7.172), (7.174)

pt(56) = pt(12; 34; 56) ∧ pt(24; 56) by (7.170) and (7.172), (7.175)

pt(13; 2456) = pt(13; 26) ∨ pt(24; 56) by (7.171) and (7.172), (7.176)

pt(13) = pt(13; 26) ∧ pt(1234; 56) by (7.171) and (7.174), (7.177)

pt(14) = pt(146; 35) ∧ pt(1234; 56) by (7.173) and (7.174), (7.178)

pt(46) = pt(146; 35) ∧ pt(13; 2456) by (7.173) and (7.176), (7.179)

pt(12; 3456) = pt(12; 34; 56) ∨ pt(46) by (7.170) and (7.179), (7.180)

pt(13; 246) = pt(13; 26) ∨ pt(46) by (7.171) and (7.179), (7.181)

pt(124; 56) = pt(24; 56) ∨ pt(14) by (7.172) and (7.178), (7.182)
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pt(146) = pt(14) ∨ pt(46) by (7.178) and (7.179), (7.183)

pt(12; 56) = pt(12; 34; 56) ∧ pt(124; 56) by (7.170) and (7.182), (7.184)

pt(12346) = pt(13; 26) ∨ pt(146) by (7.171) and (7.183), (7.185)

pt(24) = pt(24; 56) ∧ pt(13; 246) by (7.172) and (7.181), (7.186)

pt(35; 46) = pt(146; 35) ∧ pt(12; 3456) by (7.173) and (7.180), (7.187)

pt(12356) = pt(13; 26) ∨ pt(12; 56) by (7.171) and (7.184), (7.188)

pt(12) = pt(12; 56) ∧ pt(12346) by (7.184) and (7.185), (7.189)

pt(35) = pt(35; 46) ∧ pt(12356) by (7.187) and (7.188). (7.190)

In particular, pt(13) ∈ S by (7.177), pt(35) ∈ S by (7.190), pt(56) ∈ S by (7.175),
pt(64) ∈ S by (7.179), pt(42) ∈ S by (7.186), and pt(21) ∈ S by (7.189). Thus,
Lemma 1 completes the proof. �

Proof of Lemma 11.

α0,0 = pt(124; 37; 56), (7.191)

α1,0 = pt(237; 46), (7.192)

α1,1 = pt(256; 34), (7.193)

α0,1 = pt(13; 25; 467), (7.194)

pt(37) = pt(124; 37; 56) ∧ pt(237; 46) by (7.191) and (7.192), (7.195)

pt(56) = pt(124; 37; 56) ∧ pt(256; 34) by (7.191) and (7.193), (7.196)

pt(46) = pt(237; 46) ∧ pt(13; 25; 467) by (7.192) and (7.194), (7.197)

pt(25) = pt(256; 34) ∧ pt(13; 25; 467) by (7.193) and (7.194), (7.198)

pt(23456) = pt(256; 34) ∨ pt(46) by (7.193) and (7.197), (7.199)

pt(13467; 25) = pt(13; 25; 467) ∨ pt(37) by (7.194) and (7.195), (7.200)

pt(13; 24567) = pt(13; 25; 467) ∨ pt(56) by (7.194) and (7.196), (7.201)

pt(456) = pt(56) ∨ pt(46) by (7.196) and (7.197), (7.202)

pt(14; 37) = pt(124; 37; 56) ∧ pt(13467; 25) by (7.191) and (7.200), (7.203)

pt(23; 46) = pt(237; 46) ∧ pt(23456) by (7.192) and (7.199), (7.204)

pt(27; 46) = pt(237; 46) ∧ pt(13; 24567) by (7.192) and (7.201), (7.205)

pt(25; 34) = pt(256; 34) ∧ pt(13467; 25) by (7.193) and (7.200), (7.206)

pt(146; 237) = pt(237; 46) ∨ pt(14; 37) by (7.192) and (7.203), (7.207)

pt(1235; 467) = pt(13; 25; 467) ∨ pt(23; 46) by (7.194) and (7.204), (7.208)

pt(14; 25; 37) = pt(25) ∨ pt(14; 37) by (7.198) and (7.203), (7.209)

pt(1347; 25) = pt(14; 37) ∨ pt(25; 34) by (7.203) and (7.206), (7.210)

pt(12) = pt(124; 37; 56) ∧ pt(1235; 467) by (7.191) and (7.208), (7.211)

pt(1256; 34) = pt(256; 34) ∨ pt(12) by (7.193) and (7.211), (7.212)

pt(123467) = pt(146; 237) ∨ pt(12) by (7.207) and (7.211), (7.213)

pt(1245; 37) = pt(14; 25; 37) ∨ pt(12) by (7.209) and (7.211), (7.214)

pt(123457) = pt(1347; 25) ∨ pt(12) by (7.210) and (7.211), (7.215)



18 G. CZÉDLI

pt(45) = pt(456) ∧ pt(1245; 37) by (7.202) and (7.214), (7.216)

pt(27) = pt(27; 46) ∧ pt(123457) by (7.205) and (7.215), (7.217)

pt(34) = pt(25; 34) ∧ pt(123467) by (7.206) and (7.213), (7.218)

pt(16) = pt(146; 237) ∧ pt(1256; 34) by (7.207) and (7.212). (7.219)

In particular, pt(12) ∈ S by (7.211), pt(27) ∈ S by (7.217), pt(73) ∈ S by (7.195),
pt(34) ∈ S by (7.218), pt(45) ∈ S by (7.216), pt(56) ∈ S by (7.196), and pt(61) ∈ S
by (7.219). Consequently, Lemma 1 completes the proof. �

Proof of Lemma 12.

α0,0 = pt(15; 234; 67), (7.220)

α1,0 = pt(36; 45), (7.221)

α1,1 = pt(12; 47; 56), (7.222)

α0,1 = pt(126; 35; 47), (7.223)

pt(12; 34567) = pt(36; 45) ∨ pt(12; 47; 56) by (7.221) and (7.222), (7.224)

pt(12; 47) = pt(12; 47; 56) ∧ pt(126; 35; 47) by (7.222) and (7.223), (7.225)

pt(12356; 47) = pt(12; 47; 56) ∨ pt(126; 35; 47) by (7.222) and (7.223), (7.226)

pt(34; 67) = pt(15; 234; 67) ∧ pt(12; 34567) by (7.220) and (7.224), (7.227)

pt(15; 23) = pt(15; 234; 67) ∧ pt(12356; 47) by (7.220) and (7.226), (7.228)

pt(36) = pt(36; 45) ∧ pt(12356; 47) by (7.221) and (7.226), (7.229)

pt(15; 23467) = pt(15; 234; 67) ∨ pt(36) by (7.220) and (7.229), (7.230)

pt(145; 236) = pt(36; 45) ∨ pt(15; 23) by (7.221) and (7.228), (7.231)

pt(1235; 47) = pt(12; 47) ∨ pt(15; 23) by (7.225) and (7.228), (7.232)

pt(47) = pt(12; 47; 56) ∧ pt(15; 23467) by (7.222) and (7.230), (7.233)

pt(26; 47) = pt(126; 35; 47) ∧ pt(15; 23467) by (7.223) and (7.230), (7.234)

pt(26) = pt(126; 35; 47) ∧ pt(145; 236) by (7.223) and (7.231), (7.235)

pt(236; 457) = pt(36; 45) ∨ pt(26; 47) by (7.221) and (7.234), (7.236)

pt(1256; 47) = pt(12; 47; 56) ∨ pt(26; 47) by (7.222) and (7.234), (7.237)

pt(267; 34) = pt(34; 67) ∨ pt(26) by (7.227) and (7.235), (7.238)

pt(23) = pt(15; 234; 67) ∧ pt(236; 457) by (7.220) and (7.236), (7.239)

pt(15) = pt(15; 234; 67) ∧ pt(1256; 47) by (7.220) and (7.237), (7.240)

pt(125; 47) = pt(1235; 47) ∧ pt(1256; 47) by (7.232) and (7.237), (7.241)

pt(12457; 36) = pt(36; 45) ∨ pt(125; 47) by (7.221) and (7.241), (7.242)

pt(15; 24) = pt(15; 234; 67) ∧ pt(12457; 36) by (7.220) and (7.242), (7.243)

pt(27) = pt(267; 34) ∧ pt(12457; 36) by (7.238) and (7.242), (7.244)

pt(1245; 36) = pt(36; 45) ∨ pt(15; 24) by (7.221) and (7.243), (7.245)

pt(124567) = pt(12; 47; 56) ∨ pt(15; 24) by (7.222) and (7.243), (7.246)

pt(267) = pt(26) ∨ pt(27) by (7.235) and (7.244), (7.247)

pt(67) = pt(15; 234; 67) ∧ pt(267) by (7.220) and (7.247), (7.248)
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pt(45) = pt(36; 45) ∧ pt(124567) by (7.221) and (7.246), (7.249)

pt(12) = pt(12; 47; 56) ∧ pt(1245; 36) by (7.222) and (7.245). (7.250)

In particular, pt(12) ∈ S by (7.250), pt(23) ∈ S by (7.239), pt(36) ∈ S by (7.229),
pt(67) ∈ S by (7.248), pt(74) ∈ S by (7.233), pt(45) ∈ S by (7.249), and pt(51) ∈ S
by (7.240). Therefore, Lemma 1 completes the proof. �

Proof of Lemma 13.

α0,0 = pt(138; 246; 57), (7.251)

α1,0 = pt(235; 46), (7.252)

α1,1 = pt(26; 37; 458), (7.253)

α0,1 = pt(12; 356; 478), (7.254)

pt(46) = pt(138; 246; 57) ∧ pt(235; 46) by (7.251) and (7.252), (7.255)

pt(26) = pt(138; 246; 57) ∧ pt(26; 37; 458) by (7.251) and (7.253),
(7.256)

pt(35) = pt(235; 46) ∧ pt(12; 356; 478) by (7.252) and (7.254), (7.257)

pt(48) = pt(26; 37; 458) ∧ pt(12; 356; 478) by (7.253) and (7.254),
(7.258)

pt(13578; 246) = pt(138; 246; 57) ∨ pt(35) by (7.251) and (7.257), (7.259)

pt(123468; 57) = pt(138; 246; 57) ∨ pt(48) by (7.251) and (7.258), (7.260)

pt(23456) = pt(235; 46) ∨ pt(26) by (7.252) and (7.256), (7.261)

pt(24568; 37) = pt(26; 37; 458) ∨ pt(46) by (7.253) and (7.255), (7.262)

pt(26; 34578) = pt(26; 37; 458) ∨ pt(35) by (7.253) and (7.257), (7.263)

pt(12; 345678) = pt(12; 356; 478) ∨ pt(46) by (7.254) and (7.255), (7.264)

pt(12356; 478) = pt(12; 356; 478) ∨ pt(26) by (7.254) and (7.256), (7.265)

pt(468) = pt(46) ∨ pt(48) by (7.255) and (7.258), (7.266)

pt(26; 48) = pt(26) ∨ pt(48) by (7.256) and (7.258), (7.267)

pt(26; 38; 57) = pt(138; 246; 57) ∧ pt(26; 34578) by (7.251) and (7.263), (7.268)

pt(13; 26) = pt(138; 246; 57) ∧ pt(12356; 478) by (7.251) and (7.265),
(7.269)

pt(25; 46) = pt(235; 46) ∧ pt(24568; 37) by (7.252) and (7.262), (7.270)

pt(235) = pt(235; 46) ∧ pt(12356; 478) by (7.252) and (7.265), (7.271)

pt(234568) = pt(235; 46) ∨ pt(26; 48) by (7.252) and (7.267), (7.272)

pt(26; 37; 58) = pt(26; 37; 458) ∧ pt(13578; 246) by (7.253) and (7.259), (7.273)

pt(26; 45) = pt(26; 37; 458) ∧ pt(23456) by (7.253) and (7.261), (7.274)

pt(12; 36; 48) = pt(12; 356; 478) ∧ pt(123468; 57) by (7.254) and (7.260),
(7.275)

pt(135; 26; 78) = pt(13578; 246) ∧ pt(12356; 478) by (7.259) and (7.265), (7.276)

pt(12; 3468; 57) = pt(123468; 57) ∧ pt(12; 345678) by (7.260) and (7.264), (7.277)

pt(1236; 48) = pt(123468; 57) ∧ pt(12356; 478) by (7.260) and (7.265), (7.278)
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pt(256; 48) = pt(24568; 37) ∧ pt(12356; 478) by (7.262) and (7.265), (7.279)

pt(34578) = pt(26; 34578) ∧ pt(12; 345678) by (7.263) and (7.264), (7.280)

pt(23) = pt(235; 46) ∧ pt(1236; 48) by (7.252) and (7.278), (7.281)

pt(25) = pt(235; 46) ∧ pt(256; 48) by (7.252) and (7.279), (7.282)

pt(235678) = pt(26; 38; 57) ∨ pt(235) by (7.268) and (7.271), (7.283)

pt(26; 38; 457) = pt(26; 38; 57) ∨ pt(26; 45) by (7.268) and (7.274), (7.284)

pt(137; 26; 58) = pt(13; 26) ∨ pt(26; 37; 58) by (7.269) and (7.273), (7.285)

pt(125; 3468) = pt(25; 46) ∨ pt(12; 36; 48) by (7.270) and (7.275), (7.286)

pt(1257; 3468) = pt(25; 46) ∨ pt(12; 3468; 57) by (7.270) and (7.277), (7.287)

pt(3458) = pt(234568) ∧ pt(34578) by (7.272) and (7.280), (7.288)

pt(38) = pt(138; 246; 57) ∧ pt(3458) by (7.251) and (7.288), (7.289)

pt(47) = pt(12; 356; 478) ∧ pt(26; 38; 457) by (7.254) and (7.284),
(7.290)

pt(68) = pt(468) ∧ pt(235678) by (7.266) and (7.283), (7.291)

pt(15) = pt(135; 26; 78) ∧ pt(125; 3468) by (7.276) and (7.286), (7.292)

pt(17) = pt(137; 26; 58) ∧ pt(1257; 3468) by (7.285) and (7.287). (7.293)

In particular, pt(15) ∈ S by (7.292), pt(52) ∈ S by (7.282), pt(23) ∈ S by (7.281),
pt(38) ∈ S by (7.289), pt(86) ∈ S by (7.291), pt(64) ∈ S by (7.255), pt(47) ∈ S
by (7.290), and pt(71) ∈ S by (7.293). Consequently, Lemma 1 completes the
proof. �

Proof of Lemma 14.

α0,0 = pt(167; 234; 58), (7.294)

α1,0 = pt(12; 36; 57), (7.295)

α1,1 = pt(267; 45), (7.296)

α0,1 = pt(148; 26; 357), (7.297)

pt(67) = pt(167; 234; 58) ∧ pt(267; 45) by (7.294) and (7.296), (7.298)

pt(57) = pt(12; 36; 57) ∧ pt(148; 26; 357) by (7.295) and (7.297), (7.299)

pt(26) = pt(267; 45) ∧ pt(148; 26; 357) by (7.296) and (7.297), (7.300)

pt(15678; 234) = pt(167; 234; 58) ∨ pt(57) by (7.294) and (7.299), (7.301)

pt(123467; 58) = pt(167; 234; 58) ∨ pt(26) by (7.294) and (7.300), (7.302)

pt(12; 3567) = pt(12; 36; 57) ∨ pt(67) by (7.295) and (7.298), (7.303)

pt(1236; 57) = pt(12; 36; 57) ∨ pt(26) by (7.295) and (7.300), (7.304)

pt(24567) = pt(267; 45) ∨ pt(57) by (7.296) and (7.299), (7.305)

pt(148; 23567) = pt(148; 26; 357) ∨ pt(67) by (7.297) and (7.298), (7.306)

pt(16; 23) = pt(167; 234; 58) ∧ pt(1236; 57) by (7.294) and (7.304), (7.307)

pt(24; 67) = pt(167; 234; 58) ∧ pt(24567) by (7.294) and (7.305), (7.308)

pt(18; 57) = pt(148; 26; 357) ∧ pt(15678; 234) by (7.297) and (7.301), (7.309)

pt(14; 26; 37) = pt(148; 26; 357) ∧ pt(123467; 58) by (7.297) and (7.302), (7.310)
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pt(357) = pt(148; 26; 357) ∧ pt(12; 3567) by (7.297) and (7.303), (7.311)

pt(18; 23; 567) = pt(15678; 234) ∧ pt(148; 23567) by (7.301) and (7.306), (7.312)

pt(1236) = pt(123467; 58) ∧ pt(1236; 57) by (7.302) and (7.304), (7.313)

pt(236; 57) = pt(1236; 57) ∧ pt(148; 23567) by (7.304) and (7.306), (7.314)

pt(23) = pt(167; 234; 58) ∧ pt(236; 57) by (7.294) and (7.314), (7.315)

pt(124; 3567) = pt(12; 36; 57) ∨ pt(24; 67) by (7.295) and (7.308), (7.316)

pt(128; 36; 57) = pt(12; 36; 57) ∨ pt(18; 57) by (7.295) and (7.309), (7.317)

pt(1235678) = pt(12; 36; 57) ∨ pt(18; 23; 567) by (7.295) and (7.312), (7.318)

pt(145; 2367) = pt(267; 45) ∨ pt(14; 26; 37) by (7.296) and (7.310), (7.319)

pt(16; 2357) = pt(16; 23) ∨ pt(357) by (7.307) and (7.311), (7.320)

pt(18; 24; 567) = pt(24; 67) ∨ pt(18; 57) by (7.308) and (7.309), (7.321)

pt(167; 23; 58) = pt(167; 234; 58) ∧ pt(1235678) by (7.294) and (7.318), (7.322)

pt(1248; 3567) = pt(12; 36; 57) ∨ pt(18; 24; 567) by (7.295) and (7.321), (7.323)

pt(27) = pt(267; 45) ∧ pt(16; 2357) by (7.296) and (7.320), (7.324)

pt(14; 357) = pt(148; 26; 357) ∧ pt(124; 3567) by (7.297) and (7.316), (7.325)

pt(15; 23; 67) = pt(15678; 234) ∧ pt(145; 2367) by (7.301) and (7.319), (7.326)

pt(1257; 36) = pt(12; 36; 57) ∨ pt(27) by (7.295) and (7.324), (7.327)

pt(12367; 458) = pt(267; 45) ∨ pt(167; 23; 58) by (7.296) and (7.322), (7.328)

pt(148; 357) = pt(148; 26; 357) ∧ pt(1248; 3567) by (7.297) and (7.323), (7.329)

pt(14; 2357) = pt(23) ∨ pt(14; 357) by (7.315) and (7.325), (7.330)

pt(12578; 36) = pt(128; 36; 57) ∨ pt(27) by (7.317) and (7.324), (7.331)

pt(17) = pt(167; 234; 58) ∧ pt(1257; 36) by (7.294) and (7.327), (7.332)

pt(17; 58) = pt(167; 234; 58) ∧ pt(12578; 36) by (7.294) and (7.331), (7.333)

pt(26; 37; 48) = pt(148; 26; 357) ∧ pt(12367; 458) by (7.297) and (7.328), (7.334)

pt(15) = pt(15; 23; 67) ∧ pt(1257; 36) by (7.326) and (7.327), (7.335)

pt(1267; 458) = pt(267; 45) ∨ pt(17; 58) by (7.296) and (7.333), (7.336)

pt(156; 23) = pt(16; 23) ∨ pt(15) by (7.307) and (7.335), (7.337)

pt(148; 26; 37) = pt(14; 26; 37) ∨ pt(26; 37; 48) by (7.310) and (7.334), (7.338)

pt(12356) = pt(1236) ∨ pt(15) by (7.313) and (7.335), (7.339)

pt(123457) = pt(14; 2357) ∨ pt(17) by (7.330) and (7.332), (7.340)

pt(18) = pt(15678; 234) ∧ pt(148; 26; 37) by (7.301) and (7.338), (7.341)

pt(56) = pt(12; 3567) ∧ pt(156; 23) by (7.303) and (7.337), (7.342)

pt(24) = pt(24; 67) ∧ pt(123457) by (7.308) and (7.340), (7.343)

pt(35) = pt(357) ∧ pt(12356) by (7.311) and (7.339), (7.344)

pt(48) = pt(148; 357) ∧ pt(1267; 458) by (7.329) and (7.336). (7.345)

In particular, pt(18) ∈ S by (7.341), pt(84) ∈ S by (7.345), pt(42) ∈ S by (7.343),
pt(23) ∈ S by (7.315), pt(35) ∈ S by (7.344), pt(56) ∈ S by (7.342), pt(67) ∈ S by
(7.298), and pt(71) ∈ S by (7.332). Therefore, Lemma 1 completes the proof. �
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Proof of Lemma 15.

α0,0 = pt(125; 346; 789), (7.346)

α1,0 = pt(267; 34; 89), (7.347)

α1,1 = pt(158; 239), (7.348)

α0,1 = pt(147; 238; 569), (7.349)

pt(34; 89) = pt(125; 346; 789) ∧ pt(267; 34; 89) by (7.346) and (7.347), (7.350)

pt(15) = pt(125; 346; 789) ∧ pt(158; 239) by (7.346) and (7.348), (7.351)

pt(23) = pt(158; 239) ∧ pt(147; 238; 569) by (7.348) and (7.349), (7.352)

pt(123456; 789) = pt(125; 346; 789) ∨ pt(23) by (7.346) and (7.352), (7.353)

pt(23467; 89) = pt(267; 34; 89) ∨ pt(23) by (7.347) and (7.352), (7.354)

pt(1234589) = pt(158; 239) ∨ pt(34; 89) by (7.348) and (7.350), (7.355)

pt(145679; 238) = pt(147; 238; 569) ∨ pt(15) by (7.349) and (7.351), (7.356)

pt(125; 34; 89) = pt(125; 346; 789) ∧ pt(1234589) by (7.346) and (7.355), (7.357)

pt(15; 46; 79) = pt(125; 346; 789) ∧ pt(145679; 238) by (7.346) and (7.356), (7.358)

pt(67) = pt(267; 34; 89) ∧ pt(145679; 238) by (7.347) and (7.356), (7.359)

pt(14; 23; 56) = pt(147; 238; 569) ∧ pt(123456; 789) by (7.349) and (7.353), (7.360)

pt(23; 47) = pt(147; 238; 569) ∧ pt(23467; 89) by (7.349) and (7.354), (7.361)

pt(14; 238; 59) = pt(147; 238; 569) ∧ pt(1234589) by (7.349) and (7.355), (7.362)

pt(23; 467) = pt(23467; 89) ∧ pt(145679; 238) by (7.354) and (7.356), (7.363)

pt(125; 346789) = pt(125; 346; 789) ∨ pt(67) by (7.346) and (7.359), (7.364)

pt(46) = pt(125; 346; 789) ∧ pt(23; 467) by (7.346) and (7.363), (7.365)

pt(12567; 34; 89) = pt(267; 34; 89) ∨ pt(125; 34; 89) by (7.347) and (7.357), (7.366)

pt(158; 2379; 46) = pt(158; 239) ∨ pt(15; 46; 79) by (7.348) and (7.358), (7.367)

pt(12345789) = pt(1234589) ∨ pt(23; 47) by (7.355) and (7.361), (7.368)

pt(15; 4679) = pt(15; 46; 79) ∨ pt(67) by (7.358) and (7.359), (7.369)

pt(14; 23; 567) = pt(67) ∨ pt(14; 23; 56) by (7.359) and (7.360), (7.370)

pt(14; 238; 569) = pt(14; 23; 56) ∨ pt(14; 238; 59) by (7.360) and (7.362), (7.371)

pt(27) = pt(267; 34; 89) ∧ pt(158; 2379; 46) by (7.347) and (7.367), (7.372)

pt(158; 234679) = pt(158; 239) ∨ pt(15; 4679) by (7.348) and (7.369), (7.373)

pt(17; 56) = pt(147; 238; 569) ∧ pt(12567; 34; 89) by (7.349) and (7.366), (7.374)

pt(38) = pt(14; 238; 59) ∧ pt(125; 346789) by (7.362) and (7.364), (7.375)

pt(14; 23; 57) = pt(12345789) ∧ pt(14; 23; 567) by (7.368) and (7.370), (7.376)

pt(69) = pt(15; 4679) ∧ pt(14; 238; 569) by (7.369) and (7.371), (7.377)

pt(123589) = pt(158; 239) ∨ pt(38) by (7.348) and (7.375), (7.378)

pt(34) = pt(34; 89) ∧ pt(158; 234679) by (7.350) and (7.373), (7.379)

pt(14; 2378; 59) = pt(14; 238; 59) ∨ pt(27) by (7.362) and (7.372), (7.380)

pt(57) = pt(12567; 34; 89) ∧ pt(14; 23; 57) by (7.366) and (7.376), (7.381)

pt(127; 56) = pt(27) ∨ pt(17; 56) by (7.372) and (7.374), (7.382)

pt(78) = pt(125; 346; 789) ∧ pt(14; 2378; 59) by (7.346) and (7.380), (7.383)

pt(12) = pt(125; 346; 789) ∧ pt(127; 56) by (7.346) and (7.382), (7.384)

pt(89) = pt(267; 34; 89) ∧ pt(123589) by (7.347) and (7.378). (7.385)
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In particular, pt(15) ∈ S by (7.351), pt(57) ∈ S by (7.381), pt(78) ∈ S by (7.383),
pt(89) ∈ S by (7.385), pt(96) ∈ S by (7.377), pt(64) ∈ S by (7.365), pt(43) ∈ S by
(7.379), pt(32) ∈ S by (7.352), and pt(21) ∈ S by (7.384). Hence, Lemma 1 completes
the proof. �

Proof of Lemma 16.

α0,0 = pt(26; 35), (7.386)

α1,0 = pt(15; 24), (7.387)

α1,1 = pt(23; 45), (7.388)

α0,1 = pt(12; 346), (7.389)

pt(135; 246) = pt(26; 35) ∨ pt(15; 24) by (7.386) and (7.387), (7.390)

pt(23456) = pt(26; 35) ∨ pt(23; 45) by (7.386) and (7.388), (7.391)

pt(12345) = pt(15; 24) ∨ pt(23; 45) by (7.387) and (7.388), (7.392)

pt(35) = pt(26; 35) ∧ pt(12345) by (7.386) and (7.392), (7.393)

pt(46) = pt(12; 346) ∧ pt(135; 246) by (7.389) and (7.390), (7.394)

pt(346) = pt(12; 346) ∧ pt(23456) by (7.389) and (7.391), (7.395)

pt(12; 34) = pt(12; 346) ∧ pt(12345) by (7.389) and (7.392), (7.396)

pt(2345) = pt(23456) ∧ pt(12345) by (7.391) and (7.392), (7.397)

pt(126; 345) = pt(26; 35) ∨ pt(12; 34) by (7.386) and (7.396), (7.398)

pt(15; 2346) = pt(15; 24) ∨ pt(346) by (7.387) and (7.395), (7.399)

pt(23; 456) = pt(23; 45) ∨ pt(46) by (7.388) and (7.394), (7.400)

pt(12; 3456) = pt(12; 346) ∨ pt(35) by (7.389) and (7.393), (7.401)

pt(34) = pt(12; 346) ∧ pt(2345) by (7.389) and (7.397), (7.402)

pt(45) = pt(23; 45) ∧ pt(126; 345) by (7.388) and (7.398), (7.403)

pt(23) = pt(23; 45) ∧ pt(15; 2346) by (7.388) and (7.399), (7.404)

pt(456) = pt(23; 456) ∧ pt(12; 3456) by (7.400) and (7.401), (7.405)

pt(2356) = pt(26; 35) ∨ pt(23) by (7.386) and (7.404), (7.406)

pt(1245) = pt(15; 24) ∨ pt(45) by (7.387) and (7.403), (7.407)

pt(12) = pt(12; 346) ∧ pt(1245) by (7.389) and (7.407), (7.408)

pt(56) = pt(456) ∧ pt(2356) by (7.405) and (7.406), (7.409)

pt(25) = pt(2356) ∧ pt(1245) by (7.406) and (7.407), (7.410)

pt(125; 346) = pt(12; 346) ∨ pt(25) by (7.389) and (7.410), (7.411)

pt(15) = pt(15; 24) ∧ pt(125; 346) by (7.387) and (7.411). (7.412)

In particular, pt(15) ∈ S by (7.412), pt(56) ∈ S by (7.409), pt(64) ∈ S by (7.394),
pt(43) ∈ S by (7.402), pt(32) ∈ S by (7.404), and pt(21) ∈ S by (7.408). Conse-
quently, Lemma 1 completes the proof. �

Proof of Lemma 17.

α0,0 = pt(145; 36), (7.413)

α1,0 = pt(16; 245), (7.414)
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α1,1 = pt(17; 26; 35), (7.415)

α0,1 = pt(13; 257; 46), (7.416)

pt(45) = pt(145; 36) ∧ pt(16; 245) by (7.413) and (7.414), (7.417)

pt(25) = pt(16; 245) ∧ pt(13; 257; 46) by (7.414) and (7.416), (7.418)

pt(1245; 36) = pt(145; 36) ∨ pt(25) by (7.413) and (7.418), (7.419)

pt(17; 26; 345) = pt(17; 26; 35) ∨ pt(45) by (7.415) and (7.417), (7.420)

pt(17; 2356) = pt(17; 26; 35) ∨ pt(25) by (7.415) and (7.418), (7.421)

pt(13; 24567) = pt(13; 257; 46) ∨ pt(45) by (7.416) and (7.417), (7.422)

pt(36) = pt(145; 36) ∧ pt(17; 2356) by (7.413) and (7.421), (7.423)

pt(26) = pt(17; 26; 35) ∧ pt(13; 24567) by (7.415) and (7.422), (7.424)

pt(256) = pt(17; 2356) ∧ pt(13; 24567) by (7.421) and (7.422), (7.425)

pt(12456) = pt(16; 245) ∨ pt(26) by (7.414) and (7.424), (7.426)

pt(1346; 257) = pt(13; 257; 46) ∨ pt(36) by (7.416) and (7.423), (7.427)

pt(145) = pt(145; 36) ∧ pt(12456) by (7.413) and (7.426), (7.428)

pt(14; 36) = pt(145; 36) ∧ pt(1346; 257) by (7.413) and (7.427), (7.429)

pt(16; 25) = pt(16; 245) ∧ pt(1346; 257) by (7.414) and (7.427), (7.430)

pt(34) = pt(17; 26; 345) ∧ pt(1346; 257) by (7.420) and (7.427), (7.431)

pt(13456) = pt(145; 36) ∨ pt(34) by (7.413) and (7.431), (7.432)

pt(13457; 26) = pt(17; 26; 35) ∨ pt(145) by (7.415) and (7.428), (7.433)

pt(147; 2356) = pt(17; 26; 35) ∨ pt(14; 36) by (7.415) and (7.429), (7.434)

pt(1256) = pt(26) ∨ pt(16; 25) by (7.424) and (7.430), (7.435)

pt(1346) = pt(14; 36) ∨ pt(34) by (7.429) and (7.431), (7.436)

pt(16; 45) = pt(16; 245) ∧ pt(13456) by (7.414) and (7.432), (7.437)

pt(16) = pt(16; 245) ∧ pt(1346) by (7.414) and (7.436), (7.438)

pt(35) = pt(17; 26; 35) ∧ pt(13456) by (7.415) and (7.432), (7.439)

pt(13; 57) = pt(13; 257; 46) ∧ pt(13457; 26) by (7.416) and (7.433), (7.440)

pt(125) = pt(1245; 36) ∧ pt(1256) by (7.419) and (7.435), (7.441)

pt(12346) = pt(26) ∨ pt(1346) by (7.424) and (7.436), (7.442)

pt(56) = pt(256) ∧ pt(13456) by (7.425) and (7.432), (7.443)

pt(1267; 345) = pt(17; 26; 35) ∨ pt(16; 45) by (7.415) and (7.437), (7.444)

pt(13; 457) = pt(45) ∨ pt(13; 57) by (7.417) and (7.440), (7.445)

pt(12) = pt(125) ∧ pt(12346) by (7.441) and (7.442), (7.446)

pt(27) = pt(13; 257; 46) ∧ pt(1267; 345) by (7.416) and (7.444), (7.447)

pt(47) = pt(147; 2356) ∧ pt(13; 457) by (7.434) and (7.445). (7.448)

In particular, pt(12) ∈ S by (7.446), pt(27) ∈ S by (7.447), pt(74) ∈ S by (7.448),
pt(43) ∈ S by (7.431), pt(35) ∈ S by (7.439), pt(56) ∈ S by (7.443), and pt(61) ∈ S
by (7.438). Consequently, Lemma 1 completes the proof. �
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Proof of Lemma 18.

α0,0 = pt(16; 24; 35), (7.449)

α1,0 = pt(14; 35), (7.450)

α1,1 = pt(16; 23; 45), (7.451)

α0,1 = pt(125; 346), (7.452)

pt(1246; 35) = pt(16; 24; 35) ∨ pt(14; 35) by (7.449) and (7.450), (7.453)

pt(35) = pt(16; 24; 35) ∧ pt(14; 35) by (7.449) and (7.450), (7.454)

pt(16; 2345) = pt(16; 24; 35) ∨ pt(16; 23; 45) by (7.449) and (7.451), (7.455)

pt(16) = pt(16; 24; 35) ∧ pt(16; 23; 45) by (7.449) and (7.451), (7.456)

pt(146; 35) = pt(14; 35) ∨ pt(16) by (7.450) and (7.456), (7.457)

pt(12; 46) = pt(125; 346) ∧ pt(1246; 35) by (7.452) and (7.453), (7.458)

pt(25; 34) = pt(125; 346) ∧ pt(16; 2345) by (7.452) and (7.455), (7.459)

pt(12345) = pt(14; 35) ∨ pt(25; 34) by (7.450) and (7.459), (7.460)

pt(46) = pt(125; 346) ∧ pt(146; 35) by (7.452) and (7.457), (7.461)

pt(2345) = pt(35) ∨ pt(25; 34) by (7.454) and (7.459), (7.462)

pt(1246) = pt(16) ∨ pt(12; 46) by (7.456) and (7.458), (7.463)

pt(1456; 23) = pt(16; 23; 45) ∨ pt(46) by (7.451) and (7.461), (7.464)

pt(125; 34) = pt(125; 346) ∧ pt(12345) by (7.452) and (7.460), (7.465)

pt(12) = pt(12; 46) ∧ pt(12345) by (7.458) and (7.460), (7.466)

pt(25; 346) = pt(25; 34) ∨ pt(46) by (7.459) and (7.461), (7.467)

pt(24) = pt(2345) ∧ pt(1246) by (7.462) and (7.463), (7.468)

pt(1236; 45) = pt(16; 23; 45) ∨ pt(12) by (7.451) and (7.466), (7.469)

pt(15) = pt(1456; 23) ∧ pt(125; 34) by (7.464) and (7.465), (7.470)

pt(36) = pt(25; 346) ∧ pt(1236; 45) by (7.467) and (7.469). (7.471)

In particular, pt(15) ∈ S by (7.470), pt(53) ∈ S by (7.454), pt(36) ∈ S by (7.471),
pt(64) ∈ S by (7.461), pt(42) ∈ S by (7.468), and pt(21) ∈ S by (7.466). Conse-
quently, Lemma 1 completes the proof. �

Proof of Lemma 19.

α0,0 = pt(36; 45), (7.472)

α1,0 = pt(126; 57), (7.473)

α1,1 = pt(17; 24; 35), (7.474)

α0,1 = pt(15; 23; 467), (7.475)

pt(1236; 457) = pt(36; 45) ∨ pt(126; 57) by (7.472) and (7.473), (7.476)

pt(17; 23456) = pt(36; 45) ∨ pt(17; 24; 35) by (7.472) and (7.474), (7.477)

pt(26) = pt(126; 57) ∧ pt(17; 23456) by (7.473) and (7.477), (7.478)

pt(23; 47) = pt(15; 23; 467) ∧ pt(1236; 457) by (7.475) and (7.476), (7.479)

pt(236; 45) = pt(1236; 457) ∧ pt(17; 23456) by (7.476) and (7.477), (7.480)
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pt(236; 457) = pt(36; 45) ∨ pt(23; 47) by (7.472) and (7.479), (7.481)

pt(17; 246; 35) = pt(17; 24; 35) ∨ pt(26) by (7.474) and (7.478), (7.482)

pt(123457) = pt(17; 24; 35) ∨ pt(23; 47) by (7.474) and (7.479), (7.483)

pt(23) = pt(15; 23; 467) ∧ pt(236; 45) by (7.475) and (7.480), (7.484)

pt(26; 57) = pt(126; 57) ∧ pt(236; 457) by (7.473) and (7.481), (7.485)

pt(12; 57) = pt(126; 57) ∧ pt(123457) by (7.473) and (7.483), (7.486)

pt(46) = pt(15; 23; 467) ∧ pt(17; 246; 35) by (7.475) and (7.482), (7.487)

pt(15; 23; 47) = pt(15; 23; 467) ∧ pt(123457) by (7.475) and (7.483), (7.488)

pt(12; 36; 457) = pt(36; 45) ∨ pt(12; 57) by (7.472) and (7.486), (7.489)

pt(3456) = pt(36; 45) ∨ pt(46) by (7.472) and (7.487), (7.490)

pt(1457; 236) = pt(36; 45) ∨ pt(15; 23; 47) by (7.472) and (7.488), (7.491)

pt(1357; 246) = pt(17; 24; 35) ∨ pt(26; 57) by (7.474) and (7.485), (7.492)

pt(35) = pt(17; 24; 35) ∧ pt(3456) by (7.474) and (7.490), (7.493)

pt(17) = pt(17; 24; 35) ∧ pt(1457; 236) by (7.474) and (7.491), (7.494)

pt(47) = pt(15; 23; 467) ∧ pt(12; 36; 457) by (7.475) and (7.489), (7.495)

pt(15) = pt(15; 23; 47) ∧ pt(1357; 246) by (7.488) and (7.492). (7.496)

In particular, pt(15) ∈ S by (7.496), pt(53) ∈ S by (7.493), pt(32) ∈ S by (7.484),
pt(26) ∈ S by (7.478), pt(64) ∈ S by (7.487), pt(47) ∈ S by (7.495), and pt(71) ∈ S
by (7.494). Consequently, Lemma 1 completes the proof. �

Proof of Lemma 20.

α0,0 = pt(16; 45), (7.497)

α1,0 = pt(16; 24), (7.498)

α1,1 = pt(12; 36; 45), (7.499)

α0,1 = pt(134; 256), (7.500)

pt(16) = pt(16; 45) ∧ pt(16; 24) by (7.497) and (7.498), (7.501)

pt(16; 245) = pt(16; 45) ∨ pt(16; 24) by (7.497) and (7.498), (7.502)

pt(1236; 45) = pt(16; 45) ∨ pt(12; 36; 45) by (7.497) and (7.499), (7.503)

pt(45) = pt(16; 45) ∧ pt(12; 36; 45) by (7.497) and (7.499), (7.504)

pt(25) = pt(134; 256) ∧ pt(16; 245) by (7.500) and (7.502), (7.505)

pt(13; 26) = pt(134; 256) ∧ pt(1236; 45) by (7.500) and (7.503), (7.506)

pt(12346) = pt(16; 24) ∨ pt(13; 26) by (7.498) and (7.506), (7.507)

pt(1245; 36) = pt(12; 36; 45) ∨ pt(25) by (7.499) and (7.505), (7.508)

pt(1236) = pt(16) ∨ pt(13; 26) by (7.501) and (7.506), (7.509)

pt(13; 256) = pt(25) ∨ pt(13; 26) by (7.505) and (7.506), (7.510)

pt(24) = pt(16; 24) ∧ pt(1245; 36) by (7.498) and (7.508), (7.511)

pt(12; 36) = pt(12; 36; 45) ∧ pt(12346) by (7.499) and (7.507), (7.512)

pt(134; 26) = pt(134; 256) ∧ pt(12346) by (7.500) and (7.507), (7.513)
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pt(14; 25) = pt(134; 256) ∧ pt(1245; 36) by (7.500) and (7.508), (7.514)

pt(12356) = pt(16) ∨ pt(13; 256) by (7.501) and (7.510), (7.515)

pt(124; 36) = pt(12346) ∧ pt(1245; 36) by (7.507) and (7.508), (7.516)

pt(12456) = pt(16; 45) ∨ pt(14; 25) by (7.497) and (7.514), (7.517)

pt(14) = pt(134; 256) ∧ pt(124; 36) by (7.500) and (7.516), (7.518)

pt(146; 25) = pt(16) ∨ pt(14; 25) by (7.501) and (7.514), (7.519)

pt(1345; 26) = pt(45) ∨ pt(134; 26) by (7.504) and (7.513), (7.520)

pt(1245) = pt(45) ∨ pt(14; 25) by (7.504) and (7.514), (7.521)

pt(13; 246) = pt(13; 26) ∨ pt(24) by (7.506) and (7.511), (7.522)

pt(1456) = pt(16; 45) ∨ pt(14) by (7.497) and (7.518), (7.523)

pt(26) = pt(13; 26) ∧ pt(12456) by (7.506) and (7.517), (7.524)

pt(12) = pt(1236) ∧ pt(1245) by (7.509) and (7.521), (7.525)

pt(135; 26) = pt(12356) ∧ pt(1345; 26) by (7.515) and (7.520), (7.526)

pt(46) = pt(146; 25) ∧ pt(13; 246) by (7.519) and (7.522), (7.527)

pt(12; 3456) = pt(12; 36; 45) ∨ pt(46) by (7.499) and (7.527), (7.528)

pt(56) = pt(13; 256) ∧ pt(1456) by (7.510) and (7.523), (7.529)

pt(12; 346) = pt(12; 36) ∨ pt(46) by (7.512) and (7.527), (7.530)

pt(34) = pt(134; 256) ∧ pt(12; 346) by (7.500) and (7.530), (7.531)

pt(35) = pt(135; 26) ∧ pt(12; 3456) by (7.526) and (7.528). (7.532)

In particular, pt(14) ∈ S by (7.518), pt(43) ∈ S by (7.531), pt(35) ∈ S by (7.532),
pt(56) ∈ S by (7.529), pt(62) ∈ S by (7.524), and pt(21) ∈ S by (7.525). Conse-
quently, Lemma 1 completes the proof. �

Proof of Lemma 21.

α0,0 = pt(13; 57), (7.533)

α1,0 = pt(12; 34), (7.534)

α1,1 = pt(156; 47), (7.535)

α0,1 = pt(17; 236; 45), (7.536)

pt(1234; 57) = pt(13; 57) ∨ pt(12; 34) by (7.533) and (7.534), (7.537)

pt(134567) = pt(13; 57) ∨ pt(156; 47) by (7.533) and (7.535), (7.538)

pt(1256; 347) = pt(12; 34) ∨ pt(156; 47) by (7.534) and (7.535), (7.539)

pt(34) = pt(12; 34) ∧ pt(134567) by (7.534) and (7.538), (7.540)

pt(23) = pt(17; 236; 45) ∧ pt(1234; 57) by (7.536) and (7.537), (7.541)

pt(17; 36; 45) = pt(17; 236; 45) ∧ pt(134567) by (7.536) and (7.538), (7.542)

pt(26) = pt(17; 236; 45) ∧ pt(1256; 347) by (7.536) and (7.539), (7.543)

pt(156; 347) = pt(134567) ∧ pt(1256; 347) by (7.538) and (7.539), (7.544)

pt(123; 57) = pt(13; 57) ∨ pt(23) by (7.533) and (7.541), (7.545)

pt(1234) = pt(12; 34) ∨ pt(23) by (7.534) and (7.541), (7.546)
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pt(127; 3456) = pt(12; 34) ∨ pt(17; 36; 45) by (7.534) and (7.542), (7.547)

pt(236) = pt(23) ∨ pt(26) by (7.541) and (7.543), (7.548)

pt(156; 2347) = pt(23) ∨ pt(156; 347) by (7.541) and (7.544), (7.549)

pt(12) = pt(12; 34) ∧ pt(123; 57) by (7.534) and (7.545), (7.550)

pt(56) = pt(156; 47) ∧ pt(127; 3456) by (7.535) and (7.547), (7.551)

pt(36) = pt(134567) ∧ pt(236) by (7.538) and (7.548), (7.552)

pt(27; 34; 56) = pt(127; 3456) ∧ pt(156; 2347) by (7.547) and (7.549), (7.553)

pt(127; 34; 56) = pt(12; 34) ∨ pt(27; 34; 56) by (7.534) and (7.553), (7.554)

pt(127; 36; 45) = pt(17; 36; 45) ∨ pt(12) by (7.542) and (7.550), (7.555)

pt(12347; 56) = pt(1234) ∨ pt(27; 34; 56) by (7.546) and (7.553), (7.556)

pt(17) = pt(17; 236; 45) ∧ pt(127; 34; 56) by (7.536) and (7.554), (7.557)

pt(17; 23) = pt(17; 236; 45) ∧ pt(12347; 56) by (7.536) and (7.556), (7.558)

pt(27) = pt(156; 2347) ∧ pt(127; 36; 45) by (7.549) and (7.555), (7.559)

pt(1357) = pt(13; 57) ∨ pt(17) by (7.533) and (7.557), (7.560)

pt(12347) = pt(12; 34) ∨ pt(17; 23) by (7.534) and (7.558), (7.561)

pt(15) = pt(156; 47) ∧ pt(1357) by (7.535) and (7.560), (7.562)

pt(47) = pt(156; 47) ∧ pt(12347) by (7.535) and (7.561). (7.563)

In particular, pt(15) ∈ S by (7.562), pt(56) ∈ S by (7.551), pt(63) ∈ S by (7.552),
pt(34) ∈ S by (7.540), pt(47) ∈ S by (7.563), pt(72) ∈ S by (7.559), and pt(21) ∈ S
by (7.550). Hence, Lemma 1 completes the proof. �

Proof of Lemma 23.

α0,0 = pt(134; 2567), (7.564)

α1,0 = pt(14; 36; 57), (7.565)

α1,1 = pt(127; 56), (7.566)

α0,1 = pt(15; 24; 37), (7.567)

pt(14; 57) = pt(134; 2567) ∧ pt(14; 36; 57) by (7.564) and (7.565), (7.568)

pt(27; 56) = pt(134; 2567) ∧ pt(127; 56) by (7.564) and (7.566), (7.569)

pt(14; 23567) = pt(14; 36; 57) ∨ pt(27; 56) by (7.565) and (7.569), (7.570)

pt(124567) = pt(127; 56) ∨ pt(14; 57) by (7.566) and (7.568), (7.571)

pt(123457) = pt(15; 24; 37) ∨ pt(14; 57) by (7.567) and (7.568), (7.572)

pt(156; 2347) = pt(15; 24; 37) ∨ pt(27; 56) by (7.567) and (7.569), (7.573)

pt(134; 257) = pt(134; 2567) ∧ pt(123457) by (7.564) and (7.572), (7.574)

pt(27; 34; 56) = pt(134; 2567) ∧ pt(156; 2347) by (7.564) and (7.573), (7.575)

pt(37) = pt(15; 24; 37) ∧ pt(14; 23567) by (7.567) and (7.570), (7.576)

pt(15; 24) = pt(15; 24; 37) ∧ pt(124567) by (7.567) and (7.571), (7.577)

pt(27) = pt(27; 56) ∧ pt(123457) by (7.569) and (7.572), (7.578)

pt(1346; 257) = pt(14; 36; 57) ∨ pt(134; 257) by (7.565) and (7.574), (7.579)



FOUR-ELEMENT GENERATING SETS OF PARTITION LATTICES 29

pt(14; 3567) = pt(14; 36; 57) ∨ pt(37) by (7.565) and (7.576), (7.580)

pt(1237; 56) = pt(127; 56) ∨ pt(37) by (7.566) and (7.576), (7.581)

pt(2347; 56) = pt(27; 34; 56) ∨ pt(37) by (7.575) and (7.576), (7.582)

pt(13; 27; 56) = pt(134; 2567) ∧ pt(1237; 56) by (7.564) and (7.581), (7.583)

pt(56) = pt(127; 56) ∧ pt(14; 3567) by (7.566) and (7.580), (7.584)

pt(12347; 56) = pt(127; 56) ∨ pt(2347; 56) by (7.566) and (7.582), (7.585)

pt(16; 27; 34) = pt(156; 2347) ∧ pt(1346; 257) by (7.573) and (7.579), (7.586)

pt(24) = pt(15; 24) ∧ pt(2347; 56) by (7.577) and (7.582), (7.587)

pt(14) = pt(14; 36; 57) ∧ pt(12347; 56) by (7.565) and (7.585), (7.588)

pt(12567; 34) = pt(127; 56) ∨ pt(16; 27; 34) by (7.566) and (7.586), (7.589)

pt(1356; 247) = pt(15; 24) ∨ pt(13; 27; 56) by (7.577) and (7.583), (7.590)

pt(36) = pt(14; 36; 57) ∧ pt(1356; 247) by (7.565) and (7.590), (7.591)

pt(15) = pt(15; 24; 37) ∧ pt(12567; 34) by (7.567) and (7.589). (7.592)

In particular, pt(14) ∈ S by (7.588), pt(42) ∈ S by (7.587), pt(27) ∈ S by (7.578),
pt(73) ∈ S by (7.576), pt(36) ∈ S by (7.591), pt(65) ∈ S by (7.584), pt(51) ∈ S by
(7.592). Consequently, Lemma 1 completes the proof. �
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