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SOME RESULTS ON SEMIMODULAR LATTICES

GÁBOR CZÉDLI AND E.TAMÁS SCHMIDT

Abstract. Some recent results on semimodular lattices are surveyed,
and some related results are given. The topics include a strong form
of the Jordan-Hölder theorem, the semimodularity of subdirect prod-
ucts, representations as cover-preserving join-homomorphic images of
distributive lattices, cover-preserving embeddings into geometric lat-
tices, and the congruence lattices of finite almost-geometric lattices.

1. Introduction

Semimodularity, because of its connection with combinatorics, is an im-
portant part of lattice theory. Our chief goal is to survey some recent results
on semimodular lattices; however, some related new results are also given. A
part of the results here are quite easy but, surprisingly, have been overlooked
previously. Some proofs will be outlined only or omitted while some others
will be simplified. For an extensive survey of the theory of semimodular
lattices the reader can resort to M. Stern [20].

A lattice L is called (upper) semimodular, if, for all a, b ∈ L, the covering
relation a∧b ≺ a implies b ≺ a∨b. Equivalently, if a � b implies a∨c � b∨c
for all a, b, c ∈ L. The length of a lattice L is denoted by length(L); it is
defined to be the supremum of {n ∈ N : there is an n+1-element chain in L}.
A lattice L is said to be of locally finite length if all of its intervals are of finite
length. The height h(x) of an element is length([0, x]). Semimodularity is
an interesting notion mainly for lattices of locally finite length, when the
lattice order is the transitive closure of the covering relation.

2. A strong form of the Jordan-Hölder theorem

A classical theorem going back to R. Dedekind, C. Jordan, O. Hölder
and H. Wielandt states that the factors of any composition series of a finite
group are invariant. Formulations of this result for modular or semimodular
lattices are well-known; they are called the Jordan-Hölder theorem.
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Recall some notions and notations. Two-element intervals are called
prime intervals. For intervals [a, b] and [c, d] of a lattice, [a, b] is up-perspective
to [c, d], in notation [a, b] ↗ [c, d], if b ∧ c = a and b ∨ c = d. Down-
perspectivity is the reverse relation: [a, b] ↘ [c, d] iff [c, d] ↗ [a, b]. Perspec-
tivity is the union of these two relations, and projectivity is the transitive
closure of perspectivity. The relational product of ↗ and ↘ is a recent
notion; let us say that [a, b] is up-and-down projective to [c, d] if there is an
interval [x, y] such that [a, b] ↗ [x, y] and [x, y] ↘ [c, d]. For each n ∈ N,
there are a semimodular lattice and prime intervals I0 and In such that I0

is projective to In in n (perspectivity) steps but not in n−1 steps; for n ≤ 7
see the snake lattice in Figure 1.

Theorem 1 (G. Grätzer and J. B.Nation [14]). Let 0 = c0 ≺ c1 ≺ · · · ≺
cn = 1 and 0 = d0 ≺ d1 ≺ · · · ≺ dm = 1 be maximal chains in a semimodular
lattice of finite length. Then n = m, and there is a permutation π of the set
{1, . . . , n} such that [ci−1, ci] is up-and-down projective to [dπ(i)−1, dπ(i)], for
all i ∈ {1, . . . , n}.

The subnormal subgroups (that is, normal subgroups of normal subgroups
of . . . of normal subgroups) of a finite group form a lower semimodular lat-
tice, see J.B. Nation [19], so the dual of this theorem easily yields the original
Jordan-Hölder theorem.

3. Subdirect products of semimodular lattices

While the operator of forming sublattices and that of forming homomor-
phic images do not preserve semimodularity, and therefore we need to modify
them in subsequent sections, we have

Theorem 2 (cf. [7]). Subdirect products of (arbitrary many) semimodular
lattices are semimodular.

Proof. Let Li, i ∈ I , be semimodular lattices, and let L ⊆ ∏

i∈I Li be a
subdirect product of these lattices. Assume that f, g ∈ L and h := f∧g ≺ f .
(Covering is always understood in L or Li, but never in the direct product.)

If we had h(i) 6� f(i) for some i ∈ I , then for each x with h(i) < x < f(i)
there would be a p ∈ L with p(i) = x, and h < (h ∨ p) ∧ f < f would
contradict h ≺ f . Hence h(i) � f(i) for all i ∈ I , and the semimodularity
of Li gives g(i) � f(i) ∨ g(i).

Next, suppose that b ∈ L and g ≤ b < f ∨ g. From the previous covering
relation we obtain that b(i) ∈ {g(i), f(i)∨ g(i)} for all i ∈ I . This together
with b < f ∨g yield a j ∈ I such that b(j) = g(j) < f(j)∨g(j) = f(j)∨b(j),
implying f(j) 6≤ b(j). Hence f 6= f ∧ b. But h ≤ f ∧ b ≤ f and h ≺ f , so
f ∧ b = h.

Armed with f ∧ b = h, assume that b(i) = f(i) ∨ g(i) for a given i ∈ I .
Then h(i) = f(i)∧b(i) = f(i)∧

(

f(i)∨g(i)
)

= f(i), which implies f(i) ≤ g(i)
and g(i) = f(i) ∨ g(i), so b(i) = g(i). Since b(i) ∈ {g(i), f(i)∨ g(i)} for all
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i ∈ I , we conclude that b(i) = g(i) for all i, that is, b = g. This shows
g ≺ f ∨ g and the semimodularity of L. �

4. Semimodular lattices of sectionally finite length as

homomorphic images

Let K and L be lattices. We say that ϕ : L → K is a cover-preserving join-
homomorphism, if ϕ(a∨b) = ϕ(a)∨ϕ(b) and x � y implies ϕ(x) � ϕ(y), for
all a, b, x, y ∈ L. Like semimodularity, this notion is interesting only when
our lattice has sufficiently many covering pairs. Hence we consider the class

Csm
sf` = {all semimodular lattices of sectionally finite length}.

(A lattice L is said to be of sectionally finite length, if length({x : x ≤ b})
is finite for all b ∈ L. Clearly, L is of locally finite length and 0 ∈ L in this
case.) For a class Y of lattices, let

H∨
≺ Y = {all cover-preserving join-homomorphic images of members of Y}.

The adequate morphism concept for the class Csm
sf` is revealed by

Lemma 3. H∨
≺ Csm

sf` ⊆ Csm
sf`.

This lemma is an easy generalization of Lemma 16 in G.Grätzer and
E.Knapp [13] from the class of finite semimodular lattices to Csm

sf`. The
following example shows that the class of all semimodular lattices is not
closed with respect to forming cover-preserving join-homomorphic images.

Example 4. Let L be the direct square of the chain (R+,≤) of non-negative
real numbers. It is a semimodular lattice since it is distributive. The equiv-
alence Θ whose non-singleton blocks are all the sublattices Sc = {(c, y) : y <
1}, c ∈ R

+, and the principal filter [(1, 1)) is a join-congruence. The natural
join-homomorphism L → L/Θ is cover-preserving since ≺L is the empty
relation. However, [(0, 0)]Θ ≺ [(0, 1)]Θ together with [(0, 0)]Θ∨ [(1, 0)]Θ =
[(1, 0)]Θ < [(2, 0)]Θ < [(1, 1)]Θ = [(0, 1)]Θ∨ [(1, 0)]Θ show that L/Θ is not
semimodular.

Proof of Lemma 3. Assume that L ∈ Csm
sf` and ϕ : L → K is a cover-preserving

join-homomorphism, x, y, z ∈ K and x ≺ y. Let A = {u ∈ L : ϕ(u) = x},
B = {u ∈ L : ϕ(u) = y} and C = {u ∈ L : ϕ(u) = z}, and choose a ∈ A,
b ∈ B and c ∈ C. Then ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) = x ∨ y = y shows that
a ∨ b ∈ B. Consider a maximal chain a = v0 ≺ v1 ≺ · · · ≺ vn = a ∨ b in
the interval [a, a∨ b], and let vi be the first member of this chain outside A.
Then x < ϕ(vi) ≤ ϕ(a∨ b) = y and x ≺ y yield that vi ∈ B. Finally, since ϕ
is cover-preserving, we conclude that x∨ z = ϕ(vi−1)∨ϕ(c) = ϕ(vi−1 ∨ c) �
ϕ(vi ∨ c) = ϕ(vi)∨ϕ(c) = y ∨ z. Hence K is semimodular, and it is trivially
of sectionally finite length. �

It was proved in G.Grätzer and E.Knapp [13] that finite planar semi-
modular lattices are cover-preserving join-homomorphic images of finite dis-
tributive lattices. Soon afterwards, the assumption planarity was dropped
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in [3]. Now, in the representation theorem below, we replace finiteness by
“belonging to Csm

sf`”. Let

D = {all distributive lattices}.

Theorem 5. Csm
sf` = H∨

≺(D ∩ Csm
sf`).

Proof. Lemma 3 yields that Csm
sf` ⊇ H∨

≺(D ∩ Csm
sf`). To show the converse

direction, let L ∈ Csm
sf`, and let H = {Ci : i ∈ I} be the set of all maximal

chains of L. Let D := {f ∈
∏

i∈I Ci : f(i) = 0 for all but finitely many i ∈
I}. Since the Ci are of sectionally finite length, so is D. Hence D ∈ D∩Csm

sf`.

Next, define a mapping ϕ : D → L, f → ∨

i∈I f(i). This makes sense,
since only finitely many f(i) are distinct from 0. Clearly, ϕ is a join-
homomorphism. It is surjective since L ⊆ ⋃

i∈I Ci.
Next, assume that f � g in D. Then there is an i ∈ I such that f(i) � g(i)

in Ci and f(j) = g(j) for all j distinct from i. Since Ci is a maximal chain,
f(i) � g(i) is valid also in L. By semimodularity, this relation is preserved
by the unary algebraic function x ∨ ∨

j 6=i f(j), so we obtain

ϕ(f) = f(i) ∨
∨

j 6=i

f(j) � g(i)∨
∨

j 6=i

f(j) = g(i)∨
∨

j 6=i

g(j) = ϕ(g).

This shows that ϕ is cover-preserving, whence L ∈ H∨
≺(D ∩ Csm

sf`). �

Instead of homomorphic images, semimodular lattices are better under-
stood as quotient lattices. A join-congruence Θ of L will be called a cover-
preserving join-congruence if the natural mapping L → L/Θ, x 7→ [x]Θ is a
cover-preserving join-homomorphism. By a Θ-forbidden covering square of
L we mean a quadruple (a, b, a∧ b, a∨ b) ∈ L4 such that a∧ b ≺ a, a∧ b ≺ b,
a ≺ a∨b, b ≺ a∨b, the Θ-classes [a]Θ, [b]Θ and [a∧b]Θ are pairwise distinct
but [a]Θ = [a ∨ b]Θ. For finite L, the next lemma is in [3].

Lemma 6. Let L ∈ Csm
sf`, and let Θ be a join-congruence of L. Then Θ is

cover-preserving iff L has no Θ-forbidden covering square.

Proof. If (a, b, a∧b, a∨b) is a Θ-forbidden covering square of L then a∧b ≺ a
together with [a∧b]Θ < [b]Θ < [a∨b]Θ = [a]Θ show that neither L → L/Θ,
nor Θ is cover-preserving.

Conversely, by way of contradiction, assume that L has no Θ-forbidden
covering square but a ≺ b and [a]Θ < [c]Θ < [b]Θ holds for some a, b, c ∈ L,
see Figure 1. We may assume that a ≤ c, for otherwise we could replace
c by a ∨ c. Take a maximal chain x0 = a ≺ x1 ≺ · · · ≺ xn = c in the
interval [a, c]. Let i ∈ {1, 2, . . . , n} be the smallest subscript such that
xi /∈ [a]Θ. Then an easy consideration based on semimodularity yields that
the black-filled elements in Figure 1 form a Θ-forbidden covering square, a
contradiction. �
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Figure 1

In the following three statements, we will consider finite lattices only. Re-
call that each finite distributive lattice is (up to isomorphism) uniquely de-
termined by (J(L),≤), the partially ordered set of its nonzero join-irreducible
elements.

Theorem 7 (cf. [3]). For each finite semimodular lattice L, there is a unique
finite distributive lattice D and a unique surjective cover-preserving join-
homomorphism ϕ : D → L such that J(L) = J(D) and ϕ acts identically on
J(D).

A lattice is called atomistic if each of its element is a join of atoms. By
a geometric lattice we mean a complete atomistic semimodular lattice in
which each atom is a compact element.

Corollary 8 (cf. [3]). Finite geometric lattices are characterized as cover-
preserving join-homomorphic images of finite boolean lattices.

Combining Theorem 5 and Lemmas 3 and 6 we can immediately see

Corollary 9 (cf. [3]). Each finite semimodular lattice is (order-isomorphic
to) D/Θ for a unique finite distributive lattice D and for some cover-preser-
ving join-congruence Θ described in Lemma 6 such that (J(D),≤) ∼= (J(L),≤
) and ΘdJ(L)∪{0} is the equality relation on J(D) ∪ {0}. Conversely, if Θ
is a cover-preserving join-congruence of a finite semimodular lattice L, then
the join-semilattice L/Θ is a semimodular lattice.

Restricting ourselves to lattice methods, it is not so easy to find enlight-
ening small examples of semimodular lattices. A well-known method given
right before Corollary IV.2.3 in G.Grätzer [10], now a consequence of Corol-
lary 9 and Lemma 6, is the following: if L is a semimodular lattice of length
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n and k < n, then ({x ∈ L : h(x) ≤ k or x = 1},≤) is a semimodular lattice
again. In order to extract a better knowledge of finite semimodular lattices
from Corollary 9, which enables us to provide examples easily, the following
three statements deal with join-congruences; finiteness will not be assumed.

Lemma 10 (Folklore). Let Θ be a congruence of a join-semilattice (L,∨).
Then the blocks of Θ are convex subsemilattices.

Lemma 11. Let αi, i ∈ I, be congruences of a join-semilattice (L,∨),
and let β denote their join in the congruence lattice of (L,∨). Then, for
each x, y in L, (x, y) ∈ β iff there is a k ∈ N0 and there are elements
x = u0 ≤ u1 ≤ · · · ≤ uk = vk ≥ vk−1 ≥ · · · ≥ v0 = y in L such that
{(uj−1, uj), (vj−1, vj)} ⊆ ⋃

i∈I αi for j = 1, . . . , k.

Proof. Let Φ denote the relation described in the lemma. Clearly, Φ is
reflexive, symmetric, and (x, y) ∈ Φ easily implies (x ∨ c, y ∨ c) ∈ Φ for any
c ∈ L. In order to prove the transitivity of Φ, assume (x, y) ∈ Φ as described
in the lemma, and (y, z) ∈ Φ is witnessed by y = w0 ≤ w1 ≤ · · · ≤ wk =
sk ≥ sk−1 ≥ · · · ≥ s0 = z (the same k, by reflexivity). Then it is easy to see
that

x = u0 ≤ u1 ≤ · · · ≤ uk = vk ∨ w0 ≤ vk ∨ w1 ≤ · · · ≤ vk ∨ wk

≥ wk ∨ vk−1 ≥ · · · ≥ wk ∨ v0 = wk = sk ≥ sk−1 ≥ · · ·s0 = z

witnesses (x, z) ∈ Φ. Thus, Φ is a congruence. Evidently, β ⊆ Φ. If
(x, y) ∈ Φ, then Lemma 10 gives (x, x ∨ y), (y, x ∨ y) ∈ β, so (x, y) ∈ β.
Hence Φ ⊆ β. �

For a ≤ b in (L,∨,∧), the (principal) join-congruence resp. lattice con-
gruence generated by {(a, b)}will be denoted by con∨(a, b) resp. con∨∧(a, b).
If b covers a, then con∨(a, b) will be called a prime join-congruence. Each
join-congruence of L ∈ Csm

sf` is the join of some prime join-congruences, so it
is worth describing prime join-congruences at least for distributive lattices.

Theorem 12. Let D be a distributive lattice, and let a ≺ b ∈ D. Then, for
any x, y ∈ L, (x, y) belongs to the prime join-congruence con∨(a, b) if and
only if

(1) either x = y,
(2) or a ≤ x ≺ y and y = b ∨ x,
(3) or a ≤ y ≺ x and x = b ∨ y.

In particular, every block of a prime join-congruence consists of at most two
elements. If part (2) resp. (3) holds then a = x ∧ b resp. a = y ∧ b.

Proof. Assume that x 6= y and (x, y) ∈ con∨(a, b). Let x′ := x ∧ y and
y′ := x ∨ y. Note that x′ < y′. Since con∨(a, b) ⊆ con∨∧(a, b), we obtain
that (x′, y′) ∈ con∨∧(a, b). The classical description of principal congruences
of distributive lattices in [16] (see also Thm. II.3.3 in Grätzer [10]) says that
a ∧ x′ = a ∧ y′ and b ∨ x′ = b ∨ y′. Since (a∨ x′) ∨ y′ = a ∨ y′ and

x′ ≤ (a ∨ x′) ∧ y′ = (a ∧ y′) ∨ (x′ ∧ y′) = (a ∧ x′) ∨ (x′ ∧ y′) ≤ x′,
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we have [x′, y′] ↗ [a∨ x′, a∨ y′]. Since b∧ (a∨ x′) =
(

b∧ (a∨ y′)
)

∧ (a∨ x′)
and, using modularity at the second equation sign,

a∨y′ ≥ (a∨x′)∨
(

b∧(a∨y′)
)

= (a∨x′∨b)∧(a∨y′) = (y′∨b)∧(a∨y′) = a∨y′,

we obtain that [a ∨ x′, a ∨ y′] ↘ [b ∧ (a ∨ x′), b ∧ (a ∨ y′)]. Hence [x′, y′] is
projective (and therefore isomorphic) to a subinterval of the prime interval
[a, b], and we conclude that x′ ≺ y′. This excludes x ‖ y, and we obtain that
x ≺ y or y ≺ x. Hence every block of con∨(a, b) has at most two elements.

Now let Φ denote the relation described by the disjunction of (1), (2) and
(3) of the lemma. Clearly, Φ ⊆ con∨(a, b). Further, (a, b) ∈ Φ, Φ is reflexive
and symmetric, and (x, y) ∈ Φ implies (x ∨ c, y ∨ c) ∈ Φ for any c ∈ D.

Finally, assume that {(x, y), (y, z)} ⊆ Φ. Since every block of con∨(a, b)
has at most two elements and Φ ⊆ con∨(a, b), we obtain |{x, y, z}| ≤ 2.
Hence (x, z) ∈ Φ, showing the transitivity of Φ. �

Example 13. The intersection of cover-preserving join-congruences need not
be cover-preserving, and we cannot speak of “generated cover-preserving
join-congruences”. Indeed, there is no smallest cover-preserving join-congruence
that extends α∩β where α and β are cover-preserving join-congruences that
correspond to the partitions {{a, 1}, {0, b}} and {{a, b, 1}, {0}} of the four-
element boolean lattice.

Method 14 (to obtain examples of small semimodular lattices). Start from a
known finite semimodular lattice L, usually from a distributive one. Based
on Lemma 11 and Theorem 12, find a join-congruence Θ. (If J(L) should not
change, then ΘdJ(L)∪{0} should be the equality relation, see Corollary 9.) If
there is a Θ-forbidden covering square (see Lemma 6), then choose a covering
pair u ≺ v with (u, v) /∈ Θ in this square and replace Θ by Θ ∨ con∨(u, v)
(see Theorem 12). Iterate this step until no Θ-forbidden covering square
remains. Finally, the join-semilattice L/Θ is a semimodular lattice.

In the rest of this section, we mention some applications of representing
semimodular lattices as join-homomorphic images. We say that a finite lat-
tice L with |L| ≥ 2 satisfies Frankl’s conjecture from 1979, see P. Frankl [9],
if the principal filter ↑f = {x ∈ L : f ≤ x} has at most |L|/2 elements, that
is, 2 · |↑f | − |L| ≤ 0, for at least one f ∈ J(L). We say that L satisfies the
averaged Frankl’s property, if

∑

f∈J(L)

(

2 · |↑f | − |L|
)

≤ 0, see [1]. (This is a

much stronger property, which fails in many finite lattices.) After dozens of
partial positive results supporting Frankl’s conjecture, see the bibliography
of [2], V.l Božin announced a counterexample at the 3rd Novi Sad Algebraic
Conference, August, 2009. (Notice however that his construction neither
has been checked, nor has been submitted at the time of this writing.) The
maximum size of a lattice L is 2m where m = |J(L)|.

Theorem 15 (cf. [1], [2] and [4]). Let L be a finite lattice with n = |L| and
m = |J(L)|.
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(1) If m ≥ 3 and n ≥ 2m −
√

2m, then L satisfies the averaged Frankl’s
property.

(2) If m ≥ 3, n > 2 · 2m/3, and Frankl’s conjecture holds for all lattices
K with |J(K)| ≤ m, then L satisfies the averaged Frankl’s property.

(3) If n > 5 · 2m/8 and L is semimodular, then L satisfies Frankl’s
conjecture.

(4) Every planar semimodular lattice satisfies Frankl’s conjecture.

Part (4) of this theorem is based on the particular case of Theorem 5 that
is present already in G.Grätzer and E.Knapp [13]. Parts (1) and (3) also
rely on join-homomorphisms.

5. A cover-preserving embedding of semimodular lattices into

geometric lattices

If K is a sublattice of a lattice L such that, for all a, b ∈ K, a ≺K b iff
a ≺L b, then K is called a cover-preserving sublattice of L and L is said
to be a cover-preserving extension of K. If length(L) is finite, then cover-
preserving sublattices are exactly those sublattices that have the same length
as L. While sublattices of a semimodular lattice L are not semimodular in
general, cover-preserving sublattices of L inherit semimodularity.

Theorem 16 (cf. [5]). Each semimodular lattice of finite length has a cover-
preserving embedding into an appropriate geometric lattice.

The particular case of finite semimodular lattices was settled by G.Grätzer
and E.W.Kiss [12], see M.Wild [21] for a different approach.

Proof of Theorem 16 (only the construction). Given a semimodular lattice
L of finite length, we define a cover-preserving extension G(L) which is
a geometric lattice. Denote the set of atoms by A(L), and let H(L) :=
J(L) \ A(L). In Figure 2, H(L) is the set of black-filled elements. For each

Figure 2. An example of L and P , and an ideal J

x ∈ H(L), we insert a new element x′ such that 0 ≺ x′ ≺ x. This way we
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obtain P = (P ;≤), see Figure 2, where the new elements are the pentagon-
shaped ones. Although P is an atomistic lattice, it is not semimodular in
general, see Figure 2. Hence we will consider P as a partial join-semilattice
P = (P ;∨P ). Briefly speaking, ∨P will be the largest extension of ∨L to
P such that P = (P ;∨P ) is a “semimodular partial join-semilattice”. The
exact definition of ∨P is the following.

• If x, y ∈ P are comparable or {x, y} ⊆ L, then x∨P y is defined and
it has the usual meaning.

• If x, y ∈ P \ L and x 6= y, then x∨P y is undefined.
• Suppose that x ∈ L, y ∈ P \ L, and x ‖ y. Then y = z′ for a unique

z ∈ H(L) and x∨P y is defined iff x∨L z covers x in L; if x∨P y is
defined, then it equals x∨L z, so it is the supremum of {x, y}.

• Suppose that x ∈ P \ L, y ∈ L, and x ‖ y. Then x∨P y is defined iff
y ∨P x is defined according to the previous case; if x∨P y is defined
then x∨P y = y ∨P x.

For example, in Figure 2, u∨P d′ = v, c∨P d′ = d, and g ∨P f ′ = 1, while
b∨P d′ and d′ ∨P e′ are undefined.

Non-empty order-ideals closed with respect to ∨P are called ideals of P .
Since the intersection of ideals is an ideal again, the ideals of P form a
complete lattice I(P ) = (I(P ),⊆). For I ∈ I(P ), the largest element of
I ∩ L, that is

∨

(I ∩ L), is called the trunk of I , while the set {x ∈ I : x 6≤
trunk(I)} is the branch of I . For example, the elements in the gray area
with dotted boundary in Figure 2 constitute an ideal J = {0, c, d′, e′, d, e, g′}
with trunk e and branch {g′}. For brevity, an ideal with trunk t and branch
{b1, . . . , bk} will be denoted by t;b1...bk; for example, J = e;g′. This makes
sense since the trunk and the branch together determine the ideal.

The rank r(I) of an ideal I is defined to be h(trunk(I))+ |branch(I)|. For
example, rank(J) = 3+1 = 4, see Figure 2. We say that I ∈ I(P ) is a rank-
jumper ideal, if for all J ∈ I(P ), I ⊂ J implies r(I) < r(J). For the lattice
L in Figure 3 (the circle-shaped elements of P ), all ideals but 0; b′c′d′ are
rank-jumper. It is shown in [5] that the rank-jumper ideals form a complete
meet-subsemilattice R(P ) of I(P ), and G(L) := R(P ) is a geometric lattice
with length(G(L)) = length(L). (In Figure 3, the square-shaped elements
show how L is embedded in G(L).) �

When applied to a finite lattice L, our construction preserves distributiv-
ity while G.Grätzer and E.W.Kiss [12] embed the three-element chain into
M3. However, even our G(L) is not the smallest cover-preserving geometric
lattice extension of L. Indeed, G(L) in Figure 3 consists of twelve elements
while L is a cover-preserving sublattice of the ten-element direct product of
M3 and the two-element chain.
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Figure 3. Rank-jumper ideals and G(L) = R(P )

6. Representing distributive lattices by almost-geometric

lattices

A classical theorem of R. P. Dilworth states that each finite distributive
lattice D is isomorphic to the congruence lattice of an appropriate finite
lattice L. The first proof appeared in [15]. This result was followed by a great
number of stronger results in which further properties of L are stipulated, see
[18] or G.Grätzer [11] for an extensive overview. We conclude this paper
with a result of this kind on semimodular lattices. The omitted proof is
based on the chopped lattice technique developed in [17], see also [18] or
G.Grätzer [11].

We say that a partially ordered set P = (P,≤) is a cardinal sum of at
most two-element chains, if for every a ∈ P , both {x ∈ P : x ≤ a} and
{x ∈ P : x ≥ a} are at most two-element. By an almost-geometric lattice
we mean a semimodular lattice L of finite length such that (J(L),≤) is a
cardinal sum of at most two-element chains. Geometric lattices of finite
length are almost-geometric and simple. Hence we cannot drop “almost”
from the following theorem.

Theorem 17 (cf. [6]). Each finite distributive lattice is isomorphic to the
congruence lattice of a finite almost-geometric lattice.
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Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary

E-mail address, E.T. Schmidt: schmidt@math.bme.hu

URL: http://www.math.bme.hu/~schmidt/


