Mean width of inscribed random polytopes in
a reasonably smooth convex body
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Abstract

Let K be a convex body in RY and let X,, = (x1,...,2,) be a
random sample of n independent points in K chosen according to the
uniform distribution. The convex hull K,, of X,, is a random polytope
inscribed in K, and we consider its mean width W (K,,). In this article,
we assume that K has with a rolling ball of radius ¢ > 0. First we
extend the asymptotic formula for the expectation of W (K)— W (K,)
earlier known in the case when 0K has positive Gaussian curvature.
In addition, we determine the order of the variance of W(K,,), and
prove the strong law of large numbers for W (K,). We note that the
strong law of large numbers for any quermassintegral was only known
if 0K has positive Gaussian curvature.

1 Introduction and Results

The convex hull of n independent, uniformly distributed random points in
a given convex body K in R? is a type of random polytope that has been
studied extensively (basic references are found in the surveys [32] and [28],
see also [14]). As in the seminal papers of Rényi and Sulanke [22, 23] (re-
stricted to the planar case), which initiated this line of research, most of the
investigations deal with asymptotic results, for n tending to infinity. We note
that circumscribed polytopes have also been investigated, among others, by
A. Rényi and R. Sulanke [24], F.J. Kaltenbach [18], and K.J. Boroczky and
M. Reitzner [9].
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We are interested in asymptotic results on the approximation orders
of general convex bodies by random polytopes. We write g(n) ~ h(n) if
lim,, o % = 1. Let K be a convex body in R? with V(K) = 1, and let
K, denote the convex hull of n independent, uniformly (according to the
Lebesgue measure) distributed random points in K. By W (-) and V(-) we
denote, respectively, mean width and volume. Upper and lower bounds for
the order of magnitude of the expectation of the mean width difference were
determined by R. Schneider [26]. According to Schneider’s theorem there

exist constants 71,7, > 0 depending on K such that
YD < W(K) —EW(K,) < yen~ Y, (1)

The upper bound in (1) is of optimal order for polytopes. This can be
verified, for example, with the help of (5). Let C% denote the set of all
convex bodies with boundary of differentiability class C* and with Gaussian
curvature £(z) > 0 for all z € K. For the case when K is C?, and hence
k(x) > 0 for all x € 0K, R. Schneider, J.A. Wieacker [29] proved that

o (-2 ) 1
W(K) —EW(K,) ~ (jtl) . / k(z) T dr - — 2)
d(d+ 1)1 kgrgt] JOK

where k4 is the volume of the Euclidean d-dimensional unit ball. M. Reitzner
[20] extended the asymptotic formula (2) to convex bodies with C3 boundary.
In the case when the boundary of K is C¥ for k > 4, an asymptotic expansion
of the expectation was obtained by P.M. Gruber [13] and M. Reitzner [20].

In this paper, we further extend the class of convex bodies for which (2)
holds. We say that a convex body K has a rolling ball if there exists a o > 0
such that any x € 0K lies in some ball of radius ¢ contained in K. According
to D. Hug [17], the existence of a rolling ball is equivalent saying that the
exterior unit normal at x € 0K is a Lipschitz function of . In particular,
if 0K is C? then K has a rolling ball, which was already observed by W.
Blaschke.

THEOREM 1.1 The asymptotic formula (2) holds for any convex body K
of volume one which has a rolling ball.

We note that Theorem 1.1 is close to be optimal. According to Exam-
ple 2.1, there exists a convex body K whose boundary is C', and even (g
at all but one point such that lim,, nﬁ(W(K) —EW(K,)) = .

We recall the corresponding results about the expectation of volume for
comparison. I. Barany and D.G. Larman [7] proved that there exist constants
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1,72 > 0 depending on K such that
1n tlogn)t < V(K) — EV(K,) < yon~2/4+D), 3)

Here, as opposed to (1), the lower bound is optimal for polytopes, and the
upper bound is optimal for smooth convex bodies. On the one hand, I.
Barany and Ch. Buchta [6] provided an asymptotic formula for the case when
K is a polytope. On the other hand, generalizing a result of I. Barany [3] for
convex bodies with C% boundaries, C. Schiitt [30] proved that if x(z) > 0
for a set of x € K of positive (d — 1)-measure then

V(K)—-EV(K,) ~c- / /i(:t)ﬁdx p /)
OK
where the constant ¢ depends only on d. Here the integral above is the
so-called affine surface area.

Furthermore, M. Reitzner [19] proved that the strong law of large numbers
holds in the case of random volume approximation of convex bodies with
C? boundary. This result was made possible by the the upper bound on
the variance of the volume of optimal order obtained in [19]. A matching
lower bound on the variance is proved in I. Bardany and M. Reitzner [8] for
any convex body. In this article, we prove the analogous estimates on the
variance of the mean width for convex bodies with a rolling ball. We note
that in the case of random approximation, upper bounds of optimal order
on the variance have been proved only for convex bodies that are either
polytopes or have C% boundary (see say M. Reitzner [21], V. Vu [31] and 1.
Béardny and M. Reitzner [8]).

THEOREM 1.2 If K is a d-dimensional convex body of volume one with
a rolling ball then

d+3

_d+3 _d+3
mn~dt < VarW(K,) < yen” a1,
where the positive constants v1,vs depend on K.

The upper bound in Theorem 1.2 yields the strong law of large numbers
by standard arguments.

THEOREM 1.3 If K is a d-dimensional convex body of volume one with
a rolling ball then

2
2

T (-2
lim (W(K) — W(K,))nat = (Cﬂ L - /8K K(x) o1 de

+

d—1

nee d(d+ 1)1 kgr g

with probability 1.



2 Some general estimates about the mean width
of a random polytope

We write H™! to denote the (d — 1)-dimensional Hausdorff measure. The
scalar product is denoted by (-,-), the Euclidean unit ball in R¢ centred at
the origin is denoted by B¢, and dB? is denoted by S9!

For any convex body K in R? integration with respect to the (d — 1)-
dimensional Hausdorff measure on 0K is denoted by |, or - dr. We say 0K
is twice differentiable in the generalized sense at an x € OK if there exists a
quadratic form @ on R¢! with the following property: If K is positioned in
a way such that z = o and R?! is a tangent hyperplane to K from below
then a neighbourhood of 0 on 0K is the graph of a convex function f on a
(d — 1)-dimensional ball in R4~! satisfying

f(2) =3 Q(2) +o(]|2]*) (4)

as z tends to zero. In this case the generalized Gaussian curvature at x is
k(z) = det Q. According to the Alexandrov theorem (see R. Schneider [27] or
P.M. Gruber [15]), the boundary 0K is twice differentiable in the generalized
sense almost everywhere.

For any compact convex set M in R?, we write hj; to denote its support
function; namely, hy(u) = max,en(u, ). In particular, the width of M in
the direction u € S is wyr(u) = has(u) + har(—u), and the mean width is

1 2
W(M)=— du = — h du.
( ) dlid /Sdl ’LUM<U) Y dlid Sgd—1 M<u> Y

Let K be a convex body in R? with volume one. The implied constant in
O(-) in the formulas below depends on K.

We start with examining the expectation of the mean width following
ideas set forth in R. Schneider, J.A. Wieacker [29]. For ¢t > 0 and u € S9!,
let C(u,t) ={x € K: (u,z) > hgx(u) —t}. For zy,...,x, € K, we usually
write X,, = (z1,...,2,) and K, = [x1,...,2,], and we define the function

0 otherwise .

o(t,u, X,) = {

In particular, for fixed t and u, (¢, u, X,,) = 1 if and only if none of x1, ..., z,



lie in C(u,t). We deduce, using the Fubini theorem, that

E(W(K) — W(K,)) = d&d / n / ) = b, () dudX,

w (u)
= / / / o(t,u, X)) dt dudX,
dlid n Jgd—1
wi (u
= (1-V t)))" dt du.
2 [ [ viewnyraa

There exist 79, no > 0 depending on K such that V(C(u,t)) > 222 for any
n>ng, u€ ST and t > yo(ln”) Therefore, if n > ng then

m»—'

BV(K) - W(K,) = o /S N / O V() dtdu + O,
(5)

Example 2.1 If K is a convezr body in R? such that o € 0K, 0K is C° on

0K \o, and the graph of f( ) = ||lz|*5¢ on R*1N B? is part of 0K then
< 2

E(W(K) - W(K,)) > 7n3d2+1 where v > 0 depends on d and 3d2+1 T

Proof: We write ug to denote opposite of the dth basis vector, and ~;, s, . ..
to denote positive constants depending on d. As f(z) = ||lz]|*™ for a = 35,
simple calculations show that at all z — f(x)ug for z € R4~ N (B%\o), the
exterior unit normal u at z — f(z)ug to K satisfies v ||z||* < ||u — wol| <
Yo||z||*, and each the principal curvature is at least ys|jz|| ™" > 4lju —
uol| 7. Let Z(n) = S9! N (ug + n#Fe BY). In particular if n is large,

u € =(n )aulrldtgn_fll:%t then

ladl

V(C(u,t) < y5t'® ez < pen!

14 _da+1

Therefore (5) yields E(W/(K) — W(Ky)) = V6 [g(,yn~ e du >y ate. O

Next, we estimate the variance. According to the Efron-Stein jackknife
inequality (see M. Reitzner [19]), we have that

VarW (K,) < (n + DE(W (K1) — W(K,))% (6)

We write f < g if f < 7g for a constant v > 0 depending only on K.
For t > 0, u € S and zy,...,7,41 € K, let X,y = (z1,...,Tns1),
Kpy1 = [21,..., 2541 and K, = |21, ..., 2,]. Further, we define the function

1 if by, (u) <t < hg,,, (u)
0 otherwise .

@(tv u, Xn+1) = {

b}



We set the volume of the empty set to be zero. It follows by the Efron-Stein
jackknife inequality and the Fubini theorem that

2
VarlWV(K,) < n/ (/ hi,.,.(u) — hg, (u) du) dX i1
Kn+1 Sd—1

- /K// (hse () — B, (1)

(b, (V) = hie, (v)) dv du anH

wK(v wi (u
-, / // )
Kn+1 Jgd—1 Jgd—1

X@(s,v, Xpi1)dsdt dvdu an+1
wi (v)  rwi(u
- / / / / Clu,t) N C(v, )
Sd 1 Sd 1
C(u,t) UC(v s)))"dsdtdvdu
For any u € S*! and s,t > 0, let
Y(u,t;s) = {v e S Clu,t) N C(v,s) # B},
and for v € X(u,t; s), let
Vi (u,t;v,8) = max{V(C(u,t),V(C(v,s)).

Therefore our estimate of the variance yields that if n > ng then

d
VarW(K,) < n/ / // Vi(u,t;v,s)
ga—1 3 (u,t;s)

x(1—Vi(u,t;v,s))"dvdsdt du + O(n?). (7)

\H

3 Proof of Theorem 1.1

Let K be a convex body in R? with a rolling ball of radius o0 > 0. We
write u, to denote the exterior unit normal at x € K. In particular, if f is
measurable on S~ then by formula (2.5.30) in [27]

f(u)du = f(uy)k(z) de. (8)

gd—1 K
Let x € OK. The existence of the rolling ball yields that

— a+1

2 2
V(C(ug, 1)) > M

fi .
> I forte (0,0 (9
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In addition, if k(x) exists and positive then we deduce by (4) that

2%5
limt™ 2 V(C(ug, t)) = a1

_£F R 10
t—0 (d+ 1)k(x)2 (10)

We will need some asymptotic formula using the gamma function (see
E. Artin [1]). First we note that for a > 0, the representation of the beta
function by the gamma function and the Stirling formula imply

! ['(a)T 1
lim no‘/ (1 —7)"dr = lim no‘M =I'(a).
n—00 0 n—oo  ['(a+n+1)

Now if W <7 <1, then (1 — 7)" < e < n~(@*)_ Therefore, if
f(n) € (0,1) satisfies f(n) > W for large n, then

f(n)
[t~ rape
0

as n tends to infinity. For > 0 and w > 0, it follows using the substitution

= wts that
r(AD) e

g(n)
/ (1 — wt's )dt ~
0

208+

(d+ 1w a1 d+1
assuming that g(n) € (O,w_d%l) for all n, and g(n) > (W)ﬁ for large
n, where a = %.

Proof of Theorem 1.1. For the ng coming from (5), we define

) ’Yo(lnTn)é
0, (1) = n / (1= V(Clu,t))" dt
0

dlid

for n > ng and u € S9!, According to (5), we have

lim na T E(W(K) — W(K,)) = lim [ 60,(uy)s(z)dz. (12)
Since for large n, 6,,(u) < 7 for some v depending only on K by (9) and (11)
(with 8 = 0) for any v € S, and k(z) < o=@ for any z € K, we may
apply the Lebesgue dominated convergence theorem.
Let x € 0K such that k(z) exists and positive. Now for any ¢ € (0, 1),
(10) yields that there exists a t. > 0 such that

277 Kg_1 d+1 272 Ky d+1

(1-¢)- A < V(Ou ) < (1+6) - —— Ly



for t € (0,t.). Therefore (11) (with 8 = 0) implies

sz T (-2
lim 6,,(u,) = ~(2) <d+1)i.

noee (d+ 1) drgr T}

In turn, we conclude Theorem 1.1 by (12). O

4 Proof of the upper bound in Theorem 1.2

To prove Theorem 1.2, we observe that if a € (0,1) then

(1=95)" a\™ an
Ao (g, oy, m
1—a)r (1+3 >

which in turn yields

a(l—a)" < % (1—%)”. (13)

Since our estimate on the variance depends on (7), we estimate the size
of ¥(u,t;s) for u € S41. The existence of the rolling ball of radius o at

x € C(u,t) N OK shows that |ju, — u| < \/th for t < p. In particular, let

0<s<t<o Ifve S(ut;s) then Jv —ul| < 4072t2, and hence the

(d — 1)-measure of %(u, t;s) is at most 4tz for some v > 0 depending on
d—1

d. We set v* = 'i‘i‘dlflT , and simplify (7) by applying first (9) and (13), and

secondly the formula (11) to obtain

d—1

’YO(T)% s dr1\ ™
VarWW(K,) < n/ / (1 - 7*t7> dsdtdu+ O(n™?)
sa-1.Jo 0

’YO(T)d n
< / e (1 - ’y*t%> dt +O(n™2) < i,
0

5 Proof of the lower bound in Theorem 1.2

The idea of the proof is similar to the one in M. Reitzner ([21]); namely,
VarVy(K,,) is at least the sum of the variances inside “independent caps”.
First we separate the part of K where reasonably sized caps are contained
in touching balls of fixed radius. Next we verify the technical estimates (15)
and (18), which lead to the estimates (20) and (21) ensuring the independence



of the caps in the final argument. In addition we need Lemma 5.1 to estimate
the “variance inside a cap”.

For any polytope P and vertex z of P, we write Np(z) to denote the ex-
terior normal cone to z. We recall the Alexandrov theorem (see R. Schneider
[27] or P.M. Gruber [15]) that the boundary 0K is twice differentiable in the
generalized sense almost everywhere with respect to H9!. We deduce by
(8) that the (d — 1)-measure of the points x € 0K with x(z) > 0 is positive.
Therefore there exists R > 0 and a =/ C 9K with HY(Z') > 0 such that
each principal curvature at all x € Z/ is at least %. For any x € Z’ there
exists a maximal o, € (0, g%] such that C(u,,0,) C 2 — Ru, + R B¢ and o,
being lower semi continuous, is a measurable function of z € =Z'. Therefore
there exists o € (0, g% such that if = denotes the family of 2 € 9K such
that C'(ug,0) C © — Ru, + R B? then

HIHE) > 0. (14)

For u € S ! and t > 0, we define H(u,t) = {z: (z,u) = hg(u) —t}.
Let x € =, and let t € (0,0). The existence of the rolling ball and the
definition of = imply

(z — tuy + ot BY) N H(ug, t) C H(ug, t) N K C o — tu, + V2RtBY.  (15)

Let wy, ..., wy be the vertices of a regular (d — 1)-simplex in H (u,,t) whose
circumcentre is x — tu,, and whose circumradius is y/ot, and hence

(x—tux—i-‘/TaBd) N H(ug,t) C [wy,...,wg C K.
In addition we set wy = x, and for j =0,...,d,
Aj(z,t) = w; + 15([wo, . . ., wa] — w;y).
In particular (15) yields
V(A;(z,8) >t T forj=0,...,d. (16)
If z; € Aj(z,t), j=0,...,d, and v € uy then

VEH/2d) € oy = (00) < 2 -
t/2 < (20,Uz) = Py ag(ue) <0t
and hence the tangent function of the angle of w, and any u € Ny, . .1(%0)
is between YL and 24! Therefore defining

Ve Ve
t
El(a:,t) — Sdfl N (ux + i Bd) ’
8,/0
2
Yo(z,t) = S4'n (ux + 24Vt Bd> ,
Vo
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we have

For 7 = 1,2, we consider the dual cones
Yi(w,t) ={y € R%: (y,v) <0 forall ve€ X(z,t)},
which satisfy
Y5(z,t) C{tly —20): t >0 and y € [20,21,...,24)} T Xi(z,t). (19)

Let v =2°d*R/p, 0g = 0 /v and ¥ = 2¢/Ry. If r € Z and t € (0, 0¢) then
it follows by (15) that

C(x,yt) C x +3VtBY. (20)

Next if zg € Ag(z,t) and y € H(u,,yt) N K then (15) yields that the tangent

20V/2RYE

of the angle of —u, and y — zy is at most Gt = ﬁi’ therefore y — 2y €

Yi5(x,t). In particular
K\C(z,7t) C 2z + X5(x, ). (21)

If A is an event in some probability space then we write I(A) to denote
the indicator function. In addition for z € =, t € (0,09), and z; € A;(z,1),

i=0,...,d, writing F = [z1, ..., zq| we define
Wete) = 5 | B
F\20) = — 20,F]\U) QU.
0 dlid Zg(x,t) [0 }

Naturally Wr(zp) depends on x and ¢, as well, but it will be always clear
what x and t are.

LEMMA 5.1 If Z is a random variable chosen uniformly from Ag(x,t) for
re=Zandt € (0,00), and z; € Ai(z,t) fori=1,...,d; then

.....

Proof: We define F' = [z1,...,24]. Let w be the centroid of the facet of
Ag(x,t) opposite to x, let wy = %m + %w and wy = %x + %w. In addition
we define (compare (19))

\1/1 == (U)l - Z;(ZE, t)) N Ao(l',t),

Uy = (w2 + 2;('1.7 t)) N AO(x7t>'
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In particular there exists some vy > 0 depending on K such that

V(¥5) = %V (Ao(z,1)). (22)
Moreover for any Z; € U, and Z, € ¥y, if v € S9! then

hiz,,7(V) = hizy,r(v) >0

by [Zs, 21, --,24) C [Z1,21,...,24), and if even v € Xq(z,t) (compare (18))
then

h[Zl,F}(U> — h[Zg,F](U) = <U, Zl> — <’U, ZQ> Z <U,U}1> — <v,w2> > t.
Therefore if Z; € ¥ and Z5 € ¥y then
Wr(Z1) = We(Zs) >t HT (S (1) > 75

In turn we deduce (compare (22))

__ 1 __
ValWp(Z) = 5 E(Wr(Z) - Wr(Z)?
1 __
> 5 E((Wp(Z1) = Wp(Z2))? 1(Zy € Uy, Zy € U,)]
> tME[I(Z € Uy, Zy € Uy)] >t O

It is sufficient to prove the lower bound in Theorem 1.2 for large enough
n. We fix
2
p=n a+, (23)

and hence V (C(u,, n)) ~ 1/n for all x € Z. We choose a maximal family of
points i, ..., ym € = such that for ¢ # j, we have (compare (20))

lyi — yjll > 29Vt
In particular (14) yields
m > (24)

Forj=1,...,m,let A; denote the event that each A;(y;,t,),i=0,...,d
contains exactly one random point out of z1,...,z,, and C(y;,yt,) contains
no other random point (compare (21)). We note that there exist positive
a, # depending only on K such that for « =0, ..., d, we have

V(Ai(yj,tn)) > a/n and V(C(y;,7t.)) < B/n.

11



Thus for j =1,...,m, we have

P{A,} > <d Z 1) <%)d+1 (1 - g)n_d_l > 1. (25)

If A; holds then we write Z; to denote the random point in Ay(y;, t,,), and

F; to denote the convex hull of the random points in A;(y;, t,) fori =1,...,d.
Hence for any u € ¥s(y;,t,), (21) yields

hi,(w) = hiz;,r,) () (26)

given A;. In particular if 1 <i < j < m and 4;, A; hold, then Wg,(Z;) and
Wr,(Z;) are independent according to (18).

We next introduce the sigma algebra F that keeps track of everything
except the location of Z; € Ay(y;,t,) for which A; occurs. We decompose
the variance by conditioning on F:

VarW(K,) = EVar(W(K,)|F)+ VarE(W (K,)|F)
> E(VarW(K,)|F).

The independence structure mentioned above implies that

Var(W(EK,) | F) = > Varg W(K,)

where the variance is taken with respect to the random variable Z; € Ag(y;, t,),
and we sum over all j = 1,...,m with I(A4;) = 1. Combining this with
Lemma 5.1, (23), (24) and with (25) implies

ValW(K,) > E Y | >nE (iﬂ&))

1(A;)=1

S i
n ‘m>n di

6 Proof of Theorem 1.3

First, we deduce by Chebyshev’s inequality that
P (|W(K) = W(K,) — E(W(K) = W(K,)[n7T > &) < e *naiVarV(K,)

d—1

<K noodfr,

12



_d-1
Since the sum >_7, n, “" is finite for ny = k*, the sum of the probabili-
ties

P (|W<K> WK — EOW(E) - W(Kn)) nf™ > )

for k > 2 is finite as well. Therefore the Borel-Cantelli lemma and Theo-
rem 1.1 yield that

2 20 () di2
lim (W(K) — W(K,,))n/" = e E— / k(z)eide  (27)
hoe d(d + 1) & ggritt JOK

with probability 1. Now, W(K) — W(K,,) is decreasing, and hence

(W(K) =W (Ko )IE < (W) =W (Kt < (W(EK) =W (K0T

hold for ni_; < n < ng. As limp_.o anl = 1, the subsequence limit (27)
yields Theorem 1.3.

Acknowledgement: We would like to acknowledge the stimulating con-
versations with Imre Baréany.
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