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Abstract. In this paper, we consider the asymptotic behaviour of the expec-

tation of the number of vertices of a uniform random spherical disc-polygon.
This provides a connection between the corresponding results in spherical con-

vexity, and in euclidean spindle-convexity, where the expectation tends to the

same constant. We also extend the result to a more general case, where the
random points generating the uniform random disc-polygon are chosen from

spherical convex disc with smooth boundary.

1. Introduction

Following the prominent work of Rényi and Sulanke [13], the 2017 paper [3] of
Bárány, Hug, Reitzner and Schneider examines the following stochastic model: let
K denote a halfsphere of Sd−1, and let Xn = {x1, . . . , xn} be a uniform, indepen-
dent sample of n points from K. Let Kn denote the spherical convex hull of Xn,
that is, the intersection of all halfspheres containing Xn. The main questions of
this area are concerned with the properties of the obtained spherical polytope Kn

asymptotically, as n → ∞. Such properties include the number of vertices and
facets of Kn, or the missed surface area SArea(K \Kn). One of the results proven
by the authors in [3] is that the number of facets tends to a finite number that is
only dependent on the dimension of the sphere.

The spherical model defined above has a close relative in the Eucledian plane,
in spindle convexity. If a subset X ⊆ R2 is contained in some disc of radius r, we
define its closed r spindle convex hull or r-convex hull as the intersection of all discs
of radius r containing X. For a finite subset X, we call its spindle convex hull a
disc–polygon, which is the intersection of finitely many discs. Spindle convexity in
the Euclidean space has been extensively studied, we refer the interested reader to
[5] and to the recent book [11], and for more on the history of spindle convexity see
[9].

In 2014, Fodor, Kevei and Vı́gh [9] proved that by taking n i.i.d. points from
a disc of radius r, and considering their r-convex hull, the number of the convex
hull’s vertices (or equivalently, edges) tends to a finite number as n → ∞. In 2020,
Fodor [8] generalised these results to higher dimensions, showing that for random
ball-polytope obtained in a similar way, the number of its facets tends to a constant
as n → ∞, and it is only dependent on the dimension.

A point of interest of these results is that the limiting constants obtained on Sd−1

in [3], and the limiting constants in the spindle convex model of Rd−1 [8,9] coincide.
The goal of this paper is to find a connection between the two models that gives a
better understanding of this phenomenon. We show the analogue of these results
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in a spherical spindle convex model on S2, and point out the connection between
the results above. We also obtain some general results that make the picture more
complete.

We mention that our results fit in the broad topic of random polytopes that
is very well-studied. For a survey on (linearly) convex random polytopes see for
example [2]. The spindle convex results and how they relate to linear convexity
were first investigated in [9], see also the recent paper [10].

2. New notions and results

By the distance of two points, we will generally mean their spherical distance.
For 0 < r ≤ π/2, the spherical disc of radius r, or spherical cap in Euclidean
terminology, is the set points of S2 whose distance from its (spherical) center is not
greater than r. (Note that we only consider spherically convex sets.) We define the
distance of two discs of the same radius as the spherical distance of their (spherical)
centers , which is a direct analogue of the Hausdorff distance. As a special case,
r = π/2 gives us halfspheres.

Now, let X ⊆ S2 be contained in some spherical disc of radius r. We denote by
conv r(X) the closed spherical r spindle convex hull of X, that is, the intersection
of all discs of radius r containing X. We remark that the spindle convex hull can
be defined as in the Euclidean space (see [5]), however for the sake of compactness
we introduce only the closed version. We say that a closed, spherical convex set
K ⊂ S2 is a spherically r spindle convex disc if K = conv r(K). Furthermore, if
X is finite, we say that conv r(X) is a spherical disc–polygon, which can be written
as the intersection of finitely many discs. Because of this, the notion of edges and
vertices can be defined naturally. A subset D of a spherical spindle convex disc K
is called a r spherical disc cap if D = cl (K∩Bc) for some spherical disc B of radius
r, where cl (·) and ·c denote the closure and complement, respectively.

From now on, we fix the radius r of the spindle convexity, and will generally
omit it from the notation.

We note that the concept of spindle convexity on the sphere seems to be new,
although very natural. In this paper we restricted ourselves to keep the introduction
as short as possible, but spherical spindle convexity is surely an interesting topic in
itself.

The stochastic model considered in the paper is the following: let K be a spher-
ical spindle-convex disc, and take n i.i.d. points Xn = {P1, . . . , Pn} from K. Let
Kn denote the spherical r spindle convex hull of the sample. Furthermore, let f0(·)
denote the number of vertices of a spherical disc–polygon.

Our main results are the following.

Theorem 1. Let K be a spherical circular disc of radius r. Then

lim
n→∞

E(f0(Kn)) =
π2

2

and

lim
n→∞

E(SArea(K \Kn)) · n = π3(1− cos r).

Theorem 2. Let K be a spherical convex disc with C2 boundary and with the prop-
erty that κg(x) > cot r for every x ∈ ∂K, where κg denotes the geodesic curvature.
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Then

lim
n→∞

E(f0(Kn)) · n−1/3 =
3

√
2

3A
Γ

(
5

3

)∫
∂K

(
κg(s)− cot r

)1/3
ds

and

lim
n→∞

E(SArea(K \Kn)) · n2/3 =
3

√
2A2

3
Γ

(
5

3

)∫
∂K

(
κg(s)− cot r

)1/3
ds,

where A denotes SArea(K).

Note that the results for number of vertices and the missed area are linked by
the well-known Efron identity (see (4) and [2, 12]).

From Theorem 1 with r = π/2, we obtain the corresponding result of [3] in
dimension two. Also, as r → 0+, one can see that formally we obtain the planar
spindle convex results, hence our model gives a continuous connection between
the models mentioned in the introduction. However we note that taking the limit
r → 0+ is only ”intutively clear”, we don’t have a rigorous statement there.

3. Two integral transformations

In the proofs of Theorems 1 and 2, we need to compute integrals over pairs of
points from K, where K is either a circular disc or a spherical convex disc with
smooth boundary. In this chapter, we prove two integralgeometric lemmas that
resemble to the Blaschke-Petkantschin formulas (see [12, Section 7.2.]).

First, consider a pair of points, P1, P2 ∈ K, where K is the circular disc with
spherical center (0, 0, 1) and radius r. Let Kt,φ be the spherical disc of radius
r whose center is C = C(t, φ) = (sin t cosφ, sin t sinφ, cos t), hence the distance
between the center of Kt,φ and the center of K is exactly t. Now, it is easy
to see that the triad (C,w1, w2) forms an orthonormal basis of R3 with vectors
w1 = (sinφ, cosφ, 0) and w2 = (cos t cosφ, cos t sinφ,− sin t). Thus we can express
the points as

Pi = cos r · C(t, φ) + sin r cosφi · w1 + sin r sinφi · w2,

which describes the pair of points as follows: if Kt,φ is a disc containing both
points in its boundary, then its boundary is the intersection of the unit sphere with
the plane containing cos rC(t, φ) and having normal vector C(t, φ). In this plane,
w1 and w2 form an orthonormal basis, in which the coordinates of the corresponding
point are determined by φ1 and φ2.

Note that for every pair of points in K, there are exactly two circular discs of
radius r containing both points in their boundary, hence two pairs of (t, φ) for
which Kt,φ is as described. Hence every pair of points is considered exactly twice,
and we have a twofold reparametrisation.

Lemma 1. With the construction above, an integral over a pair of points (P1, P2)
in K can be rewritten as∫

K

∫
K

F (P1, P2)dP1dP2 =

=
sin2 r

2

∫ 2π

0

∫ 2r

0

∫ θ2

θ1

∫ θ2

θ1

F · sin t · | sin(φ1 − φ2)|dφ1dφ1dtdφ,

where [θ1, θ2] is the interval (depending on t and φ) parametrising ∂Kt,φ ∩K.
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Proof. Let P1 = (x1, y1,
√
1− x2

1 − y21) and P2 = (x2, y2,
√

1− x2
2 − y22). Trans-

forming the integral to the variables x1, y1, x2, y2 yields∫∫
(x1,y1)

∈B2·sin r

∫∫
(x1,y1)∈
B2·sin r

F · 1√
1− x2

1 − y21
· 1√

1− x2
2 − y22

dx1dy1dx2dy2. (1)

Now, consider the reparametrisation (x1, y1, x2, y2) = Φ(φ, t, φ1, φ2) given by(
xi, yi,

√
1− x2

i − y2i

)
= cos r · C + sin r cosφi · w1 + sin r sinφi · w2,

as described above.

Figure 1. The reparametrisation.

The Jacobian of the transformation is

|JΦ| =
∣∣ sin2 r · sin t · sin(φ1 − φ2)×

× (cos r cos t− sin r sin t sinφ1) · (cos r cos t− sin r sin t sinφ2)
∣∣,

whose computation can be read in Appendix A. The last two factors of the product
are equal to the last coordinates of the corresponding Pi, that is,

√
1− x2

i − y2i ,
in this parametrisation; these are the reciprocals of the surface volume elements,
hence cancel out after carrying out the transformation. In addition, because the
construction gives a twofold reparametrisation, the integral over the pair of points
is exactly half of the one obtained here. □

Now, let K be an r-spherical spindle convex disc with C2 boundary and with
the property that κg(x) > cot r for every x ∈ ∂K. Note that cot r is the geodesic
curvature of a circle of radius r on the sphere.

To define the integral transform in the general case, we need an important result
regarding caps of spindle convex discs. This is the direct analogue of Lemma 4.1
in [9] and Lemma 3.1 in [8]. It can be proven using the same argument as in [8],
hence we omit the proof.
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Lemma 2. Let D = cl (K ∩ Bc) be a nonempty spherical disc-cap. Then there is
a unique point x0 of ∂K and a nonnegative real number t such that the spherical
center of B is of distance r + t from x0 along the great circle determined by the
normal plane at x0.

We can now turn to the description of the general transform. Let ϱ(s) =(
x(s), y(s), z(s)

)
be an arc-length parametrisation of ∂K with positive orientation,

and let C = C(t, s) ∈ S2 be the point of distance r + t from ϱ(s) along the great
circle determined by the normal plane at ϱ(s), i.e.

C = C(t, s) = cos(r + t) · ϱ(s) + sin(r + t) · ϱ(s)× ϱ̇(s),

and let Kt,s denote the spherical disc with center C(t, s) and radius r.
An orthonormal basis in the orthogonal complement of C is given by

w1(s) = ϱ̇(s) and

w2(s) = − sin(r + t) · ϱ(s) + cos(r + t) · ϱ(s)× ϱ̇(s)

Any pair of points (P1, P2) inK determine exactly two disc-caps, and by Lemma 2,
each has a unique vertex ϱ(s) and height t. Hence the points can be reparametrised
as

Pi = cos r + sin r ·
[
cos(φi) · w1 + sin(φi) · w2

]
,

which, similarly to Lemma 1, produces a twofold reparametrisation.

Lemma 3. Let K be a spherical convex disc with C2 boundary and with the property
that κg(x) > cot r for every x ∈ ∂K. With the construction above, an integral over
a pair of points (P1, P2) in K can be rewritten as∫

K

∫
K

F (P1, P2)dP1dP2 =

=
sin2 r

2

∫
∂K

t(s)∫
0

θ2∫
θ1

θ2∫
θ1

F · | sin(φ1 − φ2) ·
(
κg sin(r + t)− cos(r + t)

)
|dφ1dφ1dtds,

where t(s) denotes the greatest value of t for which K ∩ Kt,s is nonempty, and
[θ1, θ2] is the interval (depending on t and s) parametrising ∂Kt,s ∩K.

Proof. First, let P1 and P2 be transformed to (x, y) coordinates, as in (1). We
show in Appendix B that the Jacobian of the transformation from (x1, y1, x2, y2)
to (s, t, φ1, φ2) is given by

| sin2 r sin(φ1 − φ2) ·
(
κg sin(r + t)− cos(r + t)

)
Z1Z2|,

where Zi denotes the last coordinate of the point Pi, hence they cancel out with
the surface volume elements obtained from the (x, y) transform. Lastly, we get the
division by two due to the twofold nature of the transformation. □

We close this section by citing a technical lemma necessary in the proofs of the
main theorems.

Lemma 4 (E. Artin [1], and Böröczky, Fodor, Reitzner, Vı́gh [6]). For any β ≥ 0,
ω > 0 and α > 0, it holds that∫ g(n)

0

tβ · (1− ωtα)ndt ∼ 1

α · ω(β+1)/α
· Γ

(
β + 1

α

)
· n−(β+1)/α
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if (
(α+ β + 1) · lnn

αωn

)1/α

< g(n) < ω−1/α

for sufficiently large n, where by f1(n) ∼ f2(n) we mean that f1(n)/f2(n) → 1 as
n → ∞.

4. Geometric tools

In this section, we state and prove some geometric lemmas used in the proof of
Theorem 1. We note that these results follow from [7] Theorem 5.1, but we include
elementary proofs for the sake of completeness.

Lemma 5. Let A(t) denote the surface area of the intersection of two discs of
radius r whose distance is t. Then

lim
t→0

A(t)

t
= 2 sin r.

Proof. Let the two discs be denoted by D1 and D2. We may assume without loss
of generality that the planes of ∂D1 and ∂D2 are perpendicular to the xy plane,
and their intersections with the xy plane are the lines

e : x = cos r and f : x =
cos r − x cos t

sin t
,

respectively. See the orthogonal projection of the construction on Figure 2. Then
the projection of D1 ∩ D2 – the shaded area in Figure 2 – is precisely the region
determined by the lines e and f , and the boundary of the unit circular disc.

Figure 2. The intersection of two spherical discs.

We compute the surface area via an integral, where the domain of integration is
the region described above, and hence the surface area is
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A(t) = 2

∫ cos(r−t)

cos r

∫ cos(r)−x·cos(t)
sin(t)

−
√
1−x2

1√
1− x2 − y2

dydx.

The integral with respect to y can be directly computed, and we get

A(t) = 2

∫ cos(r−t)

cos r

arcsin

(
cos r − x cos t

sin t ·
√
1− x2

)
+

π

2
dx.

The integrand is bounded, and the length of the interval tends to 0 as t → 0,
hence A(t) → 0. Thus by l’Hôpital’s rule, we have that

lim
t→0

A(t)

t
= 2 · lim

t→0

d

dt

∫ cos(r−t)

cos r

arcsin

(
cos r − x cos t

sin t ·
√
1− x2

)
+

π

2
dx.

By the Leibniz integral rule, in the limit we have the expression[
arcsin

(
cos r − cos(r − t) cos t

sin t sin(r − t)

)
+

π

2

]
· sin(r − t)+

+

∫ cos(r−t)

cos r

d

dt

[
arcsin

(
cos(r)− x cos(t)

sin(t) ·
√
1− x2

)
+

π

2

]
dx.

The first factor of the first term can be simplified with trigonometric identities:
the expression in the arcsin is equal to −1, hence the first term is equal to 0. In
the second term, after taking the derivative, we get

1

sin t
·
∫ cos(r−t)

cos r

x− cos r cos t√
(sin t sin r)2 − (x− cos r cos t)2

dx. (2)

This integral can be computed directly, and we obtain

1

sin t
·
√
sin2 t sin2 r − cos2 r · (1− cos t)2 =

√
sin2 r − cos2 r ·

(
1− cos t

sin t

)2

,

which in the limit t → 0 gives us sin r, since the trigonometric factor containing t
tends to 0 by an elementary calculation. □

Lemma 6. Let θ(t) denote the central angle corresponding to an arc of the inter-
section of two discs of radius r whose distance is t. Then we have

(i) θ(t) = 2 arccos

(
sin t

1 + cos t
· cot r

)
and

(ii) θ(t)− sin θ(t) ↗ π as t → 0.

Proof. Part (ii) is a simple analytical consequence of (i), as θ(t) is monotonically
decreasing and the function x− sinx is monotonically increasing. Part (i) we show
as follows: we consider again the construction in Figure 2, described in Lemma 5.
The intersection Q of the lines e and f is on the line

y = x · tan t

2
= x · sin t

1 + cos t
.

Furthermore, the Euclidean center of the disc D2 is in the xy plane, and it is the
intersection of f and is line y = x · tan t: this is denoted by P in Figure 2. The
projection of the arc we’re interested in is the line segment QR. The plane spanned
by ∂D2 is shown in Figure 3.
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Figure 3. The examined arc in the plane of the intersection circle.

From the construction we have that

P =
(
cos r cos t, cos r sin t

)
and Q =

(
cos r, cos r · sin t

1 + cos t

)
,

hence their Euclidean distance is

d(P,Q) =
sin t

1 + cos t
· cos r,

and for the corresponding central angle we have

cos

(
θ(t)

2

)
=

d(P,Q)

sin r
=

sin t

1 + cos t
· cos r
sin r

,

which yields the assertion. □

5. Proof of Theorem 1.

Let K ⊆ S2 be the disc of radius r whose center is the north pole, i.e. the
point (0, 0, 1) in R3, and introduce the notation A = A(K). Let P1 and P2 be two
disctinct points in K. Then there are exactly two spherical discs or radius r that
contain both points in their boundaries. Let D−(P1, P2) and D+(P1, P2) denote
the spherical disc-caps determined by these discs, i.e. the closure of the subset of
K that is not covered by the corresponding disc. We also introduce the notation
A−(P1, P2) = A(D−(P1, P2)) and A+(P1, P2) = A(D+(P1, P2)).

We now turn to the proof of Theorem 1. Our argument is based on the tech-
nique used by Rényi and Sulanke in [13]. The random pair of points P1, P2 ∈ K
determines an edge of conv r(Xn) if and only if D−(P1, P2) or D+(P1, P2) don’t
contain more points from Xn. Hence

E (f0(Kn)) =

(
n

2

)
· I, where

I =
1

A2

∫
K

∫
K

(
1− A−(P1, P2)

A

)n−2

+

(
1− A+(P1, P2)

A

)n−2

dP1dP2.
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Using the transformation described in Section 3, we obtain

I =
sin2 r

A2

∫ 2π

0

∫ 2r

0

∫ θ2

θ1

∫ θ2

θ1

(
1− A(t)

A

)n−2

· sin t · | sin(φ1 − φ2)|dφ1dφ1dtdφ.

Note that while the transform in Lemma 1 is twofold, here every cap gets counted
exactly once due to the nature of the specific integrand. Also note that the area
of the disc-cap depends only on t of this new parametrisation, and is equal to the
quantity defined in Lemma 5.

After integration with respect to φ1 and φ2, we get an integrand that depends
on θ2 − θ1. This is the quantity defined in Lemma 6, which is now only dependent
on t, but not φ. Hence after integration w.r.t. φ1, φ2 and φ, we have

I =
4π sin2 r

A2

∫ 2r

0

(
1− A(t)

A

)n−2

· sin t ·
(
θ(t)− sin θ(t)

)
dt .

Fix ε > 0. Then there exists a constant 0 < γ1 < r such that for every 0 ≤ t ≤ γ1
we have

(i) 2 sin r · t · (1 + ε)−1 ≤ A(t) ≤ 2 sin r · t · (1 + ε),

(ii) π · (1 + ε)−1 ≤ θ(t)− sin θ(t) ≤ π · (1 + ε), and

(iii) t · (1 + ε)−1 ≤ sin t ≤ t · (1 + ε).

The existence of such a constant comes from Lemmas 5 and 6, and the limit
sinx/x → 1 (x → 0), respectively. As A(t) is a monotonically increasing, we have
that for t ≥ γ1, A(t) ≥ A(γ1) = δ ·A for some δ > 0, hence

lim
n→∞

(
n

2

)∫ 2r

γ1

(
1− A(t)

A

)n−2

sin t
(
θ(t)− sin θ(t)

)
dt ≤

≤ lim
n→∞

(
n

2

)∫ 2r

γ1

(1− δ)n−2 · πdt = 0.

Thus it is enough to consider the integral on the interval [0, γ1].
By the choice of γ1, we have

(1 + ε)−2 · 4π
2 sin2 r

A2

∫ γ1

0

(
1− 2 sin r · (1 + ε)

A
· t
)n−2

t dt ≤

≤
∫ γ1

0

(
1− A(t)

A

)n−2

sin t
(
θ(t)− sin θ(t)

)
dt ≤

≤ (1 + ε)2 · 4π
2 sin2 r

A2
·
∫ γ1

0

(
1− 2 sin r · (1 + ε)−1

A
t

)n−2

t dt. (3)

We are going to apply Lemma 4 to the integrals in (3). With the notations of
the lemma, we have α = β = 1, in the upper bound ω+ = 2 sin r · (1 + ε)−1/A, in
the lower ω− = 2 sin r · (1 + ε)/A. Let also g+(n) = γ+

2 = 1/(2ω+) and g−(n) =
γ−
2 = 1/(2ω−). Then the conditions of the lemma are satisfied, and hence∫ γ+

2

0

(
1− 2 sin r · (1 + ε)−1

A
· t
)n−2

t dt ∼ A2 · (1 + ε)2

4 sin2 r
· n−2, és∫ γ−

2

0

(
1− 2 sin r · (1 + ε)

A
· t
)n−2

t dt ∼ A2 · (1 + ε)−2

4 sin2 r
· n−2.
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All in all, if γ = min{γ1, γ+
2 , γ−

2 },

(1 + ε)−4 ≤ lim
n→∞

∫ γ

0

(
1− A(t)

A

)n−2

· sin t · (θ(t)− sin θ(t))dt

n−2 · π2
≤ (1 + ε)4,

which yields the assertion on the number of vertices.
For the proof of the claim on the area difference, we use the spherical spindle

convex counterpart of the Efron identity, which states

E(f0(Kn)) =
nE(A(K \Kn))

A
. (4)

An elementary calculation shows that A = 2π(1 − cos r), from which the second
assertion of the theorem follows.

6. Sketch of proof of Theorem 2

In the proof of Theorem 2, we use similar asymptotic results as the ones shown
in Section 4.

Lemma 7. Let K be a spherical spindle convex disc with C2 boundary and with
the property that κg(x) > cot r for every x ∈ ∂K, and let ϱ be an arc-length
parametrisation of ∂K. We denote by A(t, s) the area of the spherical disc-cap
with vertex ϱ(s) and height t, and by l(t, s) the arc length of the circular arc that
determines the disc-cap. Then

lim
t→0

A(t, s)

t3/2
=

4

3

√
2

κg(s)− cot r
and lim

t→0

l(t, s)

t1/2
= 2

√
2

κg(s)− cot r
.

Proof. Assume without loss of generality that ϱ(s) = (0, 0, 1), ϱ̇(s) = (1, 0, 0) and
ϱ̈(s) is in the yz-plane, and fix ε > 0. We consider the projection of the disc cap to
the tangent plane of the sphere at (0, 0, 1), i.e. the plane z = 1. Let Ap(t, s) and
lp(t, s) denote the area and arc length of the projection. As the endpoints of the
arc determining the disc-cap tend to ϱ(s) as t → 0, there exists some t0 > 0 such
that

Ap(t, s) ≤ A(t, s) ≤ Ap(t, s) · (1 + ε)

lp(t, s) ≤ l(t, s) ≤ lp(t, s) · (1 + ε)
(5)

holds for every 0 < t < t0. Now, we determine the behaviour of Ap(t, s) and lp(t, s)
as t → 0 with an argument similar to the corresponding proof in Lemma 4.2 of [9].
For simplicity in notation, we consider the projection as part of R2, and omit the
last coordinate. By the assumptions on the position of ∂K, the projection of the
fixed point ϱ(s) is the origin, and the projection has tangent line x = 0, normal line
y = 0, and curvature κg(s) at (0, 0). The projection of the circular arc determining
the disc-cap is the arc of an ellipse with semi-major and semi-minor axes parallel to
the x- and y-axis, and of length sin r and sin r cos(r+ t), respectively. Furthermore,
note that the ellipse has a co-vertex at (0, sin t), which tends to the origin as t → 0.
Hence for small enough t, there is a sufficiently small neighbourhood of the origin
where they can both be represented as graphs of twice differentiable functions f
and gt, respectively, and Taylor’s theorem yields

f(x) =
κg(s)

2
x2 + o(x2) and gt(x) = sin t+

cos(r + t)

2 sin r
x2 + o(x2)
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as x → 0. By the condition κg(s) > cot r, we also have κg(s) > cos(r + t)/ sin r,
and the graphs of the function f and gt intersect. The points of intersection,
which correspond to the endpoints of the circular arc defining the disc-cap, have
x-coordinates

x+/− = ±

√
2 sin t

κg(s)− cos(r + t)/ sin r
+ o

(
t1/2

)
.

Hence the area of the projection is

Ap(t, s) =

∫ x+

x−

gt(x)− f(x)dx =
4

3

√
2

κg(s)− cos(r + t)/ sin r
(sin t)

3/2
+ o

(
t3/2

)
,

and

lim
t→0

Ap(t, s)

t3/2
=

4

3
·

√
2

κg(s)− cot r
,

which yields the assumption together with (5). As the ratio of the length of an arc
and its corresponding chord tends to 1 as the length of the arc tends to 0, the claim
on the arc length follows. □

Outline of proof of Theorem 2. We follow similar steps as in the proof of Theo-
rem 1. With the same notation for D−, D+, A−, A+ and the integral I in Section 5,
we will now compute the limit

lim
n→∞

n−1/3E(f0(Kn)) = lim
n→∞

n−1/3

(
n

2

)
I.

Using the general integral transform described in Section 3, we have

I =
sin2 r

A2

∫
∂K

∫ t(s)

0

∫ θ2

θ1

∫ θ2

θ1

(
1− A(t, s)

A

)n−2

×

× |κg(s) sin(r + t)− cos(r + t)| · | sin(φ1 − φ2)|dφ1dφ1dtds.

We can again integrate with respect to φ1 and φ2, and obtain an expression
that is a function of θ2 − θ1. This quantity is equal to l(t, s)/ sin r, where l(t, s)
is the length of the circular arc as described in Lemma 7. By the compactness of
the domain of s, for every δ > 0 there exists some constant γ independent of s
such that whenever t ≥ γ, we have A(t, s) ≥ δ. Hence for t ≥ γ, the integrand is
exponentially small in n, hence is negligible in limit. Also note that the expression
κg(s) sin(r + t) − cos(r + t) = sin(r + t) · (κg(s) − cot(r + t)) is positive. Thus we
need to determine the limit

lim
n→∞

∫
∂K

θn(s)ds,

where

θn(s) = n−1/3

(
n

2

)
sin2 r

A2

∫ γ

0

(
1− A(t, s)

A

)n−2

sin(r + t)×

× ·(κg(s)− cot(r + t))

(
l(t, s)

sin r
− sin

(
l(t, s)

sin r

))
dt.
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The remainder of the argument closely follows the proof of Theorem 1.1 of [9].
There exists some function h(n) such that on the interval [h(n), γ], the correspond-
ing limit is 0, and on the interval [0, h(n)] the function θn(s) has a universal upper
bound. Lebesgue’s dominated convergence theorem thus implies that

lim
n→∞

E(f0(Kn))n
−1/3 =

∫
∂K

lim
n→∞

θn(s)ds.

Lastly, the limit of θn(s) can be determined by using the geometric limits in
Lemma 7, and the asymptotic result in Lemma 4. We omit the details.

7. Concluding remarks

As mentioned in the Introduction, the limit of the expected number of facets in
the case of spherical polytopes on Sd and (euclidean) ball-polytopes in Rd coincide
for any d > 2 as well. A potential generalisation of the results of this paper would
be defining spherical ball-polytopes on Sd for d > 2, and investigating the ana-
logue of the uniform model. This would most likely entail finding integralgeometric
transformations similar to the ones used here. We repeat here that taking the limit
r → 0+ in Theorem 2 only formally gives back the main results of [9], but we do
not have a rigorous proof of this.

We note that random (and best) approximation by (generalized) polygons and
polytopes on the sphere is a new area, one can formulate many interesting questions
based on the known results from Euclidean space, for more on the topic we refer to
the very recent article [4].

8. Appendix A

We compute the Jacobian of the transform described in (3) via the exterior
product of differential forms. For i = 1, 2 we have

dxi = cosφ · (cos r cos t− sin r sin t sinφi) dt+

+
[
cosφ · (sin r cosφi)− sinφ · (cos r sin t+ sin r cos t sinφi)

]
dφ+

+ (− sinφ sinφi + cosφ cos t cosφi) · sin r dφi,

and

dyi = sinφ · (cos r cos t− sin r sin t sinφi) dt+

+
[
sinφ · (sin r cosφ1) + cosφ · (cos r sin t+ sin r cos t sinφi)

]
dφ+

+ (cosφ sinφi + sinφ cos t cosφi) · sin r dφi.

For the computation of dxidyi, we group the terms by φ-factor: terms contain-
ing sinφ cosφ cancel out, while terms containing sin2 φ and cos2 φ have the same
coefficients, hence can be collected and simplified via sin2 φ+cos2 φ = 1. Moreover,
let the coefficient of dtdφ be denoted by U = U(t, φ, φ1, φ2) – the exact formula is
not necessary, which will be explained later on. By this method, we have

dxidyi = sin r sinφi · (cos r cos t− sin r sin t sinφi) dtdφi+

+
[
sin r cosφi sinφi − cos t cosφi(cos r sin t+ sin r cos t sinφi)

]
dφdφi+

+ Udtdφ,
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and further simplifying the second factor yields

dxidyi = (cos r cos t−sin r sin t sinφi)·
[
sin r sinφi· dtdφi+cosφi sin t dφdφi

]
+Udtdφ.

As either dt or dφ appears in each term of the sum, if we take the wedge product
of the expression Udtdφ in dx1dy1 with any of the terms in dx2dy2, we get the
wedge product of either dφ, or dt, with itself, hence zero. Thus for the quadruple
product we have

dx1dy1dx2dy2 = (cos r cos t− sin r sin t sinφ1)(cos r cos t− sin r sin t sinφ2)×
× sin r sin t · (sinφ1 cosφ2 − cosφ2 sinφ1) dtdφ1dφdφ2.

9. Appendix B

Using the notation and construction described in Section 3, for any point Pi =
(xi, yi, zi) in K we have

Pi = cos r · C(s, t) + sin r ·
[
cos(φi) · w1 + sin(φi) · w2

]
=

= ϱ ·
[
cos r cos(r + t)− sin r sin(r + t) sin(φi)

]
+ ϱ̇ · sin r cos(φi)+

+ ϱ× ϱ̇ ·
[
cos r sin(r + t) + sin r cos(r + t) sin(φi)

]
Let C = C(s, t), and to further abbreviate the derivation of the formula, we

introduce the notation Ai = Ai(t, φi) and Bi = Bi(t, φi) for the coefficient of ϱ and
ϱ× ϱ̇, respectively, in the expression above. Note that

∂

∂t
Ai = −Bi and

∂

∂t
Bi = Ai.

Using the notation ϱ = (x, y, z) and ϱ× ϱ̇ = (nx, ny, nz), and making use of the
simplifications noted above, we have

dxi =
[
x′ · (Ai − κgBi) + x′′ · sin r cosφi

]
ds+ ·

[
− x ·Bi + nx ·Ai

]
dt+

+ sin r ·
[
− x · sin(r + t) cosφi − x′ · sinφi + nx · cos(r + t) cosφi

]
dφi

and

dyi =
[
y′ · (Ai − κgBi) + y′′ · sin r cosφi

]
ds+

[
− y ·Bi + ny ·Ai

]
dt+

+ sin r ·
[
− y · sin(r + t) cosφi − y′ · sinφi + ny · cos(r + t) cosφi

]
dφi

While computing the exterior product dxidyi, we first consider the terms as
functions of s. The expressions we obtain are the last coordinates of a given cross
product: for example, xy′ − xy′ is the last coordinate of ϱ× ϱ̇, and x′ny − nxy

′ of
ϱ̇ × (ϱ × ϱ̇) = ϱ. Our aim is to express everything in terms of only coordinates of
ϱ, ϱ̇ and ϱ× ϱ̇; to achieve this, we use the relationship ϱ̈ = κg · ϱ× ϱ̇+ κn · ϱ, where
κg = κg(s) and κn = κn(s) denote the geodesic and normal curvatures, respectively,
of ∂K at ϱ(s). This can be shown by a straightforward differential geometric
consideration. Also note that by Meusnier’s theorem, the normal curvature at any
point is equal to the normal curvature of a great circle of the sphere, hence κn ≡ 1.

Using this, and by denoting the coefficient of dsdt by U = U(t, s, φ1, φ2) –which
similarly to Appendix A, doesn’t need to be expressed explicitly–, we obtain

dxidyi = dsdφi · sin r cosφi ·
[
z ·

(
(Ai − κgBi) cos(r + t) + κg sin r sinφi

)
+
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+ z′ ·
(
− κg sin r sin(r + t) cosφi + sin r cos(r + t) cosφi

)
+

+ nz ·
(
(Ai − κgBi) sin(r + t) + sin r sinφi

)]
+

+ dtdφi · sin r ·
[
z ·Ai sinφi + nz ·Bi sinφi+

+ z′ ·
(
Bi cos(r + t) cosφi −Ai sin(r + t) cosφi

)]
+ Udtds.

By expanding Ai and Bi, and collecting like terms, we get

dxidyi =

[
dsdφi · cosφi ·

(
cos(r + t)− κg sin(r + t)

)
+ dtdφi · sinφi

]
×

× sin r ·
(
z ·Ai + z′ · sin r cosφi + nz ·Bi

)
+ Udtds.

Hence the Jacobian is

sin2 r sin(φ1 − φ2) ·
(
cos(r + t)− κg sin(r + t)

)
Z1Z2,

where
Zi = zAi + z′ sin r cosφi + nzBi,

which is exactly the last coordinate of the point Pi.
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