Weakly independent subsets in lattices by

G. Czédli, A. P. Huhn, and E. T. Schmidt

It is well-known that in a finite distributive lattice the set of join-irreducible elements and any maximal chain have the same cardinality. In this note we give a generalization of this theorem, using the following notions.

<u>Definition</u>. A subset H of a lattice L is called weakly independent iff for all $h, h_1, h_2, \ldots, h_n \in \mathbb{H}$ which satisfy $h \le h_1 \vee h_2 \vee \ldots \vee h_n$ there exists an i $(1 \le i \le n)$ such that $h \le h_i$. A maximal weakly independent set is called a basis of L.

Every subchain of L is a weakly independent subset and any maximal chain is a basis. In this paper L denotes a finite distributive lattice and let $J_0(L)$ denote the set of all join-irreducible elements of L. By using Lemma 1 (cf. later) it is easy to show that $J_0(L)$ is a basis of L.

Theorem 1. Any two bases of a finite distributive lattice have the same number of elements.

To characterize the bases we need the following concept: a sublattice K of L is called a sublattice of maximal length iff K contains a maximal chain of L (i.e.,

every maximal chain of K is a maximal chain of L).

Theorem 2. A subset H of a finite distributive lattice L is a basis if and only if the sublattice K generated by H is a sublattice of maximal length and $H = J_{\mathbb{Q}}(K)$.

The proof of Theorem 1 starts with the following well-known

Lemma 1. Whenever $x \in J_0(L)$ and $x \le y_1 \vee \dots \vee y_n$ then $x \le y_i$ for some i $(1 \le i \le n)$.

From now on let U be a basis of L.

Lemma 2. For every $p \in J_0(L)$ there exists a $u \in U$ such that $p \le u$.

Proof. By Lemma 1 it is sufficient to show that $\bigvee U = 1$. If we had $\bigvee U \neq 1$ then $\bigcup \{1\}$ would be a weakly independent subset again, contradicting the maximality of $\bigcup \{1\}$.

Now let p be an element of $J_0(L)$. We define the element $\bar{p} = \bigwedge \{u: u \in U, p \le u\}$. By Lemma 2 $\bar{p} = \bar{p}$ exists and $\bar{p} \le p$.

Lemma 3. For every $p \in J_0(L)$ \bar{p} belongs to U.

Proof. All we have to prove is that $\mathbb{U}\sqrt{p}$ is weakly independent. Firstly, we consider the case $\bar{p} \leq u_1 \vee \dots \vee u_n$ where $u_1, \dots, u_n \in \mathbb{U}$. From Lemma 1 and $p \leq \bar{p} \leq u_1 \vee \dots \vee u_n$ we obtain $p \leq u_i$ for some i. Hence $\bar{p} \leq u_i$. The second case is $u \leq \bar{p} \vee u_1 \vee \dots \vee u_n$ where $u_1, u_1, \dots, u_n \in \mathbb{U}$. We can assume that $u \not = u_1 \vee \dots \vee u_n$. For

any $v \in U$ satisfying $p \le v$ we have $\overline{p} \le v$, whence $u \le v \lor u_1 \lor \dots \lor u_n$. Since U is weakly independent we conclude $u \le v$. Therefore $u \le \bigwedge (v : v \in U, p \le v) = \overline{p}$.

Lemma 4. The map $\varphi: J_0(L) \rightarrow U$, $p \mapsto \bar{p}$ is onto.

Proof. Let u be an arbitrary element of U. Then $u = p_1 \mathbf{V} \cdots \mathbf{V} p_n \quad \text{for suitable} \quad p_1, \cdots, p_n \in J_0(L). \text{ From } \\ p_i \leq \bar{p}_i \quad (i = 1, \ldots, n) \text{ we have } u \leq \bar{p}_1 \mathbf{V} \cdots \mathbf{V} \bar{p}_n. \text{ Since } \\ \text{U is weakly independent, } u \leq \bar{p}_i \quad \text{holds for some } i. \\ \text{Finally, } p_i \leq u \quad \text{yields} \quad \bar{p}_i \leq u, \text{ i.e. } u = \bar{p}_i. \quad \bullet$

The following lemma is not only to complete the proof of Theorem 1, it is interesting in itself.

Lemma 5. The map $\varphi: J_0(L) \longrightarrow U$, $p \mapsto \overline{p}$ is bijective.

Proof. Let us assume that although $q, r \in J_0(L)$ and $q \not\equiv r$, we have $\bar{q} = \bar{r}$. Put x = VH where $H = \{y: y \in J_0(L), \ \bar{y} \le \bar{q}, \text{ and } q \not \models y\}. \text{ Then } x \le \bigvee (\bar{y}: y \in H) \le \bar{q}\}$ $\leq \overline{q}$. By Lemma 1 $q \nleq x$. We claim that $x \notin U$. Indeed, $x \in H$ implies $r \le x$, whence if $x \in U$ then $q \le \overline{q} = \overline{r} \le x$ contradicts q ≰x. Now we prove that: U∪{x} wis weakly independent. We have to discuss two cases. Firstly, $x \le u_1 \vee ... \vee u_n$ where $u_1, ..., u_n \in U$. From Lemma P and $r \le x$ we have $r \le u_i$ for some i $(1 \le i \le n)$, whence $\overline{r} \le u_i$. We have already seen that $x \le \overline{q} = \overline{r}$, so $x \le u_i$. Secondly, $u \leq x \vee u_1 \vee \dots \vee u_n$ (u, $u_1 \in U$). We can assume that $u \not= u_1 \lor \dots \lor u_n$. Then $x \not= \overline{q}$ simplies $u_1 > 0$ and $u_n > 0$ $u \leq \overline{q} \vee u_1 \vee \dots \vee u_{\overline{n}}$. Since U is weakly independent, $u \leq \overline{q}$. We have $u = p_1 \vee \dots \vee p_k$ for suitable $p_1, \dots, p_k \in \mathcal{D}_{\mathcal{C}}^{\hat{c}}(L)$. If $q \not\equiv u$ then, for all $i_1, q \not\equiv p_{i_1}$ and $\tilde{p}_i \not\equiv u \not\equiv \tilde{q}_{i_1}$ the control of the production of the control of the

whence $p_i \in H$ and $u = p_1 \vee \dots \vee p_k \leq \bigvee H = x$. Finally, if $q \leq u$, i.e. $\bar{q} \leq u$, then Lemma 1 yields that either $q \leq x$ or $\bar{q} \leq u_i$ for some i. But we have shown that $q \not = x$. Therefore $u \leq u_i$ follows from $\bar{q} \leq u_i$ and $u \leq \bar{q}$. This proves Theorem 1.

Proof of Theorem 2. Let H be a basis of L and let $H^{\wedge} = \{h_1 \wedge ... \wedge h_n : 1 \le n < \omega \text{ and } h_1, ..., h_n \in H\}$. Further, let K be the sublattice generated by H. Then every element of K has a representation as a join of elements of H^. Now we prove that $H \subseteq J_0(K)$. Let $z = x \vee y$ where $z \in H$, $x,y \in K$. Then $x = a_1 \vee ... \vee a_k$, $y = a_{k+1} \vee ... \vee a_m$ with $a_1, \dots, e_m \in H^{\wedge}$. Therefore $a_i = \bigwedge_i h_{ij}$ for suitable $h_{ij} \in H$. By distributivity, z is the meet of all possible $\mathbf{h_{lj_l}}\mathbf{v}\ldots\mathbf{vh_{mj_m}}. \text{ If there existed an } \boldsymbol{l_m} \text{ for each n}$ (1 \leq n \leq m) such that $z \neq h_{nl_n}$ then the weak independence of H would yield $z \not\triangleq h_1 \ell_1 \vee \dots \vee h_m \ell_m$, a contradiction. Therefore there is a fixed n such that $z \leq h_{nj}$ holds for all j. Consequently $z \le a_n$, which yields x = z(if $1 \le n \le k$) or y = z (if $k < n \le m$). This proves $z \in J_{\Omega}(K)$, i.e. $H \subseteq J_{\Omega}(K)$. Since $J_{\Omega}(K)$ is weakly independent in K and therefore in L, we conclude $H = J_{\circ}(K)$.

Now suppose the length of K is smaller than that of L. Choose a minimal b in K having the property; there exists an a \in K which is covered by b in K but not in L. From the fact that transposed intervals are isomorphic we conclude that b is a join-irreducible element in K, i.e., b \in J_Q(K) = H. Let c be a cover of a in L such that a \ll c \ll b. Then c \notin H and to get a required contradiction

I compared to a supplemental expension of expension of the expension of th

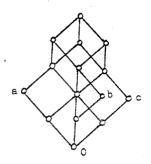
it is sufficient to show that $\text{Hu}\{c\}$ is a weakly independent subset of L. Firstly, consider the case $c \leq h_1 \vee \ldots \vee h_n$ where $h_1, \ldots, h_n \in H$. Then $a < c \leq b \wedge (h_1 \vee \ldots \vee h_n) \leq b$. Since $b \wedge (h_1 \vee \ldots \vee h_n) \in K$, we have $b \wedge (h_1 \vee \ldots \vee h_n) = b$, i.e. $b \leq h_1 \vee \ldots \vee h_n$. From $b \in J_0(K)$ and Lemma 1 we conclude $c < b \leq h_1$ for some i. Secondly, let $h \leq c \vee h_1 \vee \ldots \vee h_n$ and $h \not = h_1 \vee \ldots \vee h_n$ where $h, h_1, \ldots, h_n \in H$. Then $h \leq b \vee h_1 \vee \ldots \vee h_n$ and the weak independence of $J_0(K) = H$ (or Lemma 1) yields $h \leq b$. In order to show $h \neq b$ suppose h = b. Then $b = h \not = h_1 \vee \ldots \vee h_n$ implies $b \wedge (h_1 \vee \ldots \vee h_n) \leq b \wedge (h_1 \vee \ldots \vee h_n) \leq b \wedge (h_1 \vee \ldots \vee h_n) \leq a \wedge (h_1 \vee \ldots \vee h_n) \leq b \wedge (h_1 \vee \ldots \vee h_n) \leq a \wedge (h_1 \vee \ldots \vee h_n) \geq b \wedge (h_1 \vee \ldots \vee h_n) = (c \vee b) \wedge (c \vee \vee h_1 \vee \ldots \vee h_n) \geq b \wedge h = b \wedge b = b$, a contradiction. Thus $h \leq b$, yielding $h \leq a < c$.

Now, to prove the converse, suppose K is a sublattice of maximal length and $H = J_0(K)$. Since H is a basis in K, it is weakly independent in L. To prove that H is a basis in L suppose $H \cup \{a\}$ is weakly independent for some $a \in L \setminus K$. Put $b = \bigwedge (y; y \in K, a \le y) \in K$ and choose a lower cover of b in K. Then b covers c in L, too, whence $b = a \vee c$. Further, $c = h_1 \vee \dots \vee h_n$ for suitable $h_1, \dots, h_n \in H = J_0(K)$. Since $b \le a \vee h_1 \vee \dots \vee h_n$ and $H \cup \{a\}$ is weakly independent, $b \notin H$. Let $\{g_1, \dots, g_k\}$ be a minimal subset of $H = J_0(K)$ for which $b = g_1 \vee \dots \vee g_k$. Then $k \ge 2$ and $a \le g_1 \vee \dots \vee g_k$ contradicts the weak independence of $H \cup \{a\}$. The proof of Theorem 2 is complete.

Remarks. So far we have not used the well-known fact that $J_{\hat{Q}}(L)$ has the same cardinality as any maximal subchain of L. Hence this can be a corollary to Theorem 1.

On the other hand, Theorem 2 together with this corollary yield another proof of Theorem 1, but this proof avoids

Lemma 5. Finally we give a modular lattice M in which both Theorems fail:



Indeed, $H = \{C,a,b,c\}$ is a basis of four elements and every maximal chain is a basis with six elements. Further, $H \neq J_{O}([H]) = J_{O}(M)$.