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Abstract. What is the maximum of the sum of the pairwise (non-obtuse)
angles formed by n lines in the Euclidean 3-space? This question was
posed by L. Fejes Tóth in 1959 in [3]. L. Fejes Tóth solved the problem
for n ≤ 6, and proved the asymptotic upper bound n2π/5 as n → ∞.
He conjectured that the maximum is asymptotically equal to n2π/6 as
n → ∞. The main result of this paper is an upper bound on the sum
of the angles of n lines in the Euclidean 3-space that is asymptotically
equal to 3n2π/16 as n→∞.

1. Introduction

Consider n lines in the d-dimensional Euclidean space Rd which all pass
through the origin o. What is the maximum S(n, d) of the sum of the pairwise
(non-obtuse) angles formed by the lines? This question was raised by L. Fejes
Tóth in 1959 in [3] for d = 3. For general d, the problem is formulated, for
example, in [5].

The conjectured maximum of the angle sum is attained by the following
configuration: Let n = k · d + m (0 ≤ m < d), and denote by x1, . . . , xd the
axes of a Cartesian coordinate system in Rd. Take k+ 1 copies of each one of
the axes x1, . . . , xm, and take k copies of each one of the axes xm+1, . . . , xd.
The sum of the pairwise angles in this configuration is[

d(d− 1)k2

2
+mk(d− 1) +

m(m− 1)

2

]
π

2
.

L. Fejes Tóth stated this conjecture only for d = 3, however, it is quite natural
to extend it to any d (see [5]). To the best of our knowledge, this problem is
unsolved for d ≥ 3.

In the case d = 3, L. Fejes Tóth [3] proved the conjecture for n ≤ 6. He
determined S(n, 3) for n ≤ 5 by direct calculation, and he obtained S(6, 3)
using the recursive upper bound S(n, 3) ≤ nS(n − 1, 3)/(n − 2) and the
precise value of S(5, 3), see pp. 19 in [3]. The recursive upper bound and
S(6, 3) together yield that S(n, 3) ≤ n(n − 1)π/5 for all n. We further note
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that L. Fejes Tóth’s recursive upper bound on S(n, 3) also holds for S(n, d),
that is, S(n, d) ≤ nS(n− 1, d)/(n− 2) for any meaningful n and d.

Our main result is summarized in the following theorem.

Theorem 1.1. Let l1, . . . , ln be lines in R3 which all pass through the origin.
If we denote by ϕij the angle formed by li and lj, then∑

1≤i<j≤n

ϕij ≤
{

3
2k

2 · π2 , if n = 2k,
3
2k(k + 1) · π2 , if n = 2k + 1.

We note that the conjectured maximum for d = 3 is asymptotically
equal to n2π/6 as n → ∞. The upper bound in Theorem 1.1 is asymptoti-
cally 3n2π/16 as n → ∞, so it improves on L. Fejes Tóth’s bound which is
n2π/5 as n → ∞. We also note that if one could prove that S(8, 3) is equal
to the conjectured value, then combining it with L. Fejes Tóth’s recursive
upper bound on S(n, 3), one would obtain an upper bound on S(n, 3) that is
asymptotically equal to the one in Theorem 1.1.

We mention that the corresponding problem in which we seek the max-
imum of the sum of the angles of n rays emanating from the origin of Rd is
solved for any d and n. This problem was also posed in the same paper of
L. Fejes Tóth [3] for d = 3. The 3-dimensional problem was fully solved as
of 1965, see [3, 4, 6–8]. The proof of Nielsen [7] uses a projection averaging
argument. We note that this argument can be modified so as to obtain a
solution of the general case of the problem for every n and d. Our proof of
Theorem 1.1 also uses this projection averaging idea, however, the details are
much more intricate.

2. The planar case

Before we prove Theorem 1.1, we solve the problem in the plane. This result
is probably known [5], however, we were unable to find any other reference,
thus, we decided to include a short proof for the sake of completeness.

Theorem 2.1. Let l1, . . . , ln be lines in R2 which all pass through the origin.
If we denote by ϕij the angle formed by li and lj, then∑

1≤i<j≤n

ϕij ≤
{
k2 · π2 , if n = 2k,
k(k + 1) · π2 , if n = 2k + 1.

Proof. Note that a simple compactness argument guarantees that the maxi-
mum of the angle sum exists, and it is attained by some configuration.

Observe that if l and l′ are two perpendicular lines and l′′ is an arbitrary
third line, then the angle sum determined by l, l′, and l′′ is always π. This
implies that if we have a perpendicular pair in a configuration of lines, then
the pair can be freely rotated about the origin while the total sum of the
angles remains unchanged.

Let k = bn/2c, then n = 2k or n = 2k+1. We are going to show that any
configuration of n lines can be continuously transformed into a configuration
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Figure 1. Rotating l1

that is the disjoint union of k perpendicular pairs (and possibly one remaining
line in arbitrary position) such that the angle sum does not decrease during
the transformation. This clearly proves Theorem 2.1.

Assume that (l1, l2), . . . , (l2m−1, l2m), m < k is a maximal set of pairwise
disjoint perpendicular pairs in l1, . . . , ln. During the transformation we will
keep each already existing perpendicular pair. By the above observation, we
may disregard these pairs as the angle sum of l1, . . . , ln is independent of
their positions.

Let ln be vertical (it coincides with the y-axis), see Figure 1. We say
that a line li is to the right of ln if li is obtained from ln by a rotation about
the origin with angle α, where −π/2 < α < 0. Similarly, if 0 < α < π/2, then
li is to the left of ln. If li = ln, then li is neither to the left nor to the right
of ln. By symmetry, we may clearly assume that there are at least as many
lines to the right of ln as to the left. The case l2m+1 = l2m+2 = . . . = ln being
obvious, we may assume that there is at least one line to the right of ln.

Observe that rotating ln by a small positive angle ε > 0, the sum of the
angles in l1, . . . , ln does not decrease. Thus, we may rotate ln until it becomes
perpendicular to a line on its right-hand side. In this way, we have created
a new perpendicular pair that is disjoint from (l1, l2), . . . , (l2m−1, l2m). This
completes the proof of Theorem 2.1.

�
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3. Proof of Theorem 1.1

Let S2 be the unit sphere of R3 centred at the origin. We denote the Euclidean
scalar product by 〈·, ·〉 and the induced norm by | · |. For u,v ∈ S2, we
introduce vu = (u × v) × u, which is the component of v perpendicular to
u. Let v1,v2 ∈ S2, and let ϕ = ∠(v1,v2) denote the angle formed by v1,v2.
Introduce ϕu = ϕu(v1,v2) for the angle formed by vu

1 and vu
2 , and write

ϕu
∗ (v1,v2) := min{ϕu(v1,v2), π − ϕu(v1,v2)}.

Let

I(v1,v2) = I(ϕ) :=
1

4π

∫
S2

ϕu
∗ (v1,v2)du,

where the integration is with respect to the spherical Lebesgue measure. We
will use the following lemma of Fáry [2].

Lemma 3.1 (Fáry, Lemme 1. on pp. 133 in [2]).

ϕ =
1

4π

∫
S2

ϕudu for any 0 ≤ ϕ ≤ π.

We start the proof of Theorem 1.1 with two lemmas.

Lemma 3.2. With the notation introduced above,

I(0) = 0 and I(π/2) = π/3.

Proof. The statement I(0) = 0 is clearly true, so we need to calculate I(π/2)
only. Let v1 = (1, 0, 0), v2 = (0, 1, 0) and define A = {(x, y, z) ∈ S2 | xy ≤ 0},
AC = {(x, y, z) ∈ S2 | xy > 0}, and AC+ = {(x, y, z) ∈ S2 | xy > 0, x > 0}.
Then the following holds

I(π/2) =
1

4π

∫
S2

ϕu
∗ (v1,v2)du =

1

4π

∫
A

ϕudu +
1

4π

∫
AC

π − ϕudu

=
1

4π

∫
S2

ϕudu− 1

4π

∫
AC

π − 2ϕudu

=
π

2
+

1

4π

∫
AC

πdu− 2 · 1

4π

∫
AC

ϕudu

= π − 4 · 1

4π

∫
AC

+

ϕudu

using Lemma 3.1. Obviously, it is enough to show that∫
AC

+

ϕudu =
2π2

3
.

Introduce the following spherical coordinates

u = u(θ, ψ) = (sin θ cosψ, sin θ sinψ, cos θ),



On the angle sum of lines 5

where 0 ≤ θ ≤ π and 0 ≤ ψ ≤ 2π. It is easily seen that

ϕu(v1,v2) = arccos
〈(u× v1)× u, (u× v2)× u〉
|(u× v1)× u| · |(u× v2)× u|

= arccos
〈u× v1,u× v2〉
|u× v1| · |u× v2|

.

Straightforward calculations yield that u × v1 = (0, cos θ,− sin θ sinψ) and
u× v2 = (− cos θ, 0, sin θ cosψ), and hence

〈u× v1,u× v2〉 = − sin2 θ sinψ cosψ,

|u× v1| · |u× v2| =
√

cos2 θ + sin4 θ sin2 ψ cos2 ψ.

Thus∫
AC

+

ϕudu =

∫ π

0

∫ π/2

0

arccos
− sin2 θ sinψ cosψ√

cos2 θ + sin4 θ sin2 ψ cos2 ψ
· sin θdψdθ

= 2 ·
∫ π/2

0

∫ π/2

0

(
π − arctan

cos θ

sin2 θ sinψ cosψ

)
· sin θdψdθ

= π2 − 2

∫ π/2

0

∫ π/2

0

arctan
cos θ

sin2 θ sinψ cosψ
· sin θdθdψ. (1)

The inner integral in (1) can be directly calculated as follows. Let

g(θ, ψ) =
1

2
tanψ · ln (2 cos(2θ) cos(2ψ) + 2 cos(2θ)− 2 cos(2ψ) + 6)

+
1

2
cotψ · ln (−2 cos(2θ) cos(2ψ) + 2 cos(2θ) + 2 cos(2ψ) + 6)

− cos θ · arctan
cos θ

sin2 θ sinψ cosψ
.

One can check by a tedious but straightforward calculation that

∂g(θ, ψ)

∂θ
= arctan

cos θ

sin2 θ sinψ cosψ
· sin θ.

Now, for a fixed 0 < ψ < π/2, we obtain∫ π/2

0

arctan
cos θ

sin2 θ sinψ cosψ
· sin θdθ

=
1

2
tanψ · ln (cos(π − 2ψ) + cos(π + 2ψ)− 2 cos(2ψ) + 4)

+
1

2
cotψ · ln (− cos(π − 2ψ)− cos(π + 2ψ) + 2 cos(2ψ) + 4)

−
[

1

2
tanψ · ln (cos(−2ψ) + cos(2ψ)− 2 cos(2ψ) + 8)

+
1

2
cotψ · ln (− cos(−2ψ)− cos(2ψ) + 2 cos(2ψ) + 8)− π/2

]
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=
1

2
tanψ · ln(4(1− cos(2ψ))) +

1

2
cotψ · ln(4(1 + cos(2ψ)))

+ π/2− ln 8

2
(tanψ + cotψ)

=
1

2

(
π + tanψ ln(sin2 ψ) + cotψ ln(cos2 ψ)

)
=
π

2
+ tanψ ln(sinψ) + cotψ ln(cosψ).

We turn to the outer integral in (1).∫ π/2

0

∫ π/2

0

arctan
cos θ

sin2 θ sinψ cosψ
· sin θdθdψ

=

∫ π/2

0

π

2
+ tanψ ln(sinψ) + cotψ ln(cosψ)dψ

=
π2

4
+

∫ π/2

0

tanψ ln(sinψ)dψ +

∫ π/2

0

cotψ ln(cosψ)dψ.

Using the substitution u = sinψ in the first integral and u = cosψ in the
second integral, we obtain that∫ π/2

0

tanψ ln(sinψ)dψ =

∫ π/2

0

cotψ ln(cosψ)dψ =

∫ 1

0

u lnu

1− u2
du.

Integration by parts gives∫ 1

0

u lnu

1− u2
du =

− lnu ln(1− u2)

2

∣∣∣∣1
0

+
1

2

∫ 1

0

ln(1− u2)

u
du,

where − lnu ln(1−u2)
2

∣∣∣1
0

= 0 by L’Hospital’s rule. Now, the substitution x = u2

yields

1

2

∫ 1

0

ln(1− u2)

u
du =

1

4

∫ 1

0

ln(1− x)

x
dx =

−1

4

∫ 1

0

Li1(x)

x
dx

=
−1

4
Li2(1) =

−π2

24
,

where in the last two steps we used the polylogarithm functions Lis(z) and
their well-known properties. For more information on the polylogarithm func-
tions we refer to [9]. This finishes the proof of Lemma 3.2. �

Lemma 3.3. The function I(ϕ) is concave on [0, π/2], and

I(ϕ) ≥ 2ϕ/3 for 0 ≤ ϕ ≤ π/2. (2)

Before we turn to the proof of Lemma 3.3, for the sake of completeness,
we recall some definitions and a theorem from [1].

The function f : [a, b] → R is superadditive on [a, b] if for any positive
h < b−a and x ∈ [a, b−h], f(a+h)−f(a) ≤ f(x+h)−f(x), cf. Definition 2.2
on pp. 61 in [1]. We call f locally superadditive on [a, b] if for every x0 ∈ [a, b],
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Figure 2. The projection of the angles

there exist arbitrarly small neighborhoods of x0 on which f is superadditive,
cf. Definition 2.3 on pp. 62 in [1].

Theorem 3.1 (Bruckner, Theorem 3.1. on pp. 62 in [1]). Let f be locally su-
peradditive and differentiable on an interval [a, b], with f ′ continuous almost
everywhere in [a, b]. Then f is convex.

Proof of Lemma 3.3. Obviously, I(ϕ) is a continuously differentiable function
of ϕ on [0, π/2].

Fix 0 ≤ α ≤ β ≤ π/2, a small 0 ≤ δ ≤ π/2−β, and a vector u ∈ S2. Let
∠(·, ·) denote the angle formed by two vectors. Choose four coplanar vectors
w1,w2,w3,w ∈ S2 such that ∠(w1,w2) = α, ∠(w1,w3) = β, ∠(w1,w) = δ,
∠(w,w2) = α+ δ, and ∠(w,w3) = β+ δ, see Figure 2. As before, we use the
abbreviations αu = αu(w1,w2) and αu

∗ = αu
∗ (w1,w2), and similarly for the

other angles.

We claim that

(α+ δ)u∗ − αu
∗ ≥ (β + δ)u∗ − βu

∗ . (3)

To prove (3), we write the left-hand side, and, respectively, the right-
hand side as follows:

(α+ δ)u∗ − αu
∗ =

 −δ
u, if αu > π/2,

π − 2αu − δu, if αu ≤ π/2 and (α+ δ)u > π/2,
δu, if (α+ δ)u ≤ π/2,

(4)
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and

(β + δ)u∗ − βu
∗ =

 −δ
u, if βu > π/2,

π − 2βu − δu, if βu ≤ π/2 and (β + δ)u > π/2,
δu, if (β + δ)u ≤ π/2.

(5)

To show (3), we consider three cases as in (4). If αu > π/2, then βu >
π/2, and equality holds in (3). If αu ≤ π/2 and (α+δ)u > π/2, then (β+δ)u >
π/2, and either the first or the second case applies in (5). Now, π−2αu−δu ≥
−δu is equvivalent to αu ≤ π/2, thus it holds true. Also, from αu ≤ βu, it
follows that π − 2αu − δu ≥ π − 2βu − δu, as claimed. The only case that
remains to be checked is when (α+ δ)u ≤ π/2, and thus (α+ δ)u∗ −αu

∗ = δu.
If, in (5), the first or the third case applies, then the inequality in (3) clearly
holds. Thus, we only need to consider the case when (β + δ)u > π/2. Then
δu > π − 2βu − δu, which finishes the proof of (3).

Since (3) holds true for any unit vector u ∈ S2, it follows that for any
0 ≤ α ≤ β ≤ π/2, and 0 ≤ δ ≤ π/2− β, we have

I(α+ δ)− I(α) ≥ I(β + δ)− I(β). (6)

Hence −I is superadditive on any subinterval of [0, π/2], and thus it satisfies
all the conditions of Theorem 3.1 on the interval [0, π/2]. It follows that −I is
convex, and so I is concave, as stated. Finally, the inequality (2) is a simple
consequence of Lemma 3.2 and of the concavity of I. This completes the proof
of Lemma 3.3. �

Proof of Theorem 1.1. Consider the lines l1, . . . , ln, and a vector u ∈ S2. Let
S be the plane through the origin with normal vector u, and let l′i denote the
orthogonal projection of the line li onto S. We denote by ϕu

ij the (non-obtuse)
angle formed by l′i and l′j . Applying (2), we obtain that

1

4π

∫
S2

∑
1≤i<j≤n

ϕu
ijdu =

∑
1≤i<j≤n

1

4π

∫
S2

ϕu
ijdu

≥
∑

1≤i<j≤n

2ϕij/3 =
2

3

∑
1≤i<j≤n

ϕij .

Therefore, there exists a u0 ∈ S2 with the property∑
1≤i<j≤n

ϕu0
ij ≥

2

3

∑
1≤i<j≤n

ϕij .

Finally, Theorem 2.1 implies that∑
1≤i<j≤n

ϕu0
ij ≤

{
k2 · π2 , if n = 2k,
k(k + 1) · π2 , if n = 2k + 1,

which completes the proof of Theorem 1.1. �



REFERENCES 9

4. Acknowledgements

This paper was supported in part by TÁMOP-4.2.2.B-15/1/KONV-2015-
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