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Abstract

Let K be a convex body in Rd and let Xn = (x1, . . . , xn) be a
random sample of n independent points in K chosen according to the
uniform distribution. The convex hull Kn of Xn is a random polytope
inscribed in K, and we consider its mean width W (Kn). In this article,
we assume that K has with a rolling ball of radius % > 0. First we
extend the asymptotic formula for the expectation of W (K)−W (Kn)
earlier known in the case when ∂K has positive Gaussian curvature.
In addition, we determine the order of the variance of W (Kn), and
prove the strong law of large numbers for W (Kn). We note that the
strong law of large numbers for any quermassintegral was only known
if ∂K has positive Gaussian curvature.

1 Introduction and Results

The convex hull of n independent, uniformly distributed random points in
a given convex body K in Rd is a type of random polytope that has been
studied extensively (basic references are found in the surveys [32] and [28],
see also [14]). As in the seminal papers of Rényi and Sulanke [22, 23] (re-
stricted to the planar case), which initiated this line of research, most of the
investigations deal with asymptotic results, for n tending to infinity. We note
that circumscribed polytopes have also been investigated, among others, by
A. Rényi and R. Sulanke [24], F.J. Kaltenbach [18], and K.J. Böröczky and
M. Reitzner [9].
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We are interested in asymptotic results on the approximation orders
of general convex bodies by random polytopes. We write g(n) ∼ h(n) if

limn→∞
g(n)
h(n)

= 1. Let K be a convex body in Rd with V (K) = 1, and let

Kn denote the convex hull of n independent, uniformly (according to the
Lebesgue measure) distributed random points in K. By W (·) and V (·) we
denote, respectively, mean width and volume. Upper and lower bounds for
the order of magnitude of the expectation of the mean width difference were
determined by R. Schneider [26]. According to Schneider’s theorem there
exist constants γ1, γ2 > 0 depending on K such that

γ1n
−2/(d+1) < W (K)− EW (Kn) < γ2n

−1/d. (1)

The upper bound in (1) is of optimal order for polytopes. This can be
verified, for example, with the help of (5). Let Ck

+ denote the set of all
convex bodies with boundary of differentiability class Ck and with Gaussian
curvature κ(x) > 0 for all x ∈ ∂K. For the case when ∂K is C3

+, and hence
κ(x) > 0 for all x ∈ ∂K, R. Schneider, J.A. Wieacker [29] proved that

W (K)− EW (Kn) ∼
2Γ( 2

d+1
)

d(d+ 1)
d−1
d+1κdκ

2
d+1

d−1

∫
∂K

κ(x)
d+2
d+1dx · 1

n
2
d+1

, (2)

where κd is the volume of the Euclidean d-dimensional unit ball. M. Reitzner
[20] extended the asymptotic formula (2) to convex bodies with C2

+ boundary.
In the case when the boundary of K is Ck

+ for k ≥ 4, an asymptotic expansion
of the expectation was obtained by P.M. Gruber [13] and M. Reitzner [20].

In this paper, we further extend the class of convex bodies for which (2)
holds. We say that a convex body K has a rolling ball if there exists a % > 0
such that any x ∈ ∂K lies in some ball of radius % contained in K. According
to D. Hug [17], the existence of a rolling ball is equivalent saying that the
exterior unit normal at x ∈ ∂K is a Lipschitz function of x. In particular,
if ∂K is C2 then K has a rolling ball, which was already observed by W.
Blaschke.

THEOREM 1.1 The asymptotic formula (2) holds for any convex body K
of volume one which has a rolling ball.

We note that Theorem 1.1 is close to be optimal. According to Exam-
ple 2.1, there exists a convex body K whose boundary is C1, and even C∞+
at all but one point such that limn→∞ n

2
d+1 (W (K)− EW (Kn)) =∞.

We recall the corresponding results about the expectation of volume for
comparison. I. Bárány and D.G. Larman [7] proved that there exist constants
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γ1, γ2 > 0 depending on K such that

γ1n
−1(log n)d−1 < V (K)− EV (Kn) < γ2n

−2/(d+1). (3)

Here, as opposed to (1), the lower bound is optimal for polytopes, and the
upper bound is optimal for smooth convex bodies. On the one hand, I.
Bárány and Ch. Buchta [6] provided an asymptotic formula for the case when
K is a polytope. On the other hand, generalizing a result of I. Bárány [3] for
convex bodies with C3

+ boundaries, C. Schütt [30] proved that if κ(x) > 0
for a set of x ∈ ∂K of positive (d− 1)-measure then

V (K)− EV (Kn) ∼ c ·
∫
∂K

κ(x)
1
d+1dx · n−2/(d+1),

where the constant c depends only on d. Here the integral above is the
so-called affine surface area.

Furthermore, M. Reitzner [19] proved that the strong law of large numbers
holds in the case of random volume approximation of convex bodies with
C2

+ boundary. This result was made possible by the the upper bound on
the variance of the volume of optimal order obtained in [19]. A matching
lower bound on the variance is proved in I. Bárány and M. Reitzner [8] for
any convex body. In this article, we prove the analogous estimates on the
variance of the mean width for convex bodies with a rolling ball. We note
that in the case of random approximation, upper bounds of optimal order
on the variance have been proved only for convex bodies that are either
polytopes or have C2

+ boundary (see say M. Reitzner [21], V. Vu [31] and I.
Bárány and M. Reitzner [8]).

THEOREM 1.2 If K is a d-dimensional convex body of volume one with
a rolling ball then

γ1 n
− d+3
d+1 < VarW (Kn) < γ2 n

− d+3
d+1 ,

where the positive constants γ1, γ2 depend on K.

The upper bound in Theorem 1.2 yields the strong law of large numbers
by standard arguments.

THEOREM 1.3 If K is a d-dimensional convex body of volume one with
a rolling ball then

lim
n→∞

(W (K)−W (Kn))n
2
d+1 =

2Γ( 2
d+1

)

d(d+ 1)
d−1
d+1κdκ

2
d+1

d−1

∫
∂K

κ(x)
d+2
d+1dx

with probability 1.
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2 Some general estimates about the mean width

of a random polytope

We write Hd−1 to denote the (d − 1)-dimensional Hausdorff measure. The
scalar product is denoted by 〈·, ·〉, the Euclidean unit ball in Rd centred at
the origin is denoted by Bd, and ∂Bd is denoted by Sd−1.

For any convex body K in Rd, integration with respect to the (d − 1)-
dimensional Hausdorff measure on ∂K is denoted by

∫
∂K
· · · dx. We say ∂K

is twice differentiable in the generalized sense at an x ∈ ∂K if there exists a
quadratic form Q on Rd−1 with the following property: If K is positioned in
a way such that x = o and Rd−1 is a tangent hyperplane to K from below
then a neighbourhood of o on ∂K is the graph of a convex function f on a
(d− 1)-dimensional ball in Rd−1 satisfying

f(z) = 1
2
Q(z) + o(‖z|2) (4)

as z tends to zero. In this case the generalized Gaussian curvature at x is
κ(x) = detQ. According to the Alexandrov theorem (see R. Schneider [27] or
P.M. Gruber [15]), the boundary ∂K is twice differentiable in the generalized
sense almost everywhere.

For any compact convex set M in Rd, we write hM to denote its support
function; namely, hM(u) = maxx∈M〈u, x〉. In particular, the width of M in
the direction u ∈ Sd−1 is wM(u) = hM(u) + hM(−u), and the mean width is

W (M) =
1

dκd

∫
Sd−1

wM(u) du =
2

dκd

∫
Sd−1

hM(u) du.

Let K be a convex body in Rd with volume one. The implied constant in
O(·) in the formulas below depends on K.

We start with examining the expectation of the mean width following
ideas set forth in R. Schneider, J.A. Wieacker [29]. For t ≥ 0 and u ∈ Sd−1,
let C(u, t) = {x ∈ K : 〈u, x〉 ≥ hK(u) − t}. For x1, . . . , xn ∈ K, we usually
write Xn = (x1, . . . , xn) and Kn = [x1, . . . , xn], and we define the function

ϕ(t, u,Xn) =

{
1 if 0 ≤ t < hK(u)− hKn(u)
0 otherwise .

In particular, for fixed t and u, ϕ(t, u,Xn) = 1 if and only if none of x1, . . . , xn
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lie in C(u, t). We deduce, using the Fubini theorem, that

E(W (K)−W (Kn)) =
2

dκd

∫
Kn

∫
Sd−1

hK(u)− hKn(u) du dXn

=
2

dκd

∫
Kn

∫
Sd−1

∫ wK(u)

0

ϕ(t, u,Xn) dt du dXn

=
2

dκd

∫
Sd−1

∫ wK(u)

0

(1− V (C(u, t)))n dt du.

There exist γ0, n0 > 0 depending on K such that V (C(u, t)) > 3 lnn
n

for any

n > n0, u ∈ Sd−1 and t > γ0( lnn
n

)
1
d . Therefore, if n > n0 then

E(W (K)−W (Kn)) =
2

dκd

∫
Sd−1

∫ γ0( lnn
n

)
1
d

0

(1− V (C(u, t)))n dt du+O(n−3).

(5)

Example 2.1 If K is a convex body in Rd such that o ∈ ∂K, ∂K is C∞+ on

∂K\o, and the graph of f(x) = ‖x‖ 3d+1
3d on Rd−1 ∩ Bd is part of ∂K then

E(W (K)−W (Kn)) ≥ γ n
−4d

3d2+1 where γ > 0 depends on d and 4d
3d2+1

< 2
d+1

.

Proof: We write u0 to denote opposite of the dth basis vector, and γ1, γ2, . . .
to denote positive constants depending on d. As f(x) = ‖x‖1+α for α = 1

3d
,

simple calculations show that at all x − f(x)u0 for x ∈ Rd−1 ∩ (Bd\o), the
exterior unit normal u at x − f(x)u0 to K satisfies γ1‖x‖α ≤ ‖u − u0‖ ≤
γ2‖x‖α, and each the principal curvature is at least γ3‖x‖−1+α ≥ γ4‖u −
u0‖

−1+α
α . Let Ξ(n) = Sd−1 ∩ (u0 + n

−α
d+α Bd). In particular if n is large,

u ∈ Ξ(n) and t ≤ n−
1+α
d+α then

V (C(u, t)) ≤ γ5t
d+1
2 n−

1−α
d+α
· d−1

2 ≤ γ5n
−1.

Therefore (5) yields E(W (K)−W (Kn)) ≥ γ6

∫
Ξ(n)

n−
1+α
d+α du ≥ γ7n

− dα+1
d+α . 2

Next, we estimate the variance. According to the Efron-Stein jackknife
inequality (see M. Reitzner [19]), we have that

VarW (Kn) ≤ (n+ 1)E(W (Kn+1)−W (Kn))2. (6)

We write f � g if f ≤ γg for a constant γ > 0 depending only on K.
For t ≥ 0, u ∈ Sd−1 and x1, . . . , xn+1 ∈ K, let Xn+1 = (x1, . . . , xn+1),
Kn+1 = [x1, . . . , xn+1] and Kn = [x1, . . . , xn]. Further, we define the function

ϕ̄(t, u,Xn+1) =

{
1 if hKn(u) ≤ t ≤ hKn+1(u)
0 otherwise .
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We set the volume of the empty set to be zero. It follows by the Efron-Stein
jackknife inequality and the Fubini theorem that

VarW (Kn) � n

∫
Kn+1

(∫
Sd−1

hKn+1(u)− hKn(u) du

)2

dXn+1

= n

∫
Kn+1

∫
Sd−1

∫
Sd−1

(hKn+1(u)− hKn(u))

×(hKn+1(v)− hKn(v)) dv du dXn+1

= n

∫
Kn+1

∫
Sd−1

∫
Sd−1

∫ wK(v)

0

∫ wK(u)

0

ϕ̄(t, u,Xn+1)

×ϕ̄(s, v,Xn+1) ds dt dv du dXn+1

= n

∫
Sd−1

∫
Sd−1

∫ wK(v)

0

∫ wK(u)

0

V (C(u, t) ∩ C(v, s))

×(1− V (C(u, t) ∪ C(v, s)))nds dt dv du.

For any u ∈ Sd−1 and s, t ≥ 0, let

Σ(u, t; s) = {v ∈ Sd−1 : C(u, t) ∩ C(v, s) 6= ∅},

and for v ∈ Σ(u, t; s), let

V+(u, t; v, s) = max{V (C(u, t), V (C(v, s)).

Therefore our estimate of the variance yields that if n > n0 then

VarW (Kn) � n

∫
Sd−1

∫ γ0( lnn
n

)
1
d

0

∫ t

0

∫
Σ(u,t;s)

V+(u, t; v, s)

×(1− V+(u, t; v, s))ndv ds dt du+O(n−2). (7)

3 Proof of Theorem 1.1

Let K be a convex body in Rd with a rolling ball of radius % > 0. We
write ux to denote the exterior unit normal at x ∈ ∂K. In particular, if f is
measurable on Sd−1 then by formula (2.5.30) in [27]∫

Sd−1

f(u) du =

∫
∂K

f(ux)κ(x) dx. (8)

Let x ∈ ∂K. The existence of the rolling ball yields that

V (C(ux, t)) ≥
2κd−1%

d−1
2 t

d+1
2

d+ 1
for t ∈ [0, %]. (9)
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In addition, if κ(x) exists and positive then we deduce by (4) that

lim
t→0

t−
d+1
2 V (C(ux, t)) =

2
d+1
2 κd−1

(d+ 1)κ(x)
1
2

. (10)

We will need some asymptotic formula using the gamma function (see
E. Artin [1]). First we note that for α > 0, the representation of the beta
function by the gamma function and the Stirling formula imply

lim
n→∞

nα
∫ 1

0

τα−1(1− τ)ndτ = lim
n→∞

nα
Γ(α)Γ(n+ 1)

Γ(α + n+ 1)
= Γ(α).

Now if (α+1) lnn
n

≤ τ < 1, then (1 − τ)n < e−nτ ≤ n−(α+1). Therefore, if

f(n) ∈ (0, 1) satisfies f(n) ≥ (α+1) lnn
n

for large n, then∫ f(n)

0

τα−1(1− τ)ndτ ∼ Γ(α)n−α

as n tends to infinity. For β ≥ 0 and ω > 0, it follows using the substitution
τ = ωt

d+1
2 that∫ g(n)

0

tβ(1− ωt
d+1
2 )ndt ∼ 2

(d+ 1)ω
2(β+1)
d+1

· Γ
(

2(β + 1)

d+ 1

)
n−

2(β+1)
d+1 , (11)

assuming that g(n) ∈ (0, ω−
2
d+1 ) for all n, and g(n) ≥ ( (α+1) lnn

ω n
)

2
d+1 for large

n, where α = 2(β+1)
d+1

.

Proof of Theorem 1.1. For the n0 coming from (5), we define

θn(u) = n
2
d+1

2

dκd

∫ γ0( lnn
n

)
1
d

0

(1− V (C(u, t)))n dt

for n > n0 and u ∈ Sd−1. According to (5), we have

lim
n→∞

n
2
d+1 E(W (K)−W (Kn)) = lim

n→∞

∫
∂K

θn(ux)κ(x) dx. (12)

Since for large n, θn(u) < γ for some γ depending only on K by (9) and (11)
(with β = 0) for any u ∈ Sd−1, and κ(x) ≤ %−(d−1) for any x ∈ ∂K, we may
apply the Lebesgue dominated convergence theorem.

Let x ∈ ∂K such that κ(x) exists and positive. Now for any ε ∈ (0, 1),
(10) yields that there exists a tε > 0 such that

(1− ε) · 2
d+1
2 κd−1

(d+ 1)κ(x)
1
2

· t
d+1
2 ≤ V (C(ux, t)) ≤ (1 + ε) · 2

d+1
2 κd−1

(d+ 1)κ(x)
1
2

· t
d+1
2
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for t ∈ (0, tε). Therefore (11) (with β = 0) implies

lim
n→∞

θn(ux) =
2κ(x)

1
d+1 Γ( 2

d+1
)

(d+ 1)
d−1
d+1dκdκ

2
d+1

d−1

.

In turn, we conclude Theorem 1.1 by (12). 2

4 Proof of the upper bound in Theorem 1.2

To prove Theorem 1.2, we observe that if a ∈ (0, 1) then

(1− a
2
)n

(1− a)n
>
(

1 +
a

2

)n
>
an

2
,

which in turn yields

a(1− a)n <
2

n

(
1− a

2

)n
. (13)

Since our estimate on the variance depends on (7), we estimate the size
of Σ(u, t; s) for u ∈ Sd−1. The existence of the rolling ball of radius % at

x ∈ C(u, t) ∩ ∂K shows that ‖ux − u‖ ≤
√

2t
%

for t ≤ %. In particular, let

0 < s ≤ t ≤ %. If v ∈ Σ(u, t; s) then ‖v − u‖ < 4%−
1
2 t

1
2 , and hence the

(d − 1)-measure of Σ(u, t; s) is at most γt
d−1
2 for some γ > 0 depending on

d. We set γ∗ = κd−1%
d−1
2

d+1
, and simplify (7) by applying first (9) and (13), and

secondly the formula (11) to obtain

VarW (Kn) � n

∫
Sd−1

∫ γ0( lnn
n

)
1
d

0

∫ t

0

t
d−1
2

n

(
1− γ∗t

d+1
2

)n
ds dt du+O(n−2)

�
∫ γ0( lnn

n
)
1
d

0

t
d+1
2

(
1− γ∗t

d+1
2

)n
dt+O(n−2)� n−

d+3
d+1 .

5 Proof of the lower bound in Theorem 1.2

The idea of the proof is similar to the one in M. Reitzner ([21]); namely,
VarV1(Kn) is at least the sum of the variances inside “independent caps”.
First we separate the part of ∂K where reasonably sized caps are contained
in touching balls of fixed radius. Next we verify the technical estimates (15)
and (18), which lead to the estimates (20) and (21) ensuring the independence
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of the caps in the final argument. In addition we need Lemma 5.1 to estimate
the “variance inside a cap”.

For any polytope P and vertex z of P , we write NP (z) to denote the ex-
terior normal cone to z. We recall the Alexandrov theorem (see R. Schneider
[27] or P.M. Gruber [15]) that the boundary ∂K is twice differentiable in the
generalized sense almost everywhere with respect to Hd−1. We deduce by
(8) that the (d− 1)-measure of the points x ∈ ∂K with κ(x) > 0 is positive.
Therefore there exists R > 0 and a Ξ′ ⊂ ∂K with Hd−1(Ξ′) > 0 such that
each principal curvature at all x ∈ Ξ′ is at least 2

R
. For any x ∈ Ξ′ there

exists a maximal σx ∈ (0, %
8d2

] such that C(ux, σx) ⊂ x−Rux +RBd, and σx
being lower semi continuous, is a measurable function of x ∈ Ξ′. Therefore
there exists σ ∈ (0, %

8d2
] such that if Ξ denotes the family of x ∈ ∂K such

that C(ux, σ) ⊂ x−Rux +RBd then

Hd−1(Ξ) > 0. (14)

For u ∈ Sd−1 and t > 0, we define H(u, t) = {z : 〈z, u〉 = hK(u)− t}.
Let x ∈ Ξ, and let t ∈ (0, σ). The existence of the rolling ball and the

definition of Ξ imply

(x− tux +
√
%tBd) ∩H(ux, t) ⊂ H(ux, t) ∩K ⊂ x− tux +

√
2RtBd. (15)

Let w1, . . . , wd be the vertices of a regular (d− 1)-simplex in H(ux, t) whose
circumcentre is x− tux, and whose circumradius is

√
%t, and hence(

x− tux +
√
%t
d
Bd
)
∩H(ux, t) ⊂ [w1, . . . , wd] ⊂ K.

In addition we set w0 = x, and for j = 0, . . . , d,

∆j(x, t) = wj + 1
4d

([w0, . . . , wd]− wj).

In particular (15) yields

V (∆j(x, t))� t
d+1
2 for j = 0, . . . , d. (16)

If zj ∈ ∆j(x, t), j = 0, . . . , d, and v ∈ u⊥x then
√
%t/(2d) ≤ h[z1,...,zd](v)− 〈z0, v〉 ≤ 2

√
%t

t/2 ≤ 〈z0, ux〉 − h[z1,...,zd](ux) ≤ t,
(17)

and hence the tangent function of the angle of ux and any u ∈ N[z0,...,zd](z0)

is between
√
t

4
√
%

and 2d
√
t√
%

. Therefore defining

Σ1(x, t) = Sd−1 ∩
(
ux +

√
t

8
√
%
Bd

)
,

Σ2(x, t) = Sd−1 ∩
(
ux +

2d
√
t

√
%
Bd

)
,
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we have
Σ1(x, t) ⊂ Sd−1 ∩N[z0,...,zd](z0) ⊂ Σ2(x, t). (18)

For j = 1, 2, we consider the dual cones

Σ∗j(x, t) = {y ∈ Rd : 〈y, v〉 ≤ 0 for all v ∈ Σj(x, t)},

which satisfy

Σ∗2(x, t) ⊂ {t(y − z0) : t ≥ 0 and y ∈ [z0, z1, . . . , zd]} ⊂ Σ∗1(x, t). (19)

Let γ = 29d2R/%, σ0 = σ/γ and γ̃ = 2
√
Rγ. If x ∈ Ξ and t ∈ (0, σ0) then

it follows by (15) that

C(x, γt) ⊂ x+ γ̃
√
tBd. (20)

Next if z0 ∈ ∆0(x, t) and y ∈ H(ux, γt)∩K then (15) yields that the tangent

of the angle of −ux and y − z0 is at most 2
√

2Rγt
(γ/2)t

=
√
%

4d
√
t
, therefore y − z0 ∈

Σ∗2(x, t). In particular

K\C(x, γt) ⊂ z0 + Σ∗2(x, t). (21)

If A is an event in some probability space then we write I(A) to denote
the indicator function. In addition for x ∈ Ξ, t ∈ (0, σ0), and zi ∈ ∆i(x, t),
i = 0, . . . , d, writing F = [z1, . . . , zd] we define

W F (z0) =
2

dκd

∫
Σ2(x,t)

h[z0,F ](u) du.

Naturally W F (z0) depends on x and t, as well, but it will be always clear
what x and t are.

LEMMA 5.1 If Z is a random variable chosen uniformly from ∆0(x, t) for
x ∈ Ξ and t ∈ (0, σ0), and zi ∈ ∆i(x, t) for i = 1, . . . , d; then

VarW [z1,...,zd](Z)� td+1.

Proof: We define F = [z1, . . . , zd]. Let w be the centroid of the facet of
∆0(x, t) opposite to x, let w1 = 2

3
x + 1

3
w and w2 = 1

3
x + 2

3
w. In addition

we define (compare (19))

Ψ1 = (w1 − Σ∗2(x, t)) ∩∆0(x, t),

Ψ2 = (w2 + Σ∗2(x, t)) ∩∆0(x, t).
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In particular there exists some γ0 > 0 depending on K such that

V (Ψj) ≥ γ0V (∆0(x, t)). (22)

Moreover for any Z1 ∈ Ψ1 and Z2 ∈ Ψ2, if v ∈ Sd−1 then

h[Z1,F ](v)− h[Z2,F ](v) ≥ 0

by [Z2, z1, . . . , zd] ⊂ [Z1, z1, . . . , zd], and if even v ∈ Σ1(x, t) (compare (18))
then

h[Z1,F ](v)− h[Z2,F ](v) = 〈v, Z1〉 − 〈v, Z2〉 ≥ 〈v, w1〉 − 〈v, w2〉 � t.

Therefore if Z1 ∈ Ψ1 and Z2 ∈ Ψ2 then

W F (Z1)−W F (Z2)� t · Hd−1(Σ1(x, t))� t
d+1
2 .

In turn we deduce (compare (22))

VarW F (Z) =
1

2
E(W F (Z1)−W F (Z2))2

≥ 1

2
E[(W F (Z1)−W F (Z2))2 I(Z1 ∈ Ψ1, Z2 ∈ Ψ2)]

� td+1E[I(Z1 ∈ Ψ1, Z2 ∈ Ψ2)]� td+1. 2

It is sufficient to prove the lower bound in Theorem 1.2 for large enough
n. We fix

tn = n−
2
d+1 , (23)

and hence V (C(ux, tn)) ≈ 1/n for all x ∈ Ξ. We choose a maximal family of
points y1, . . . , ym ∈ Ξ such that for i 6= j, we have (compare (20))

‖yi − yj‖ ≥ 2γ̃
√
tn.

In particular (14) yields

m� n
d−1
d+1 . (24)

For j = 1, . . . ,m, let Aj denote the event that each ∆i(yj, tn), i = 0, . . . , d
contains exactly one random point out of x1, . . . , xn, and C(yj, γtn) contains
no other random point (compare (21)). We note that there exist positive
α, β depending only on K such that for i = 0, . . . , d, we have

V (∆i(yj, tn)) ≥ α/n and V (C(yj, γtn)) ≤ β/n.
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Thus for j = 1, . . . ,m, we have

P{Aj} ≥
(

n

d+ 1

)(α
n

)d+1
(

1− β

n

)n−d−1

� 1. (25)

If Aj holds then we write Zj to denote the random point in ∆0(yj, tn), and
Fj to denote the convex hull of the random points in ∆i(yj, tn) for i = 1, . . . , d.
Hence for any u ∈ Σ2(yj, tn), (21) yields

hKn(u) = h[Zj ,Fj ](u) (26)

given Aj. In particular if 1 ≤ i < j ≤ m and Ai, Aj hold, then W Fi(Zi) and
W Fj(Zj) are independent according to (18).

We next introduce the sigma algebra F that keeps track of everything
except the location of Zj ∈ ∆0(yj, tn) for which Aj occurs. We decompose
the variance by conditioning on F :

VarW (Kn) = E Var(W (Kn) | F) + Var E(W (Kn)| F)

≥ E(VarW (Kn) | F).

The independence structure mentioned above implies that

Var(W (Kn) | F) =
∑

I(Aj)=1

VarZjW (Kn)

=
∑

I(Aj)=1

VarZjW Fj(Zj)

where the variance is taken with respect to the random variable Zj ∈ ∆0(yj, tn),
and we sum over all j = 1, . . . ,m with I(Aj) = 1. Combining this with
Lemma 5.1, (23), (24) and with (25) implies

VarW (Kn) � E

 ∑
I(Aj)=1

td+1
n

� n−2E

(
m∑
j=1

I(Aj)

)
� n−2m� n−

d+3
d+1

6 Proof of Theorem 1.3

First, we deduce by Chebyshev’s inequality that

P
(
|W (K)−W (Kn)− E(W (K)−W (Kn))|n

2
d+1 ≥ ε

)
≤ ε−2n

4
d+1 VarW (Kn)

� n−
d−1
d+1 .
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Since the sum
∑∞

k=2 n
− d−1
d+1

k is finite for nk = k4, the sum of the probabili-
ties

P
(
|W (K)−W (Knk)− E(W (K)−W (Knk))|n

2
d+1

k ≥ ε

)
for k ≥ 2 is finite as well. Therefore the Borel-Cantelli lemma and Theo-
rem 1.1 yield that

lim
k→∞

(W (K)−W (Knk))n
2
d+1

k =
2Γ( 2

d+1
)

d(d+ 1)
d−1
d+1κdκ

2
d+1

d−1

∫
∂K

κ(x)
d+2
d+1dx (27)

with probability 1. Now, W (K)−W (Kn) is decreasing, and hence

(W (K)−W (Knk−1
))n

2
d+1

k−1 ≤ (W (K)−W (Kn))n
2
d+1 ≤ (W (K)−W (Knk))n

2
d+1

k

hold for nk−1 ≤ n ≤ nk. As limk→∞
nk
nk−1

= 1, the subsequence limit (27)

yields Theorem 1.3.
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Punkten, II, Z. Wahrscheinlichkeitsth. verw. Geb., 3 (1964), 138–147.
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