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1, INTRODUCTION, A wvariety of algebras is said to be congruence~meet-semi-

distributive if in the congruence lattices of its algebras the semi-distributive

law,

(50 (Yo (Vp) (Vp) (AP = oAy =D XA = A (YY)D,

holds. Prom the general description of properties that can be characterized by
Mal’cev conditions (Taylor [101, Neumann [71) it follows that there exists a
weak Mal’cev condition characterizing congruence meet semi-distributivity of
varieties (Jénsson [4, Theorem 2,16]1). However, SDA has seemed the simplest
(characterizable) property of congruence 1lattices for which no concrete weak
Hal’cev condition has been known., The aim of this note is to present such a
condition and some corollaries to it. (Wote that the dual law, SDV, has been

characterized in [11.)

2, A WEAK MAL’CEV CONDITION, Our Mal’cev conditions will be given by means
of certain graphs, First for any lattice term p = pe¢, {5 3“) we define a set
G(p) of graphs associated with p, The edges of any G € G(p) will be coloured
by the variables o, p and T, and two distinguished vertices, .the so-called
left and right endpoints, will have special roles. In figures these endpoints

will be always placed on the left-hand side and on the right-hand side, respec-
tively. For all k> 2 G-(p) will be a distinguished member of G(p), but

G(p) will be different from . {Ck(p) : k> 2} in general, Pefore defining

G(p) we introduce two kinds of operations for graphs., We obtain the parallel
connection of graphs G1 and. G2 by taking disjoint copies of G1 and G2

and identifying their left (right, resp.) endpoints (Figure 1), By taking disjoint

oo By (£>1) such that Hj'é'G. for iz= j mod (2) and

graphs H 5

l’ H29
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identifying the right endpoin’c of Hi and left endpoint of Hi+l for i =1,
2y evey l - 1 we obtain the serial connection of length [ of the graphs Gl
and G2. (The left endpoint of Hl and the right one of Hz are the endpoints

of the serial connection, cf, TFigure 2,)

Figure 2

Figure 1

Now, if p is a variable then, for all k> 2, let Gk(p) be the following
graph

P
f ———

which consists of a single edge coloured by p, and let G(p) be the singleton
{Gk(p)}. Let G(p; A p2) (6(py v p2), respectively) be the set of all parallel
(serial, resp,) comnections of G, and G, with G, belonging to S(pi).
Furthermore let Gk(pl/\ p2) and Gk(pl v pz) be the parallel connection and
the serial connection of length Xk of the graphs Gk(pl) and Gk(pz), respec~
tively.

For m> 2 the smallest equivalence relation of {O, 1, eves m} collapsing
0 and m will be denoted by &«(m). Similarly, /3(m) (’J‘(m), respectively) is
the smallest equivalence of {O, 1y vees m} that collapses (i, i + 1) for
0<i<m i even (odd, rvespectively). If 7}’6{9(,/5,-3"} and j £ m then the
smallest member of {O, L, vees m} that is congruent to J modulo %(m) will
be denoted by jw(m) or ju.

Given a lattice term p = p(«, /3 ,g‘ ), an integer m 22 and a graph
G € S(p) we associate the following (strong, i.e., finite) Mal’cev condition
U(m, G) with G and m:

- "For any vertex £, of G ‘there exists an (m+l)-ary term fi(xo, Xis wee
cees 'xn) such that for each I G{o(,p,?‘} and any NM-coloured edge connecting,
say, T and fj the identity fi(XO'If’ Xigs s xm,”) = fj(xo,”, Koqe eoer xmw)
holds (here % abbreviates %(m)), and for the left and right endpoints I,
and fl
fl(xo, Xis eees xm) =x are satigfied,"

We shall consider the ternary lattice terms /An =/3n,(o(,{5 ,?‘) and

Tn =Tn(d’P’T)’ n=0,1 2, «os, defined by the following induction:

Bo = To =7 Po =PV (KAY) s Yoy = TV (XAP,). Denoting U(m, G ()

the endpoint identities fo(xo, Xps eees xm) = Xg,
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by U(m, n) and letting g(fs“) be equal to the union of all S({sn),

2 < n<w, we can formulate our main result:

THEOREM. Toxr any variety ,Y: of algebras the following three conditions

are equivalent:
(1) Vv is congruence meet semi-distributive;

(ii) Pox any integer m > 2 there exists an even n > 2 such that the

strong Mal'cev condition U(m, n) holds in T
(iii) U(m, G) holds in V for infinitely many m > 2 and appropriate

(depending on m) G Eg(pm).
Moreover (ii) is a weak Mal'’cev condition in Jénsson’s sense [4], i.e.

U(m, n) 3implies U(m, n +2) forall =, B

3, PROOF OF THE THEOREM. Since (ii) imples (iii) trivially, (1) = (i)
and (iii)=»(3) have to be shown, While the latter requires almost the same
argument that Wille [11] and Pixley L9] used, the implication (i)=>(ii) needs
e different approach. ’ ' ’

Given conrgruences &,r—i,? of an algebra A, a5, &) €4, 8 ternary lattice
term p, and G € g(p), we say that ag, 8, 081 be connected by the graph G
in A if there are further elements aié' A for i€ {2, 3, eeos s}, where
{0, 1, eoes s} is the vertex set of G with endpoints 0 and 1, such that
(ai, aj)e ¥ holds for all W E{o(,/} ,3‘} and W-coloured edge of G connect-
ing i and jo The following statement follows from -the general description of
the join-of congruences OvY- U(@“}"’@%.. (x factors): x<cy ) and from
peflexivity, thus the proof will be omitted. ' )

Claim L., Let A, &,f},f?, ags 8y and p be as above, If (ays al) €
€ p(t, ,_5,;['-) then there exists a natural number k, such that for all k Z k,
a, and a; oan be connected by the graph Gk(p) in A, Conversely, if &g

0
and a, can be connected by some member of g(p) in A fthen (ao, a.l) €

€ P(av rs 17)'

The following agsertion will be also needed.

Claim 2, Given a variety Y, m >2 and an equivalence 7 of {0, 1, sees m}.
Let 7 denote the congruence generated by {(xi, xj) : (4, j)€’Tf} in the free
algebra Fx(xo, Xpy eees xm). If for m-ary V-terms £ and g (£(xgr Xps ever xm),
g(xo! xl; seoy Xm))E'n' then the identity f(xo,“, xl’Tf’ 'R xm’ﬂ’> =

= ¥ v.
= g(Xgyr Xarr o°°? xmm,) nolds throughout ¥

proof, BExtend the map Xy > Xy (i =0, 1, cev> m) %o an endomorphism
§ of Fg<x0’ Xys eees xm). Since % SKery we obtain f(.xo,w, Tygr eeer xmqr) =
g ans ) = $gr wer %) = oy e £ 3p = &l «oer Kyl)) =

= g(Zgap Fyper o2 xm'r)’ yielding the assertion.
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Claim 3. Given congruences o ,fb ,7 of an algebra A, define
o (@7 7) 0 Four B0PoT) 1o v UGS J)  new) o
U('J'n(&,r;, ,'E) : n<w), respectively. Then fSOQ and 7,, are congruences.
Furthermore, denojing _pn(&,_ﬁ,f_). and In(&,fs‘,f?) by_f-)n_and_ T!_l_’ respec-
tively, we have F’n = Pn+l’ Tu < Tail f_or _atl-l n and APM= XA ’J\w, If

O(Ap = XA} then (s=pn = PPaq and ’J‘:’J‘n = Yo for all n.

Proof., The inclusions are trivial for n = O. If they hold for n ~ 1

I = e b, x E 2 & T =— T g ~ i ‘—
then rbn PV (d_A’J‘n_l) = F’ W ( /\J‘n) Pn+1, and T, Tm-l follows simi
larly. Therefor_e ch_ and 7,, are conmgruences, If (x, y)E E(Ar},m then we

C & TV (XAD = AT . XAT ~AR =

nave (x, Y)EX AP, SAA(TV (XA Bp)) = AT SXAT ) thus AL =
= o(/\'J;,o by symmetry., The rest is a trivial induction,

§i2=}gii2.: Suppose E is a congruence SD, variety, m > 2 and consider
the congruences &, [, of Fv(xo, Eys eees xm) generated by _
forgs =) ¢ (1 D€t} G %)) ¢ (4, D€ P} ama g, xp) - (3, D)
G'J(m)}, respectively, Let us adopt the abbreviations F;n, Pen’ Tn’ ’J‘co from
Claim 3, Since -
(209 7)€ A(m) (1 (lm) © (m) © () © F(m)° ...) SAA(BoFoPefe...) €
A A (‘3 Vz')_C_O( /\_(P“,—V-'J;o) (with m - 1 factors occurring), SD, and Claim
3 yield (xo, xm)E AADR . Therefore there exisis an even integer un 2 2 such
that (%, %,) € pn(&,"p ,7 ). Therefore, by Claim 1, there exists k >n such
thet x, and X can be connected by Gk({bn) in FE(::O, Xpy eees xm). We
can assume that X = n. (We have (0, m) €o(m) whence, by repeating the “end-

o n A
point" elements x, and X , X and x = can be connected by Gk(Pn+2)’

Gk(Pn+4)’ _etc.). Ngw we have elgments a; in FY,(XO’ cees xm) associated with

the vertices £, of Gn(Pn>' But a, = fi(xo, Xys eees xm) for some terms £,

whence, by Claim 2, it follows that U(m, Gn(Pn)) = U(m, n) holds in V.
(iii)=> (i): Now suppose &y, 8; € A€V, ¥V is a variety satisfying (iii),

a,fb,i‘ are congruences of A, o-(/\ﬁ = AP , and (ao, al)e& /\(TbVa_"),

Then there_are elements bO_’ oy eees By € 5 such that aj =;n0, a; = b,

(bo, bm)eo( . (bi, bi+l)e p for i even, and (bi, bi_l_l)Ea" for i odd,

From (iii) we have a graph G € g(fbw), and thus G € G(Pn) ~for some u, such

that U(m, G) holds in V. We claim that via assigning fi(bo, bl’ cees bm)GA

to all vertices fi of G bO and bm are connected by G in A, Really, if

two vertices, fi and f., are connected by a % ~coloursd edge in G,

'rre{o(,p,g’} , then £,(by, iy sees bmﬁfi(bo,,, Dlgs eees Dpoed =

= fj(bm‘, Dogs eoes bm) qifjfbo_’ bli_"" bm). Hence Claims 1 and 3 yield

(ao, al) = (g bm) € Pm(o(,P ,3’) =P yielding (i).

Finally suppose U(m, n) holds in a variety ¥ via the terms fo, fl’

ve. » To satisfy U(m, Gn(Pn+2)) in V we can associate the same terms

2! ~
with the vertices of a subgraph S, S 4 Gn(pn), and associate

f
fo, fl’ f29 vee
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the projections on X, eand X, With the other vertices of Gn(F'n+2)' Having
U(m, Gn(Pn+2)> satisfied, by repeating terms appropriately one can define terms

for U(m, Gn+2(Pn+2)) = U(m, n + 2),

4. COROLLARIES, In Jénsson and Rival’s paper [5] a sequence of lattice
identities En was produced with the broperty that an arbitrary lattice variety
is meet semi-distributive if and only if E‘n holds in it for some n<ow. (Note
that the proof of Theorem 6.1 in [5] yields this result, which we cite in o
slightly modified form.) Furthermore, Day [2]1 showed that ~§n" the n~-th Polin
variety, is congruence meet and join semi-distributive, congruence (un+2)-per-
mutable, and ezn holds in its congruence lattices, (For n = 2 Day and Preese
[3, Theorem 7.1] have proyed more, namely, even 6‘2 holds in the congruence
lattices of 52 = }j, the original Polin variety, ) Denoting the lattice identity
o(/\({b Vg‘)s Pn by 6):1 we can present a similar observation,

COROLLARY 1, Given a congruence m~permutable variety Y, j\{ is congruence
meet semi-distributive iff there exists n< W@ such that the identity en holds
in the congruence lattices of X, or equivalently, iff U(m, n) holds in X for
some n<w,

Proof, 1If Lf is congruence SDA then, by our Theorem, U(m, n) holds in
it for some n, But what was really shown in the proof of Theorem is that if
U(m, n) holds in s variety with m-permutable'congmences then its congruence
lattices satisfy 5n. Conversely, if ’ o(/\p = oA a" for elements o(,P, of
an arbitrary lattice, then an easy induction yields pn(o(,p 2T = [ and
?fn(“'F’ ,g‘) =f§ for all n<w ., Thus €, implies o A (p V'}T)S"(,A[’l’n(“'f}’ ,z) =
=dl /\P, the meet semi-distributivity, in any lattice, )
It is worth mentioning that the dual statement also holds, i.,e. we have the

following:

Observation. Let V be a congruence m-permutable variety of algebras,
Then z is congruence Join semi-distributive if and only if there exists an
n < W such that 8’:, the dual of En, holds in the congruence lattices of ’Y.

Proof, By duality, 5’; implies join semi-distributivity (in any lattice),
Consider the lattice terms w, = un(o(,F, ,J’) and Vo vn(o(, P,aﬂ) defined by
the following induction: u, = o(/\P » Vo XA, Woq = XA (rbv vn), Vpel =
= o(/\(a" Vu ), and let ¥, denote the identity ofA ([.’7 Va')ﬁ u . Ve obtain

- - * *
u -o(/\pn and Vo = o(/\'a'n, whence En and 4 (and thus £, and 1Cn as

L}

well) are equivalent in any lattice, Now, if ,Y; is m-permutable and congruence
Join semi-distributive then, by [1, Proposition 1] U(m, my ..., m) (defined there,
m ococours n + 1 +times) holds in Vv sor some n<ew ., Therefore, as it is
implicit in [1] (ef. also Pixley [91), 46: holds in the congruence lattices of Yo
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Before formulating our last observation we define some (recursively defined)
Mal’cev conditions occurring in (iii) more explicitly, Let GB(Pm-l) + GB(pm—l)E
GS( w) denote the serial connection of length two of two disjoint copies of
GB(Pm-1> for m odd. Then U(am, GB(Pm-l) + GB(Pm_l)) is the following condi-
tion (of, Figure 3 where m = 3):

"There exist (m+l)=ary terms fi, fl, 8y gi for 0£ i< m~ 1 such
that, denoting W(m) by % and h(xow, X1 Tpge eees xm,,() by h(W), the
following identities

£(P) = £ (), £4(p)

L@ = a0, T

[}
I

2P &) - SN, 8, () - 6y ()
for 0% :?.<m -1, i even,
@) &) = g“l(g), ;) = &; - (p)
] ' for 0<€i<m~-1, 1 odd,
) = &), g ) = g, () for 0&Li<m-1,
fm-'l(P) = fm-l(P): 5m-1((§) = gm-l(F)' fo(xo, X1s eves xm) = go(xoy Xis eoey xm)9
fo(xoy xl’ cvey xm) = XO’ and gO(xO’ xl’ cvey xm) = xm -
hold",

f1+1

i

Figure 3

COROLLARY 2 (Papert [8]). The variety of semilattices is congruence meet
semi~distributive.

Proof., For i = 0, 1, eeey m = 1 consider the semilattice terms fi =
i
=.fi(x0’ Xpr ey xm) = XoF1%p e X0 7= fixm’ & = *utme1¥mez *e° Fpegr 204
& = X,8; . Since these terms satisfy the identities prescribed in U(m, GB(Pm-l) +
+ G3(Pm_l)) for all odd m > 1, our Theorem completes the proof.
l) + GB(Pm-l)) were

used by Nation [6] in Proving congruence SDA for semilattices,

Note that essentially these terms from U(m, GB(Pm
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