Viktor Vígh's homepage

e-mail: vigvik { at } math.u-szeged.hu

Professional CV (not really up to date...)

List of publications (via independent citations)

Google Scholar profile


The files available here are NOT the final versions of the papers.


(1) K. J. Böröczky, F. Fodor, V. Vígh: Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges, Beitrage Algebra Geom., 49 (2008), no. 1, 177-193. (OPEN ACCESS pdf)

(2) V. Vígh: Typical faces of best approximating polytopes with a restricted number of edges, Acta Sci. Math. (Szeged), 75 (2009), no. 1-2, 313-327. (pdf)

(3) K. J. Böröczky, F. Fodor, M. Reitzner, V. Vígh: Mean width of random polytopes in a reasonable smooth convex body, J. Multivariate Anal., 100 (2009), 2287-2295. DOI (pdf)

(4) I. Bárány, F. Fodor, and V. Vígh: Intrinsic volumes of inscribed random polytopes in smooth convex bodies, Adv. Appl. Probab., 42 Number 3 (2010), 605-619. DOI (pdf)

(5) F. Fodor and V. Vígh: Disc-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged) 78 (2012), 331-350. (OPEN ACCESS pdf)

(6) R. Trelford and V. Vígh: How to sew in practice?, manuscript (arXiv)

(7) G. Ambrus, P. Kevei, and V. Vígh: The diminishing segment process, Stat. Prob. Letters., 82 (2012), 191-195. DOI (pdf)

(8) F. Fodor, P. Kevei, and V. Vígh: On random disc-polygons in smooth convex discs, Advances in Applied Probability 46 (4) (2014), 899-918. DOI (pdf)

(9) P. Kevei and V. Vígh: On the diminishing process of Bálint Tóth, Transactions of the AMS 368 (12) (2016) 8823-8848. DOI (pdf)

(10) G. Fejes Tóth, F. Fodor and V. Vígh: The packing density of the n-dimensional cross-polytope, Discrete and Computational Geometry 54 (1) (2015), 182-194. DOI (pdf)

(11) F. Fodor, Á. Kurusa and V. Vígh: Inequalities for hyperconvex sets, Advances in Geometry 16 (3) (2016), 337-348. DOI (pdf)

(12) F. Fodor, V. Vígh and T. Zarnócz: On the angle sum of lines, Archiv der Mathematik, 106(1) (2016), 91-100 DOI (pdf)

(13) F. Fodor, V. Vígh and T. Zarnócz: Covering the sphere by equal zones, Acta Mathematica Hungarica 149 (2) (2016) 478-489. DOI (pdf)

(14) A. Bezdek, F. Fodor, V. Vígh and T. Zarnócz: On the multiplicity of arrangements of equal zones on the sphere, submitted for publication (2017), (arXiv)


My PhD thesis (in Hungarian) is available here. (English summary)