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Abstract. In this paper, we consider the asymptotic behaviour of the dis-

tance between a convex disc K with sufficiently smooth boundary, and its
approximating n-gons, as the number of vertices tends to infinity. We consider

two constructions: the best approximating inscribed n-gon of K is the one

with maximal area; and a random inscribed n-gon of K is the convex hull
of n i.i.d. random points chosen from the boundary of K. The asymptotic

behaviour of the area deviation of K and the n-gon depend in both cases on

the same, geometric limit. The best and random approximating n-gons can
be similarly defined in the circumscribed case.

We generalize the existing results on linear and spindle convexity to the

so-called L-convexity. In the case of inscribed L-polygons, we prove similar
asymptotic formulae by generalizing the geometric limits. Then we introduce

an L-convex duality, consider its properties, and use them to prove the formu-
lae for the circumscribed cases.

1. Introduction

In his famous book [5], László Fejes Tóth in connection with the affine arc-length
provided some asymptotic formulae for best approximating polygons. In 1975, Mc-
Clure and Vitale [12] gave a rigorous proof of these results, and developed a general
analytical framework for investigating the asymptotic behaviour of best approxi-
mations of convex sets with a C2

+ boundary. These formulae dealt with the best
approximating inscribed and circumscribed polygons of a convex disc with at most
n vertices with respect to perimeter deviation, area of the symmetric difference,
and the Hausdorff metric. For instance, let K be a convex disc (that is convex,
compact with non-empty interior) with a smooth enough boundary, and denote by
KA

n the n-gon contained in K that has maximal area. In other words the area
deviation δA(K,K

A
n ) = A(K) − A(KA

n ) is minimal. (Note that KA
n is not unique

in general.) Among others they proved that limn2 · δA(K,KA
n ) = λ3(K)/12, where

λ(K) denotes the affine perimeter of K. In 1999 Ludwig [13] proved the formulae
regarding area deviation for general convex discs as well. These results have far
reaching generalizations, and the notion of best approximating polytopes has been
widely studied in the last 50 years, for a survey see for example [3].

Another notion of approximations arises by studying random polygons: take n
independent, identically distributed random points from the boundary of the con-
vex disc K. Consider their convex hull to obtain an inscribed polygon, and the
intersection of the supporting half-planes at those points to obtain a circumscribed
polygon. Schneider in [20] proved asymptotic formulae for the perimeter and area
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deviation of K and its approximating polygon, as well as for their Hausdorff dis-
tance. Later Reitzner generalized these results into higher dimensions [16]. The
topic of random polytopes plays a central role in stochastic geometry, and has a
really extensive literature, for a detailed historical review we refer to the recent
survey by Schneider in [19] and also [6].

Both the above mentioned planar best and random approximating results depend
on the same geometric limits. This relies on partitioning K and its approximating
polygon at the vertices in the inscribed case, and at the points of tangency in the
circumscribed case. The proofs of the generalisations take on a similar form. We
refer to [10] for a comparison of best and random approximations.

The results of McClure and Vitale were also generalised by Fodor and Vı́gh in
[9] from linear convexity to the so-called spindle convexity (see [2]). In this paper,
our aim is to further extend these results, as well as the results by Schneider, to
L-convexity, a notion introduced by Polovinkin [15], and independently by Lángi,
Naszódi and Talata in [11]; see also [14] and [1].

Let L be a convex disc. To avoid some technical details, in what follows we also
assume that K is a convex disc, however we note here that some definitions can be
formulated in a slightly more general way. We say that K is L-convex, if it is equal
to the intersection of all translates of L containing K (see [11, Definition 1.1]).
For any set X ⊆ R2 contained in some translate of L, the L-convex hull of X,
denoted by [X]L, is the intersection of all translates of L containing X. We say
that K is L-spindle convex ([11, Definition 1.2]), if it is contained in a translate of
L, and contains the L-convex hull of any pair of its points, i.e. for every x, y ∈ K,
[x, y]L ⊆ K holds as well. Clearly, if K is L-convex, then it is also L-spindle convex.
In the planar case, the converse is also true, thus the two notions are equivalent.
We note that in higher (d ≥ 3) dimensions, the reverse implication fails.

2. Notation and results

We say that P is an L-polygon if it is the intersection of a finite number of L-
translates, or equivalently, the L-convex hull of a finite number of points. The no-
tion of vertex and edge are self-explanatory. Hence the construction of an inscribed
L-polygon of K is evident. For the construction of a circumscribed L-polygon, we
introduce the L-convex equivalent a supporting half-plane. By [11, Theorem 4], for
any L-convex discK and x ∈ ∂K, there exists a translate L+p such thatK ⊆ L+p,
x ∈ ∂(L+ p) and K and L+ p share a support line at x. If the boundary of both
K and L is differentiable, then the L-translate is unique at every boundary point
of K. Then we say that L+ p is the supporting L of K at x, or L+ p supports K
at x.

We now turn to defining the more general concepts of differential and convex
geometry used in the paper. Let K be a convex disc with C2 boundary, that is,
∂K is twice continuously differentiable. For any u ∈ S1, xK(u) denotes the unique
boundary point of K with outer unit normal u, and κK(u) and rK(u) denote the
curvature and radius of curvature at xK(u), respectively. We say that ∂K is of
class C2

+, if it’s C
2 and κK(u) > 0 for every u ∈ S1.

We define the support function of K as hK(u) = supx∈K⟨x, u⟩ for every u ∈ S1.
For the basic properties of the support function, we refer to [18, Section 1.7.1].
We note that hK is twice differentiable, and hK(u) + h′′K(u) = rK(u), see [17,
Equation (1.5)].
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For the sake of compactness, we use the notation u(θ) = (cos θ, sin θ) for the
unit vector with angle θ. With a slight abuse of the notation we also write xK(θ) =
xK(u(θ)), κK(θ) = κK(u(θ)), rK(θ) = rK(u(θ)) and hK(θ) = hK(u(θ)). Clearly,
κK , rK and hK are 2π periodic in θ.

The Hausdorff distance of the convex sets K1 and K2 is defined as

δH(K1,K2) = max

{
sup
x∈K1

inf
y∈K2

|x− y|, sup
y∈K2

inf
x∈K1

|x− y|
}
,

or equivalently,

δH(K1,K2) = inf{λ ≥ 0 | K1 ⊆ K2 + λB2, K2 ⊆ K1 + λB2},

where

K + λB2 = {x+ λb | x ∈ K, b ∈ B2}.
Then δH(·, ·) is a metric on the set of convex discs, called the Hausdorff metric.

For its further properties, see [18, Section 1.8]. It is worth mentioning that the
Hausdorff distance of two sets can be expressed via their support functions:

δH(K1,K2) = max
θ∈[0,2π]

|hK1
(θ)− hK2

(θ)| (1)

Furthermore we introduce the area deviation (also known as symmetric volume
difference) and perimeter deviation of K1 and K2 as follows:

δA(K1,K2) = A(K1 ∪K2)−A(K1 ∩K2) and

δP (K1,K2) = Per(K1 ∪K2)− Per(K1 ∩K2).

We note that δA is a metric on the space of convex discs, while δP is not, as the
latter does not satisfy the triangle inequality.

Throughout the paper, both K and L denote convex discs with C2
+ boundaries.

Let KP
n , KA

n and KH
n (KP

(n), K
A
(n) and KH

(n)) denote the best approximating

inscribed (circumscribed) L-polygon of K with at most n vertices, with respect to
perimeter deviation, area deviation, and the Hausdorff metric, respectively. More
precisely, let us denote by Pi

n (Pc
n) the set of L-polygons contained in K (that

contain K) that have at most n vertices. Now, there exist (not necessarily unique
in general) L-polygons KP

n , KA
n , KH

n , KP
(n), K

A
(n) and K

H
(n) such that

δP (K,K
P
n ) = inf

P∈P i
n

δP (K,P ), δP (K,K
P
(n)) = inf

P∈P c
n

δP (K,P ),

δA(K,K
A
n ) = inf

P∈P i
n

δA(K,P ), δA(K,K
A
(n)) = inf

P∈P c
n

δA(K,P ),

δH(K,KH
n ) = inf

P∈P i
n

δH(K,P ), δH(K,KH
(n)) = inf

P∈P c
n

δH(K,P ).

Our main results are described in the following four theorems.

Theorem 1. With the notation introduced above, the following hold.

lim
n→∞

n2 · δP
(
K,KP

n

)
=

1

24

(∫ 2π

0

[
rK(θ)

r2L(θ)
·
(
r2L(θ)− r2K(θ)

)]1/3
dθ

)3

lim
n→∞

n2 · δA
(
K,KA

n

)
=

1

12

(∫ 2π

0

[
r2K(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)]1/3
dθ

)3
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lim
n→∞

n2 · δH
(
K,KH

n

)
=

1

8

(∫ 2π

0

[
rK(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)]1/2
dθ

)2

.

Theorem 2. Let L be centrally symmetric. The following hold.

lim
n→∞

n2 · δP
(
K,KP

(n)

)
=

1

24

(∫ 2π

0

[
r3K(θ)− 3r2K(θ)rL(θ) + 2rK(θ)r2L(θ)

r2L(θ)

]1/3
dθ

)3

lim
n→∞

n2 · δA
(
K,KA

(n)

)
=

1

24

(∫ 2π

0

[
r2K(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)]1/3
dθ

)3

lim
n→∞

n2 · δH
(
K,KH

(n)

)
=

1

8

(∫ 2π

0

[
rK(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)]1/2
dθ

)2

.

Let µ be a positive continuous density function on the boundary of K, and let
Xn = [x1, . . . , xn] be a random, independent sample of points from the boundary,
distributed according to µ. We denote the convex hull [Xn]L of the sample by Rn,
which is an inscribed L-polygon ofK. Furthermore, R(n) denotes the circumscribed
polygon of K obtained from Xn by taking the intersection of the support L of K
at every point xi (i = 1, . . . , n). Lastly, we define the function m by m(θ) =
µ(xK(θ))/κK(θ).

Theorem 3. With the notation above, the following limits hold with probability 1.

lim
n→∞

n2 · δP (K,Rn) =
1

4

∫ 2π

0

rK(θ)

r2L(θ)
·
(
r2L(θ)− r2K(θ)

)
·m−2(θ)dθ

lim
n→∞

n2 · δA (K,Rn) =
1

2

∫ 2π

0

r2K(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)
·m−2(θ)dθ

lim
n→∞

( n

lnn

)2
· δH (K,Rn) =

1

8
max

θ∈[0,2π]

[
rK(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)]
·m−2(θ).

Theorem 4. Let L be centrally symmetric. Then with probability 1,

lim
n→∞

n2 · δP
(
K,R(n)

)
=

1

4

∫ 2π

0

r3K(θ)− 3r2K(θ)rL(θ) + 2rK(θ)r2L(θ)

r2L(θ)
·m−2(θ)dθ

lim
n→∞

n2 · δA
(
K,R(n)

)
=

1

4

∫ 2π

0

r2K(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)
·m−2(θ)dθ

lim
n→∞

( n

lnn

)2
· δH

(
K,R(n)

)
=

1

8
max

θ∈[0,2π]

[
rK(θ)

rL(θ)
·
(
rL(θ)− rK(θ)

)]
·m−2(θ).

Note that Hölder’s inequality implies that(∫ 2π

0

f(θ)m−2(θ)dθ

) 1
3

·
(∫ 2π

0

m(θ)dθ

) 2
3

≥
∫ 2π

0

(
f(θ)m−2(θ)

) 1
3 ·m 2

3 (θ)dθ,

hence

1

4

∫ 2π

0

rK(θ)

r2L(θ)
·
(
r2L(θ)−r2K(θ)

)
·m−2(θ)dθ ≥ 1

4

(∫ 2π

0

[
rK(θ)

r2L(θ)
·
(
r2L(θ)− r2K(θ)

)] 1
3

dθ

)3

,

where the equality stands exactly when m is proportional to the expression
rK(θ)/r2L(θ) ·

(
r2L(θ) − r2K(θ)

)
. This means that by choosing m as above, we see
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that the approximation obtained from the random construction differs from the
best approximation only by a factor of 6. This is similarly true for the perimeter
and area deviation in both the inscribed and circumscribed cases.

In the following sections, we define and determine the geometric limits necessary
for the proof of the main theorems. In the inscribed case, we compute the limits
directly, then define a notion of duality, which helps us express the geometric limits
of the circumscribed case with the inscribed ones. We note that this means we avoid
the need to directly calculate these limits, which seems not feasible. Afterwards, we
use the tools introduced in [12] and [20] to prove the four theorems above. Lastly,
we show that these results yield the original results dealing with linear convexity.

3. Inscribed cases

Let θ0 ∈ [0, 2π], and for sufficiently small ∆θ, let L + p be the translate of L
containing xK(θ0) and xK(θ0+∆θ) in its boundary so that the shorter arc of L+p
between the points is in K (see Figure 1). Let ∆l(θ0, θ0+∆θ) denote the difference
of the arc length of ∂K and ∂(L + p) between xK(θ0) and xK(θ0 + ∆θ), and
∆A(θ0, θ0 +∆θ) the area enclosed by the abovementioned curves, and ∆H(θ0, θ0 +
∆θ) their Hausdorff distance.

Lemma 1. With the notation introduced above, the following limits hold:

lim
∆θ→0

∆l(θ0, θ0 +∆θ)

(∆θ)3
=

1

24
· rK(θ0)

r2L(θ0)
·
(
r2L(θ0)− r2K(θ0)

)
lim

∆θ→0

∆A(θ0, θ0 +∆θ)

(∆θ)3
=

1

12
· r

2
K(θ0)

rL(θ0)
·
(
rL(θ0)− rK(θ0)

)
.

Proof. Let θ = θ0 +∆θ, x0 = xK(θ0) and x = xK(θ). Let lK(x0, x) and lL(x0, x)
denote the shorter arc lengths of ∂K and ∂(L+ p) between x0 and x, respectively,
and let d = d(x0, x) be the length of the line segment x0x. Furthermore, let
AK(x0, x) and AL(x0, x) denote the area of the smaller cap cut off of K and L+ p,
respectively, by the line x0x. Finally, let η and η′ be the angles of the unit normal
vectors to ∂(L+ p) at x0 and x, respectively.

Figure 1.

Fix an arbitrary ε > 0. There exists some δ > 0 that satisfies the following
conditions:

(i) κL(θ0)(1 + ε)−1 ≤ κL(η) ≤ κL(θ0)(1 + ε) whenever |θ0 − η| < δ,
(ii) (1+ε)−1lL(x0, x) ≤ lK(x0, x) ≤ lL(x0, x)(1+ε) whenever lK(x0, x) < δ, and
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(iii)

a)
κ2L(η)

24
· (1 + ε)−1 ≤ lL(x0, x)− d

l3L(x0, x)
≤ κ2L(η)

24
· (1 + ε)

b)
κL(η)

12
· (1 + ε)−1 ≤ AL(x0, x)

l3L(x0, x)
≤ κL(η)

12
· (1 + ε)

whenever lL(x0, x) < δ.
The existence of a δ satisfying (i) follows from the continuity of the curvature,

(ii) from the limit lK(x0, x)/lL(x0, x) → 1 as lK(x0, x) → 0 (see [9]). Finally, (iii)
arises from the limits established in Lemmas 1 and 2 of [9] (see also [12]), which
are uniform in η due to the compactness of the domain.

Note that the unit normal vectors u(η) and u(η′) fall on the shorter arc between
u(θ0) and u(θ) (see Figure 1), and clearly lL(x0, x) ≤ lK(x0, x). Thus choosing
the point x ∈ ∂K for which lK(x0, x) < δ and |θ0 − θ| < δ hold yields that all
three requisites in (i)-(iii) are met. Now, applying (ii) to the expression (lL(x0, x)−
d)/l3K(x0, x) yields

(1 + ε)−3 · lL(x0, x)− d

l3L(x0, x)
≤ lL(x0, x)− d

l3K(x0, x)
≤ lL(x0, x)− d

l3L(x0, x)
· (1 + ε)3.

Using (iii)(a), we have

(1 + ε)−4 · κ
2
L(η)

24
≤ lL(x0, x)− d

l3K(x0, x)
≤ κ2L(η)

24
· (1 + ε)4.

and lastly, by (i),

(1 + ε)−6 · κ
2
L(θ0)

24
≤ lL(x0, x)− d

l3K(x0, x)
≤ κ2L(θ0)

24
· (1 + ε)6.

Now, it is clear that lK(x0, x)/∆θ → rK(θ0) as ∆θ → 0, hence the above in-
equalities yield that

lim
∆θ→0

lL(x0, x)− d

(∆θ)3
=
κ2L(θ0)

24
· r3K(θ0) =

1

24
· r

3
K(θ0)

r2L(θ0)
,

and from the abovementioned lemma from [9] we have

lim
∆→0

lK(x0, x)− d

(∆θ)3
=
κ2K(θ0)

24
· r3K(θ0) =

rK(θ0)

24
.

This yields the first part of the lemma after rewriting the expression as
∆l(θ0, θ0 +∆θ) = (lK(x0, x)− d)− (lL(x0, x)− d).

The second part of the lemma follows similarly: using (ii), (iii)(b) and (i) in
succession,

(1 + ε)−5 · κL(θ0)
12

≤ AL(x0, x)

l3K(x0, x)
≤ κL(θ0)

12
· (1 + ε)5,

and we obtain the limit by ∆A(θ0, θ0 +∆θ) = AK(x0, x)−AL(x0, x).
□

Lemma 2. With the notation introduced at the beginning of the chapter, the fol-
lowing limit holds:

lim
∆θ→0

∆H(θ0, θ0 +∆θ)

(∆θ)2
=

1

8
· rK(θ0)

rL(θ0)
·
(
rL(θ0)− rK(θ0)

)
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Proof. Without loss of generality, we may assume that θ0 = 3π/2 and x(θ0) is the
origin, thus the x-axis of the coordinate system is tangent to K at the origin, and
K lies in the upper half plane. Let CK be the osculating circle of ∂K at the origin.
Let x be an arbitrary point of ∂K in the first quadrant, and x̂ the point of CK with
the same abscissa as x, see Figure 2. Consider the circle CL with radius rL(θ0)

containing x0 and x, and ĈL a copy of CL rotated around x0 containing x̂. We
denote the shorter arc of CK between x0 and x̂ by cK , the shorter arc of CL between

x0 and x̂ by cL, and the shorter arc of ĈL between x0 and x by ĉL, as shown in the
figure below. Lastly, we denote the arc of ∂K between x0 and x by sK , and the arc
of ∂(L+ p) by sL. By the triangle inequality of the Hausdorff metric, we have that

δH(cK , ĉL) ≤ δH(cK , sK) + δH(sK , sL) + δH(sL, cL) + δH(cL, ĉL),

which, along with a similar argument on δH(sK , sL), yields

− δH(sK , cK) + δH(cK , ĉL)− δH(ĉL, cL)− δH(cL, sL) ≤
≤ δH(sK , sL) ≤

≤ δH(sK , cK) + δH(cK , ĉL) + δH(ĉL, cL) + δH(cL, sL). (2)

Figure 2.

The limit below follows directly from the relating result in [9]:

lim
x→x0

δH(K[x0, x], c)

l2K(x0, x)
=

1

8
·
∣∣∣∣ 1R − κK(ν0)

∣∣∣∣ , (3)

where K[x0, x] is the shorter arc between x and x0 = xK(ν0), and c is the shorter
circular arc of radius R connecting the same two points. This immediately yields
that

lim
∆θ→0

δH(ĉL, cK)

(∆θ)2
=

1

8

(
κK(θ0)−

1

rL(θ0)

)
· r2K(θ0) =

1

8
· rK(θ0)

rL(θ0)

(
rL(θ0)− rK(θ0)

)
.
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Now, we will show that the remaining three Hausdorff distances used in the
estimates in (2) tend to 0 when divided by x2 as x → 0, and equivalently when
divided by (∆θ)2, as ∆θ → 0. The latter equivalence comes from the observation
that limx→0 x/l(cK) = 1 (see [9]), hence limx→0 ∆θ/x = κK(θ0) ̸= 0.

First, let x be sufficiently close to the origin so that sK and cK can be represented
as graphs of twice differentiable functions f1 and f2. By the positioning of K and
thus its osculating circle, we have that f1(0) = f2(0) = f ′1(0) = f ′2(0) = 0, thus by
Lemma 3 (iii) of [9], we have that

lim
x→0+

δH(f1[0, x], f2[0, x])

x2
=
f ′′1 (0)− f ′′2 (0)

2
,

where fi[0, x] denotes the graph of the function fi on the interval [0, x] (i = 1, 2).
As f ′′1 (0) = f ′′2 (0) = κK(θ0), the limit above is 0. Furthermore, note that Taylor’s
theorem yields that f1(x)− f2(x) = o(x2).

Second, let cL and ĉL be represented as the graphs of the functions g1 and g2.
It is clear from the definition of the Hausdorff distance that δH(g1[0, x], g2[0, x]) ≤
maxt∈[0,x] |g1(t)−g2(t)|, and it’s easy to see from the contruction that the maximum
is obtained at t = x. This yields that

max
t∈[0,x]

|g1(t)− g2(t)| = g1(x)− g2(x) = f1(x)− f2(x) = o(x2),

and hence

0 ≤ lim
x→0

δH(g1[0, x], g2[0, x])

x2
≤ lim

x→0

maxt∈[0,x] |g1(t)− g2(t)|
x2

= lim
x→0

o(x2)

x2
= 0.

Lastly, we examine the limit δ(cL, sL)/l
2
L(x0, x) as lL(x0, x) → 0. Fix an arbi-

trary ε > 0. There exists some δ > 0 that satisfies the following conditions:
(i) |κL(θ0)− κL(η)| < ε whenever |θ0 − η| < δ,
(ii) (1+ε)−1lL(x0, x) ≤ lK(x0, x) ≤ lL(x0, x)(1+ε) whenever lK(x0, x) < δ, and
(iii)

(1 + ε)−1 · |κL(θ0)− κL(η)|
8

≤ δH(sL, cL)

l2L(x0, x)
≤ |κL(θ0)− κL(η)|

8
· (1 + ε)

whenever lL(x0, x) < δ.
The existence of such δ for (i) and (ii) are obtained similarly to the previous

proof, and (iii) from the limit in (3), which is uniform in η. Similarly to the proof
of Lemma 1, choosing the point x ∈ ∂K so that lK(x0, x) < δ and |θ0 − θ| < δ
yields that all three requisites in (i)-(iii) are met.

Applying (ii) to the expression δH(sL, cL)/l
2
K(x0, x) gives us

(1 + ε)−2 · δH(sL, cL)

l2L(x0, x)
≤ δH(sL, cL)

l2K(x0, x)
≤ δH(sL, cL)

l2L(x0, x)
· (1 + ε)2

Now, using (iii), we get

(1 + ε)−3 · |κL(θ0)− κL(η)|
8

≤ δH(sL, cL)

l2K(x0, x)
≤ |κL(θ0)− κL(η)|

8
· (1 + ε)3

Finally, applying (i) yields

(1 + ε)−3 · ε
8
≤ δH(sL, cL)

l2K(x0, x)
≤ ε

8
· (1 + ε)3,
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hence

lim
∆θ→0

δH(sL, cL)

l2K(x0, x)
= 0.

The four limits determined above yield the assertion using (2). □

4. An L-convex Duality

Let L be a centrally symmetric convex disc centered at the origin, i.e. L = −L,
and let K be an L-convex disc. We define the L-convex dual of K as

K∗ = {y | K ⊆ y + L}.
Using the symmetry of L, this can be reformulated as

K∗ =
⋂
x∈K

L+ x. (4)

This also yields that K∗ is the intersection of translates of L, hence is L-convex
as well. This is a generalization of a duality defined in [8] for spindle-convex discs.

To describe the relationship between K and K∗, we need to define the following
notion. The area of the Minkowski sum λ1K1 + λ2K2 for any λ1, λ2 > 0 can be
written as

A(λ1K1 + λ2K2) = λ21A(K1) + 2λ1λ2A(K1,K2) + λ22A(K2),

where A(K1,K2) is called the mixed area of K1 and K2. The notion of mixed
volumes can be similarly defined in higher dimensions, see [18].

Lemma 3. For any L-convex disc K, the following hold:

(i) K + (−K∗) = L
(ii) hK(u) + hK∗(−u) = hL(u)
(iii) rK(u) + rK∗(−u) = rL(u)
(iv) Per(K) + Per(K∗) = Per(L)
(v) A(K∗) = A(L)− 2A(K,L) +A(K)

Proof. Fix a direction u ∈ S1, x = xK(u), and let x∗ + L be the supporting
L of K at x ∈ ∂K. Then by the definition of K∗, we have x∗ ∈ K∗, and by (4),
x∗ ∈ x+L. It follows that x∗ is a boundary point of K∗, specifically x∗ = xK∗(−u),
and it’s support L is x+ L. This yields (ii) and consequently (i). Furthermore, as
hK(u) + h′′K(u) = rK(u), (iii) immediately follows from (ii).

The proof of (iv) and (v) rest on the following well-known expressions (see Chap-
ter 1 of [17]):

Per(K) =

∫ 2π

0

hK(θ)dθ (5)

A(K) =
1

2

∫ 2π

0

hK(θ) ·
(
hK(θ) + h′′K(θ)

)
dθ =

1

2

∫ 2π

0

hK(θ)rK(θ)dθ (6)

A(K1,K2) =
1

2

∫ 2π

0

hK1
(θ) ·

(
hK2

(θ) + h′′K2
(θ)
)
=

1

2

∫ 2π

0

hK1
(θ)rK2

(θ)dθ (7)

From (5) and (ii), (iv) clearly follows. Now, note that in (7), K1 and K2 may
be interchanged, hence

A(K1,K2) =
1

4

(∫ 2π

0

hK1
(θ)rK2

(θ)dθ +

∫ 2π

0

hK2
(θ)rK1

(θ)dθ

)
.
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Figure 3.

This yields that

A(K∗) =
1

2

∫ 2π

0

hK∗(θ)rK∗(θ)dθ =
1

2

∫ 2π

0

(hL(θ)− hK(θ))(rL(θ)− rK(θ))dθ =

=
1

2

∫ 2π

0

hL(θ)rL(θ)−
1

2

∫ 2π

0

hL(θ)rK(θ)+hK(θ)rL(θ)dθ+
1

2

∫ 2π

0

hK(θ)rK(θ)dθ =

= A(L)− 2A(K,L) +A(K).

□

5. Circumscribed cases

Let L be a centrally symmetric convex disc centered at the origin, and K an L-
convex disc. Let θ0 ∈ [0, 2π], and for sufficiently small ∆θ, let L+x∗0 and L+x∗ be
the translates of L supporting K at x0 = xK(θ0) and x = xK(θ0+∆θ), respectively.
Furthermore, we denote the intersection of ∂(L+ x∗0) and ∂(L+ x∗) on the shorter
arc between u0 = u(θ0) and u = u(θ0+∆θ) by y, see Figure 4. We use the notation
Γ for the union of ∂(L + x∗0) between x0 and y, and ∂(L + x∗) between x and y.
Lastly, let ∆l(θ0, θ0+∆θ), ∆A(θ0, θ0+∆θ) and ∆H(θ0, θ0+∆θ) be the difference of
the arc length of Γ and ∂K between x0 and x, the area enclosed by the two curves,
and their Hausdorff distance, respectively.

Consider the disc K̂ obtained by taking the union of K and the cap determined

by the curve Γ. It is easy to see that K̂ is L-convex as well. Moreover, it is also clear
that ∆l, ∆A and ∆H can be expressed, respectively, as the difference of perimeter,

area, and the Hausdorff distance of K̂ and K.

Consider the L-convex dual of K̂ and K. It is clear from the definition that K ⊆
K̂ implies K̂∗ ⊆ K∗. For every v ∈ S1 on the longer arc of S1 determined by u(θ0)
and u(θ), we have xK(v) = xK̂(v), and hence xK∗(−v) = xK̂∗(−v). Finally, y + L

contains both x∗ and x∗0 in its boundary, thus K̂∗ and K∗ describe the geometric
properties inspected in the inscribed case.As mentioned in the introduction, this
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means that by using duality and its properties, we can rely on the limits obtained
in the inscribed case when examining the circumscribed ones.

Figure 4.

Lemma 4. Let L be centrally symmetric, centered at the origin. With the notation
above,

lim
∆θ→0

∆l(θ0, θ0 +∆θ)

(∆θ)3
=

1

24
· r

3
K(θ0)− 3r2K(θ0)rL(θ0) + 2rK(θ0)r

2
L(θ0)

r2L(θ0)

lim
∆θ→0

∆A(θ0, θ0 +∆θ)

(∆θ)3
=

1

24
· r

2
K(θ0)

rL(θ0)
·
(
rL(θ0)− rK(θ0)

)
lim

∆θ→0

∆H(θ0, θ0 +∆θ)

(∆θ)2
=

1

8
· rK(θ0)

rL(θ0)
· (rL(θ0)− rK(θ0)).

Proof. The limits for length and Hausdorff distance immediately follow from the
formulae relating K and K∗, and the limits established in the inscribed cases. For
the arc length, we get

lim
∆θ→0

Per(K̂)− Per(K)

(∆θ)3
(Lemma 3)

=
lim

∆θ→0

Per(K∗)− Per(K̂∗)

(∆θ)3
=

(Lemma 1.)

=

1

24
· rK

∗(π + θ0)

r2L(π + θ0)
·
(
r2L(π + θ0)− r2K∗(π + θ0)

)
=

(Lemma 3)

=

1

24
· rL(θ0)− rK(θ0)

r2L(θ0)
· rK(θ0) ·

(
2rL(θ0)− rK(θ0)

)
=

=
r3K(θ0)− 3r2K(θ0)rL(θ0) + 2rK(θ0)r

2
L(θ0)

24r2L(θ0)
.

It readily follows from Lemma 3 (ii) that hK̂(u)−hK(u) = hK∗(−u)−hK̂∗(−u),
hence by the relationship between the Hausdorff distance of sets and their support

functions (see (1)), we have δH(K, K̂) = δH(K∗, K̂∗). This observation, along with
the inscribed limit in Lemma 2, gives us
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lim
∆θ→0

δH(K, K̂)

(∆θ)2
= lim

∆θ→0

δH(K∗, K̂∗)

(∆θ)2
=

=
1

8
· rK

∗(π + θ0)

rL(π + θ0)
·
(
rL(π + θ0)− rK∗(π + θ0)

)
=

=
1

8
· rL(θ0)− rK(θ0)

rL(θ0)
· rK(θ0).

Now we turn to the limit concerning the area. By Lemma 3 (v) and (7), we have

A(K̂)−A(K) = A(K̂∗)−A(K∗)− 2
(
A(K̂∗, L)−A(K∗, L)

)
=

= −
[(
A(K∗)−A(K̂∗)

)
−
∫ 2π

0

(
hK∗(ν)− hK̂∗(ν)

)
rL(ν)dν

]
. (8)

Note that from Lemma 1,

lim
∆θ→0

A(K̂∗)−A(K∗)

(∆θ)3
=

1

12
· r

2
K∗(π + θ0)

rL(π + θ0)
·
(
rL(π + θ0)− rK∗(π + θ0)

)
clearly follows.

With a slight abuse of words, we say that the angle β is between α1 and α2

exactly when u(β) is on the shorter arc of S1 between u(α1) and u(α2). For the
sake of compactness, we also introduce the notation ν0 = π+θ0 and ν = π+θ, and
we clearly have ∆ν = ∆θ.

Now, observe that for any ψ not between ν0 and ν, we have hK̂∗(ψ)−hK∗(ψ) = 0,
thus the integral in (8) may be considered only on the interval between them, which
we denote by i. Furthermore, for any ε > 0, there exists some δ, where for every
ν satisfying |ν0 − ν| < δ, the inequality (1 + ε)−1rL(ν0) ≤ rL(ψ) ≤ rL(ν0)(1 + ε)
holds for every ψ between ν0 and ν. This implies that

(1 + ε)−1rL(ν0)

∫
i

(
hK∗(ψ)− hK̂∗(ψ)

)
dψ ≤

≤
∫
i

(
hK∗(ψ)− hK̂∗(ψ)

)
rL(ψ)dψ ≤

≤ (1 + ε)rL(ν0)

∫
i

(
hK∗(ψ)− hK̂∗(ψ)

)
dψ (9)

holds whenever ν is sufficiently close to ν0.
Now, the integration formula for the perimeter (5) along with Lemma 1 yields

that

lim
∆θ→0

∫ 2π

0

(
hK̂∗(ψ)− hK∗(ψ)

)
dψ

(∆θ)3
=

1

24
· rK

∗(ν0)

r2L(ν0)
·
(
r2L(ν0)− r2K∗(ν0)

)
,

and hence by (9),

lim
∆θ→0

∫ 2π

0

(
hK̂∗(ψ)− hK∗(ψ)

)
rL(ψ)dψ

(∆θ)3
=

1

24
· rK

∗(ν0)

rL(ν0)
·
(
r2L(ν0)− r2K∗(ν0)

)
.

Note that rL(ν) = rL(θ) due to the symmetry of L, and with our current nota-
tion, rK(θ0) = rL(ν0)− rK∗(ν0) by Lemma 3. Using the previous observations, the
limit established in the claim of the lemma is obtained as follows:
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lim
∆θ→0

A(K̂)−A(K)

(∆θ)3
= − lim

∆θ→0

[
A(K∗)−A(K̂∗)

(∆θ)3
−
∫ 2π

0

(
hK∗(ψ)− hK̂∗(ψ)

)
rL(ψ)dψ

(∆θ)3

]
=

= − r2K∗(ν0)

12rL(ν0)

(
rL(ν0)− rK∗(ν0)

)
+

rK∗(ν0)

24rL(ν0)

(
r2L(ν0)− r2K∗(ν0)

)
=

=
1

24
· rK

∗(ν0)

rL(ν0)

(
rL(ν0)− rK∗(ν0)

)2
=

1

24
· rL(θ0)− rK(θ0)

rL(θ0)
· r2K(θ0).

□

6. Proof of Theorems 1 and 2

To prove Theorems 1 and 2, we use the tools described in [12, Section 4] of
McClure and Vitale, also summarized in [9, Section 3].

Let f be a real-valued function on an interval [a, b], and let Tn denote a partition
of [a, b] of the form Tn = (t0, t1, . . . , tn) where a = t0 < t1 < t2 < . . . < tn = b.
Consider a functional E(f, Tn) that admits a decomposition of the following additive
form, relative to Tn:

E(f, Tn) =

n−1∑
i=0

e(f, ti, ti+1).

Furthermore, let En(f) = infTn
E(f, Tn). The results will follow from the following

three assumptions.
Assumption 1. For any (α, β) satisfying a ≤ α < β ≤ b, e(f, α, β) ≥ 0.

Further, e(f, ·, ·) is sub-additive over contiguous subintervals of [a, b], that is, if
a ≤ α < β < γ ≤ b, then

e(f, α, β) + e(f, β, γ) ≤ e(f, α, γ).

Assumption 2. There is a function Jf on [a, b], associated with f , and a
constant m > 1 such that

(i) Jf is nonnegative and piecewise continuous on [a, b], admitting at worst a
finite number of jump discontinuities, and

(ii)

lim
h→0+

e(f, α, α+ h)

hm
= Jf (α+).

This limit is uniform in that the difference |Jf (α+)−e(f, α, α+h)/hm| can
be made uniformly small when (α, α+ h) is contained in an interval where
Jf is continuous.

Assumption 3. e(f, α, β) depends continuously on (α, β).
Corollary 2.1 in [12] states the following.

Theorem 5 (McClure, Vitale [12]). If Assumptions 1-3 hold for e(f, α, β), then

lim
n→∞

nm−1En(f) =

(∫ b

a

(Jf (s))
1/mds

)m

.

Now, we use Theorem 5 to prove the formula for perimeter deviation in The-
orem 1. Consider the partition Θn = (θ0, θ1, . . . , θn) of the interval [0, 2π], and
let Pn be the L-convex hull of the points xK(θ0), . . . , xK(θn). Setting E(f,Θn) =
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δP (K,Pn), and e(f, θi, θi+1) = ∆l(θi, θi+1) with the notation introduced in Sec-
tion 3, we have

E(f,Θn) =

n∑
i=0

e(f, θi, θi+1),

and δP (K,K
P
n ) = En(f) = infΘn E(f,Θn). Assumptions 1 and 3 clearly hold for

e(f, ·, ·). The function

Jf (θ) =
1

24
· rK(θ)

r2L(θ)
·
(
r2L(θ)− r2K(θ)

)
is continuous on [0, 2π], thus satisfying (i) of Assumption 2. The limit in (ii) holds
by Lemma 1 withm = 3, and is clearly uniform in [0, 2π] in the sense of Assumption
2. Hence by Theorem 5 and Lemma 1,

lim
n→∞

n2En(F ) =

(∫ 2π

0

(Jf (θ))
1/3dθ

)3

=
1

24
·

(∫ 2π

0

[
rK(θ)

r2L(θ)
·
(
r2L(θ)− r2K(θ)

)]1/3
dθ

)3

The formulae for area deviation in the inscribed case, and perimeter and area
deviation in the circumscribed case are proven in the same way, using the limits
acquired in Lemmas 1 and 4. For the formulae concerning the Hausdorff distance,
we need a modified form of Theorem 5, also quoted from [12].

Consider a function G(f, Tn) that admits a decomposition of the following form,
relative to Tn:

G(f, Tn) = max
0≤i≤n−1

g(f, ti, ti+1).

Futhermore, let G(Tn) = infTn
G(f, Tn).

Assumption 4. For any (α, β) satisfying a ≤ α < β ≤ b, g(f, α, β) ≤ 0.
Further, if a ≤ α < β < γ ≤ b, then

max(g(f, α, β), g(f, β, γ)) ≤ g(f, α, γ).

Lemma 5 in [12] states the following.

Theorem 6 (McClure, Vitale [12]). If Assumptions 2-4 hold for g(f, α, β), then

lim
n→∞

nmGn(f) =

(∫ b

a

(Jf (s))
1/mds

)m

.

To prove the remainder of Theorem 1, we setG(f,Θn) = δH(K,Pn) and g(f, θi, θi+1) =
∆H(θi, θi+1), hence Assumptions 3 and 4 clearly hold. By Lemma 2, we obtain the
function Jf (θ) satisfying Assumption 3 with m = 2. Thus Theorem 6 and Lemma 2
yield the formula for the Hausdorff distance in Theorem 1. Similarly, the Hausdorff
distance formula in Theorem 2 is obtained with the help of Lemma 4.

7. Proof of Theorems 3 and 4

We follow the ideas of Schneider in [20].

Lemma 5 (Drobot [4], Schneider [20]). Let X1, X2, . . . , Xn be a sequence of inde-
pendent random variables, uniformly distributed in [0, 1]. For each n, let X1(n) ≤
X2(n) ≤ . . . ≤ Xn(n) be the values of X1, X2, . . . , Xn arranged in non-decreasing
order. Define Uj(n) = Xj+1(n)−Xj(n) j = 1, . . . , n, where Xn+1(n) = 1+X1(n).
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Let g be a continuous real valued function on [0, 1], and let p > 1. Then with
probability 1

lim
n→∞

np−1
n∑

j=1

g [Xj(n)] [Uj(n)]
p
= Γ(p+ 1)

∫ 1

0

g(x)dx.

Let Y1, Y2, . . . , Yn be a sequence of independent random variables on ∂K, dis-
tributed according to the density function µ, and let us define the function m by
m(θ) = µ(xK(θ))/κK(θ). Let Rn denote the L-convex hull of Y1, . . . , Yn. We define
a map Ψ: [0, 2π] → [0, 1] by

Ψ: θ 7→
∫ θ

0

m(t)dt

and let Xi = Ψ ◦ x−1
K ◦ Yi. Then Xi’s are independent uniform random points in

[0, 1]. We define θj(n) by Ψ(θj(n)) = Xj(n) for every j = 1, . . . , n + 1. Then we
clearly have

Xj+1(n)−Xj(n) =

∫ θj+1(n)

θj(n)

m(t)dt.

By the uniform continuity of m, we obtain

Xj+1 −Xj(n) = m(θj(n))(θj+1(n)− θj(n))(1 + o(1)) (10)

with o(1) → 0 for |θj+1(n)− θj(n)| → 0, uniformly in θj(n) ∈ [0, 2π].
With the notation introduced in Section 3, it is clear that

δP (K,Rn) =

n∑
1

∆P (θj(n), θj+1(n)).

This decomposition, along with Lemma 1 and (10), yields that δP (K,Rn) can
be expressed as

n∑
1

1

24
· rK(θj(n))

r2L(θj(n))
·
(
r2L(θj(n))− r2K(θj(n))

)
·
(
θj+1(n)− θj(n)

)3
(1 + o(1)) =

=

n∑
1

1

24
· rK(θj(n))

r2L(θj(n))
·
(
r2L(θj(n))− r2K(θj(n))

)(Xj+1(n)−Xj(n)

m(θj(n))

)3

(1 + o(1))

(11)

Now, θj(n) = Ψ−1(Xj(n)), so substituting

g(X) =
rK(Ψ−1(X))

24r2L(Ψ
−1(X))

· r
2
L(Ψ

−1(X))− r2K(Ψ−1(X))

m3(Ψ−1(X))

into (11) we obtain that

δP (K,Rn) =

n∑
1

g(Xj(n))U
3
j (n)(1 + o(1)),

with o(1) → 0 for maxj Uj(n) → 0. Hence Lemma 5 implies

lim
n→∞

n2 · δP (K,Rn) = Γ(4)

∫ 1

0

g(X)dX.

By the definitions, Ψ′ = m, hence substituting X = Ψ(θ) yields the first formula of
Theorem 3. The formulae for area deviation in the inscribed case, and perimeter
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and area deviation in the circumscribed case are proven in the same way, using the
limits acquired in Lemmas 1 and 4.

We now turn to proving the results regarding the Hausdorff distance.

Lemma 6. Let X1, . . . , Xn, Xj(n), Uj(n) and g be as in Lemma 5, and assume
that g(0) = g(1). Then

lim
n→∞

n

lnn
· max
1≤j≤n

g[Xj(n)]Uj(n) = max
x∈[0,1]

g(x).

By the definition of the Hausdorff distance, we clearly have that
δH(K,Rn) = maxj ∆H(θj(n), θj+1(n)) with the notation introduced in Section 3.
Using the limit obtained in Lemma 2, this can be expressed as

max
j

1

8
· rK(θj(n))

rL(θj(n))
·
(
rL(θj(n))− rK(θj(n))

)
· (θj+1(n)− θj(n))

2(1 + o(1)),

where o(1) → 0 for maxj |θj+1(n)− θj(n)| → 0. This observation, along with (10)

yields that n/ lnn · δ1/2H (K,Rn) is written as

n

lnn
·max

j

(
rK(θj(n))

8rL(θj(n))

)1/2 (
rL(θj(n))− rK(θj(n))

)1/2 · Uj(n)

m(θj(n))
(1 + o(1))

As θj(n) = Ψ−1(Xj(n)), setting

g(X) =

(
rK(Ψ−1(X))

8rL(Ψ−1(X))

)1/2

·
(
rL(Ψ

−1(X))− rK(Ψ−1(X))
)1/2

m(Ψ−1(X))

and using Lemma 6 gets us to

lim
n→∞

n

lnn
· δ1/2H (K,Rn) = lim

n→∞

n

lnn
max

j
g(Xj(n))Uj(n)(1 + o(1)) = max

x∈[0,1]
g(x),

which yields the assertion for the Hausdorff distance in Theorem 3 after returning
to the parameter θ and squaring the expressions. The corresponding result of
Theorem 4 is obtained in the same way.

8. Connection to the previous results

In this section, we show that from the formula of 3 concerning the area yields
the corresponding result in linear convexity by choosing L = rB2 and r → ∞. The
argument here closely follows the proof given in Section 3, [7].

Let L = rB2. Then L-convexity corresponds to spindle convexity, so in the proof
we use the relevant terminology: we say r-disc-polygon instead of L-polygon, and
r-convex hull instead of L-convex hull, which is here denoted by [X]r.

Let Rr
n be a random r disc-polygon, and Pn the n-gon with the same vertices as

Rr
n, and let

dR(n) = (A(K)−A(Rr
n)) · n2 ; d(n) = (A(K)−A(Pn)) · n2;

IR =
1

2

∫ 2π

0

(
r2K(θ)− r3K(θ)

r

)
·m−2(θ)dθ ; I =

1

2

∫ 2π

0

r2K(θ) ·m−2(θ)dθ.

Fix ε > 0. Clearly, there exists some R1(ε) for which 1− ε < Ir/I < 1 holds for
every r > R1(ε).
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Elementary calculations show that there exists a R2(ε) ≥ r0, depending only on
K and ε, such that for all r > R2(ε) we have

A([p, q]r)

A([p, q]r0)−A([p, q]r)
< ε, (12)

for any point p, q ∈ K.
Let Dr

m be an r disc-polygon with m vertices, and Pm the m-gon with the same
vertices. If r > R2(ε), then (12) yields

1 <
d(n)

dr(n)
= 1 +

A(Rr
n)−A(Pn)

A(K)−A(Rr
n)

< 1 + sup
Dr

m⊆K,

2≤m≤n

A(Dr
m)−A(Pm)

A(Dr0
m )−A(Dr

m)
< 1 + ε.

In summary, for R > max(R1(ε), R2(ε)) we have

(1− ε) · d
R(n)

IR
<
d(n)

I
=

d(n)

dR(n)
· d

R(n)

IR
· I

R

I
< (1 + ε) · d

R(n)

IR
,

which together with Theorem 3 yields that dn → I almost surely as n → ∞. The
formulae of the perimeter and Hausdorff-distance follow in the same way.

9. Concluding remarks

A remaining open problem is to examine the circumscribed cases when L is not
centrally symmetric. The proof used in the paper isn’t applicable, and the direct
computation of the necessary limits, as we’ve previously noted, seems intricate.

The same problem naturally arises in higher dimensions as well. The analytical
and stochastic tools essentially don’t generalise to higher dimensions, the necessary
geometric notions are not yet fully developed, hence these are longer term questions.

Lastly, we note that the duality used in the paper, similarly to [8], holds inter-
esting problems in itself, we only examined the tools necessary for our proof.
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