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Abstract. Let K be a convex body in E3 with a C2 smooth
boundary. In this article, we investigate polytopes with at most
n edges circumscribed about K or inscribed in K, which approxi-
mate K best in the Hausdorff metric. The asymptotic behaviour of
the distance, as a function of n, of such best approximating poly-
topes and K is known, see [3] for an asymptotic formula. In this
article, we prove that the typical faces of the best approximating
circumscribed or inscribed polytopes in the Hausdorff metric with
at most n edges are asymptotically squares with respect to the
second fundamental form of ∂K.

1. Notation and conventions

We shall work in d-dimensional Euclidean space Ed, with origin o,
and scalar product 〈·, ·〉, and induced norm |·|. We shall not distinguish
between the Euclidean space and the underlying vector space, and we
will use the words point and vector interchangeably, as we need them.
Points of Ed are denoted by small-case letters of the roman alphabet,
and sets by capitals. For reals we use either Greek letters or small-case
letters. For a compact convex set K, we write aff K for its affine hull,
and relint K for its relative interior. A compact convex set K with
nonempty interior is called a convex body. If the dimension of K is
two, then we call it a convex disc. For the sake of brevity, we shall use
the term unit disc for the unit radius circular disc. Bd stands for the
unit ball in Ed centred at the origin. Volume in Ed is denoted by V (·),
and two-dimensional Hausdorff measure is denoted by A(·). If A, B are
subsets of Ed, then the convex hull of A and B is denoted by [A, B].

There are numerous ways to define metrics on the space of convex
bodies Kd, of which the Hausdorff metric is one of the most natural
and applicable ones. For K, L ∈ Kd the Hausdorff distance is defined
by

δH(K,L) = min{λ ≥ 0 | K ⊂ L + λBd, L ⊂ K + λBd}.
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Then δH is a metric on Kd, called the Hausdorff metric. For further
details on convex sets and related measures consult the monographs of
R. Schneider [14] and P.M. Gruber [10].

Let K be a convex body in Ed, and let ∂K denote its boundary.
We always integrate on ∂K with respect to the (d − 1)-dimensional
Hausdorff measure. We say that K has C2 boundary if for any x ∈ ∂K,
a neighbourhood of x in ∂K is the graph of a convex C2 function f
that is defined in the orthogonal projection of that neighbourhood into
the tangent plane Tx at x. For x ∈ ∂K we write Qx to denote the
second fundamental form at x that is, the quadratic form representing
the second derivative of f at x. Because of the convexity of K, Qx

is positive semi-definite. Its eigenvalues are the principal curvatures,
and its determinant κ(x) is the Gauss-Kronecker curvature of ∂K at
x. Clearly, κ(x) ≥ 0 for all x ∈ ∂K. If, in addition, κ(x) > 0 for all
x ∈ ∂K, then we say that the boundary of K is C2

+.
Throughout the paper we shall use the customary notation for the

magnitude of functions. Let f and g be functions of positive integers.
We write f(n) = O(g(n)) if there exists a constant c depending on
the given convex body K such that |f(n)| ≤ c · g(n) for all n ≥ 1,
and f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0. Furthermore, we write
f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.

2. History

The starting point of polytopal approximation was the work of L.
Fejes Tóth. He investigated some basic questions in the plane and
in the 3-dimensional space. The first results on this topic in higher
dimensions are due to R. Schneider [13].

Let K be a convex body in the d-dimensional Euclidean space with
a sufficiently smooth boundary, and let 0 ≤ k ≤ d − 1 be an integer.
We define the set Pn := {P |P is a polytope with at most n k-faces}.
Then there exists a (not necessarily unique) polytope Pn ∈ Pn such that
δ(K, Pn) = inf{δ(P, K)|P ∈ Pn}, where δ stands for any metric defined
on the space of convex bodies. Note that it is customery to make further
restrictions on Pn, for example we can consider polytopes which contain
K (circumscribed) or which are contained in K (inscribed). We are
usually interested in describing various properties of Pn which we do
by formulating asymptotic results as n →∞.

Most of earlier papers deal with the cases when k = 0 or k = d− 1,
that is, the number of vertices or facets is restricted. There are asymp-
totic formulas on the distance between K and Pn in every dimension
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for most well-known metrics, such as the volume of the symmetric dif-
ference, the Hausdorff metric, the Banach-Mazur metric, the L1 metric
and the Schneider distance, although not all the constans are known.
These asymptotic formulas are due to R. Schneider, P. M. Gruber, S.
Glasauer, M. Ludwig and K. J. Böröczky.

In this paper, we determine the typical faces of a special class of
best approximating polytopes using a recent asymptotic formula of [3].
(The exact meaning of “typical faces” will be explained later.)

We shall investigate the case when d = 3 and k = 1 and we shall
use Hausdorff metric to measure the distance between bodies. For
completeness, we repeat the definitions in this special case. Let Pc

n(K)
denote the set of polytopes circumscribed about K and having at most
n edges. There exists a polytope P c

n, not unique in general, such that

δH(K, P c
n) = inf{δH(K, P ) : P ∈ Pc

n(K)}.
We may similarly define the polytope P i

n using inscribed polytopes
instead of circumscribed. The following theorem was the main result
of [3].

Theorem 1. [3] If K ∈ K3 is a convex body with C2 boundary, then

(1) δH(K, P c
n), δH(K, P i

n) ∼ 1

2

∫
∂K

κ1/2(x)dx · 1

n
as n →∞.

3. Main Result

If C and D are two convex discs, then we say that C is ε-close to D
if there exist x ∈ C and y ∈ D such that

(1 + ε)−1 · (C − x) ⊂ D − y ⊂ (1 + ε) · (C − x).

Let Q be a positive definite, non-degenerate quadratic form on the
Euclidean plane with the positive definite, symmetric matrix C. It
is well known that C can be written in the form C = AT A, with a
non-singular matrix A (this representation is not unique). Denote ϕA

the linear transformation defined by A. A polygon P is called regular
with respect to Q, if ϕA(P ) is a regular polygon (in Euclidean sense).
Furthermore, if ϕA(P ) is of area 1, then we say that P is a regular
unit polygon with respect to Q. In particular, we will refer to a regular
quadrilateral with respect to Q as a Q square. One can see that the
definition does not depend on the choice of A.

Now we are going to define what “typical faces with respect to a
density function” mean. We remark that the same definition was given
in [5]. Let ρ : ∂K → R be a non-negative function such that if κ(x) > 0
then ρ(x) > 0. Let Rn be a sequence of polytopes and let f(n) denote
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the number of facets of Rn. Suppose that o ∈ int Rn and f(n) → ∞
if n → ∞. Furthermore, suppose that there exists a positive zero-
sequence ν(n) with the following property. For all but ν(n) percent
of the facets F of Rn we have that F is a k-gon, there is a unique
point xF ∈ ∂K such that u(xF ) is an exterior normal also to F , QxF

is
positive definite, and F is ν(n)-close to a k-gon which is regular with
respect to QxF

and is of area ∫
∂K

ρ(x)dx

f(n)ρ(xF )
.

In this case we say that the typical facets of Rn are asymptotically
regular k-gons with respect to the density function ρ. Note that the
density function ρ only determines the area of the facets approximately,
whereas their shape only depends on K.

Let Pc
n(K) denote the set of polytopes circumscribed about K and

having at most n edges. There exists a polytope P c
n, not unique in

general, such that

δH(K, P c
n) = inf{δH(K, P ) : P ∈ Pc

n(K)}.
We may similarly define the polytope P i

n using inscribed polytopes
instead of circumscribed.

The main result of this article is the following theorem.

Theorem. Let K ⊂ E3 be a convex body with C2 smooth boundary.
The typical facets of P c

n and P i
n are squares with respect to the density

function κ1/2(x) as n →∞.

Below, we briefly review what is known of the shape of typical faces
of best approximating polytopes. P. M. Gruber, in [8], investigated,
for sufficiently smooth convex bodies in three-dimensional Euclidean
space, the typical shapes of the facets of best approximating inscribed
polytopes with at most n vertices as n → ∞, and of circumscribed
polytopes with at most n facets as n →∞. He considered best approx-
imating polytopes according to the Hausdorff distance, Banach-Mazur
distance and Schneider’s notion of distance. He proved for these three
metrics that in the inscribed case the typical shape of the facets are
asymptotically close to regular triangles in an appropriate sense, and
in the case of circumscribed polytopes they are asymptotically close to
regular hexagons in a suitable sense depending on the metric. In [9],
P. M. Gruber proved that for a convex body with C2 boundary and
everywhere positive Gauss-Kronecker curvature, the typical faces of a
minimal volume circumscribed polytope with n facets are asymptoti-
cally close to regular hexagons in a suitable sense as n → ∞. This
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work was continued by K. J. Böröczky, P. Tick and G. Wintsche in [5],
where they extended Gruber’s result for convex bodies with no restric-
tion on the Gauss-Kronecker curvature. They also showed that the
typical faces of maximal volume inscribed polytopes with at most n
vertices are asymptotically close to regular triangles in a suitable sense
as n →∞.

4. Lemmas and tools

In this section we recall some results and notation from [3].
Let X and X ′ be relatively open, Jordan-measurable subsets of ∂K

with the following properties.

(2) cl X ⊂ relint X ′ ⊂ ∂K,

(3) ∃η > 0 : all principal curvatures at x ∈ cl X ′ are at least η.

Let C be a convex polygon tangent to K at x ∈ relint C such that
the orthogonal projection of int K into aff C covers C. For any function
f : C → R, we define its graph

Γ(f) = {z − f(z)u(x) : z ∈ C}.
Let fC : C → R denote the convex C2 function with Γ(fC) ⊂ ∂K.
We shall use pC : E3 → aff C to denote the orthogonal projection onto
aff C, and Π∂K : C → ∂K for the nearest point map onto ∂K.

The following lemma is identical to Lemma 2 in [3].

Lemma 1. [3] For each ε > 0, there exists a δ(K, ε) = δ > 0 such that
if C ⊂ x + δB3 is a convex polygon touching K at x ∈ X ∩ relintC,
then the following statements hold. We have Γ(fC) ⊂ X ′, and

(4) for all y ∈ C, (1 + ε3)−1Qx ≤ qy ≤ (1 + ε3)Qx,

(5) for all z ∈ Γ(fC), 〈u(z), u(x)〉 = (1 + ε)−1

(6) pC(Π∂K(C)) ⊇ (1− ε)(C − x) + x.

The following lemma will be one of the most important tools in the
proof the Theorem. Inequality (7) was proved in [3]. This extended
version establishes the stability of the original inequality.

Lemma 2. Let q(x) be a positive definite quadratic form on R2 and
α ≤ 0 a real number. Let G = [p1, p2, . . . , pk] be a k-gon with vertices
{pi}. Then

(7) max
x∈G

(q(x)− α) =
2

k
· A(G)

√
det q.
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Furthermore, if k 6= 4, then

(8) max
x∈G

(q(x)− α) > 1.04 · 2

k
· A(G)

√
det q.

If

(9) max
x∈G

(q(x)− α) ≤ (1 + ε) · 2

k
· A(G)

√
det q,

then G is O( 4
√

ε)-close to a q-square.

Proof. Inequality (7) was proved in [3].
Now, we are going to prove inequality (8). We may suppose that

q(x) = x2 and α = 0. Since x2 is a convex function we have that

max
x∈G

x2 = max
x∈{pi}

x2.

Without loss of generality, we may suppose that this maximum is at-
tained at p1. From this it follows that G is contained in a circle of
radius R centered at the origin, where R = d(o, p1). It is well-known
that the regular k-gon has the maximal area among k-gons inscribed
in a circle. This implies that

A(G) ≤
R2 · sin 2π

k
· k

2
,

which proves inequality (7). Furthermore, if k 6= 4 then sin(2π/k) ≤
0.96 and from this follows inequality (8).

Now, we turn to the proof of inequality (9). If o /∈ G then apply the
statement to G−p where p is the nearest point of G to the origin. So we
may suppose that G is a quadrilateral and that o ∈ G. We may further
suppose that p1, p2, p3, p4 are in positive order and |p1| is maximal. Let
us denote the angles between pi and pi+1 with ϕi (p5 ≡ p1).

With these notation, we have that

max
x∈G

x2 = p1
2.

On the one hand,

A(G) =

∑4
1 |pi||pi+1| sin ϕi

2
≤ p1

2 ·
∑4

1 sin ϕi

2
,

from the assumptions of the lemma we obtain that

(1 + ε)−1 ≤
∑4

1 sin ϕi

4
.

This readily implies that |ϕi − π/2| ≤ O(
√

ε) holds for all i.
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On the other hand,

A(G) =

∑4
1 |pi||pi+1| sin ϕi

2
≤

∑4
1 |pi||pi+1|

2
,

from which we have that

4p2
1 ≤ (1 + ε)

4∑
1

|pi||pi+1|,

and finally that
|pi| ≥ (1 + ε)−1|p1|.

From the above observations inequality (9) follows by elementary cal-
culations. �

We will apply the previous lemma to prove the circumscribed case.
We need a slight modification of it to obtain the inscribed case.

Lemma 3. Let q(x) be a positive definite quadratic form on R2. Let
G = [p1, p2, . . . , pk] be a k-gon with vertexes {pi} and α a real number
such that α ≥ q(x) for all x ∈ G. Then

max
x∈G

(α− q(x)) =
2

k
· A(G)

√
det q.

Furthermore if k 6= 4 then

max
x∈G

(α− q(x)) > 1.04 · 2

k
· A(G)

√
det q.

If

max
x∈G

(α− q(x)) ≤ (1 + ε) · 2

k
· A(G)

√
det q,

then G is O( 4
√

ε) close to a q-square.

Proof. The first part of the lemma was proved in Lemma 3. in the
fourth section in [3].

We would like to use Lemma 2. Suppose that o ∈ G. Since q(o) = 0
we obtain that maxx∈G(α − q(x)) = α ≥ maxx∈G q(x). We can apply
Lemma 2. and every statement of the lemma readily follows.

Now suppose that o /∈ G and q(x) = x2. Here we can repeat a part
of the proof from [3].

First suppose that k = 4. Let p be the nearest point of G to the
origin, and d = |op|. Then the circle of radius

√
α− d2 centred at p

contains G. Furthermore, there exists a line through p which separates
G from the origin. We conclude that

max
x∈G

(α− q(x)) = α− d2 ≥ 1.04 · 2

k
· π

2
(α− d2) = 1.04 · 2

k
· A(G).
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The last case to be checked is when G is a triangle and o /∈ G. Using
the same notation as before, we obtain

max
x∈G

(α− q(x)) = α− d2 ≥ A(G) > 1.04 · 2

3
A(G).

�

Lemma 4. Let ai, bi ∈ R+ for i = 1, 2, . . . ,m. If there exists a λ such
that ai/bi ≤ λ holds for all i = 1, 2, . . . ,m then (

∑m
i=1 ai)/(

∑m
i=1 bi) ≤

λ.

Proof. If we sum the inequalities ai 5 λbi, then we get that
∑

ai 5∑
λbi. Dividing both side with

∑
bi we obtain the statement of the

lemma.
�

Now, we are going to introduce the notation and conventions which
will be used to state Lemma 5. We use δ and X from Lemma 1. For
x ∈ X, let C ⊂ x + δB3 be a convex polygon such that C touches
K at x ∈ relint C. Furthermore, let C ′ be a convex polygon such
that C ′ ⊂ relint C and C ⊂ pC(K). We write f to denote the convex
function on C such that Γ(f) ⊂ ∂K. We shall use ly for the linear
form representing the first derivative of f at y ∈ C, and, as usual, qy

to denote the quadratic form representing the second derivative of f at
y ∈ C. Note that Qx = qx.

Next, let P be a polytope with C ⊂ pC(P ), and let F1, . . . , Fk be the
faces of P with the following properties. For i = 1, . . . , k, the exterior
unit normal of Fi encloses an acute angle with u(x) and pC(Fi)∩C ′ 6= ∅.
Furthermore, we assume that

pC(Fi) ⊂ C, i = 1, . . . , k,

and for any Fi, there exists an ai ∈ C such that the exterior unit
normal to Fi coincides with the exterior unit normal to the graph of f
at ai − f(ai)u(x). In particular, aff Fi is the graph of the function

ϕi(y) = f(ai) + lai
(y − ai) + αi

for some αi ∈ R. Finally, we define Πi = pC(Fi).

Lemma 5 (Transfer lemma). [3] Let ε ∈ (0, 1/4). Using the notation
as above, we assume that Qx is positive definite and for all z ∈ C, we
have (1 + ε)−1Qx 5 qz 5 (1 + ε)Qx and 〈u(x), u(w)〉 ≥ (1 + ε)−1 for
w = z − f(z)u(x). Then the following statements hold.

(i) If K ⊂ P then each αi ≤ 0, and

δH(P, K) = (1− 2ε) max
i=1,...,k

max
y∈Πi

(
1
2
Qx(y − ai)− αi

)
.
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(ii) If P ⊂ K then each αi > 0. Letting α′i = (1 + ε)αi for i =
1, . . . , k, we have 1

2
Qx(y − ai) ≤ α′i for y ∈ Πi, i = 1, . . . , k,

and

δH(P, K) = (1− 4ε) max
i=1,...,k

max
y∈Πi

(
α′i − 1

2
Qx(y − ai)

)
.

The next three statements contain simple information which will be
used throughout the article. Since their proofs are elementary we leave
them to the reader.

Proposition 1. If C, D and K are convex disks and 0 < ε < 1 is a
positive real number such that C is ε-close to D and D is ε-close to K
then C is 3ε-close to K.

Proposition 2. Let Σ1 and Σ2 be 2-dimensional planes in E3 such that
their angle is smaller than ε, and suppose that D is a convex disc in
Σ1. Let ρ denote the rotation which takees Σ2 into Σ1. Then ρ(pΣ2(D))
is ε-close to D, where pΣ2 denotes the orthogonal projection onto Σ2.

Proposition 3. Let q1 and q2 be two positive definite quadratic forms
on the Euclidean plane such that

(1 + ε2)−1q1(x) ≤ q2(x) ≤ (1 + ε2)q1(x).

Then there exists a unit square of q1 which is ε-close to a unit square
of q2.

5. Proof of the Theorem

We are going to prove the Theorem only for best approximating
circumscribed polytopes. The proof for inscribed polytopes is very
similar.

From (1) it follows that there exists a positive sequence bn with
lim bn = 0 such that

(10) δH(K, P c
n) ≤ (1 + bn) · 1

2

∫
∂K

κ1/2(x)dx · 1

n
.

Let ε > 0 be fixed. We will divide ∂K into two parts: the “flat”
part and the “curved” part in the following way. Let X, X ′ ⊂ ∂K
be defined in such a way that they satisfy the conditions (2) and (3),
furthermore, that

(11)

∫
X

κ1/2(x)dx > (1− ε)

∫
∂K

κ1/2(x)dx.

X can naturally be called the “curved” part of ∂K, and its complement
is the “flat” part.
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We are going to construct a ”large” auxiliary polytope M = M(ε)
circumscribed about K. We require that M has the following property.
If C is a facet of M and Π∂KC ⊂ X ′, then diam C < δ, where δ is the

same as in Lemma 1. Let Ĉ be the family of all facets C of M such

that Π∂KC ∩ X 6= ∅. For all C ∈ Ĉ, there is a unique xC ∈ X ′ such
that u(xC) is normal to C. Define

C = {xC+(1−2ε)(C−xC) | C ∈ Ĉ, Π∂K(xC+(1−2ε)(C−xC))∩X 6= ∅}.

The properties of X and Lemma 1 yield

Lemma 6.

∑
C∈C

κ1/2(xC) · A(C) ≥ (1−O(ε))

∫
∂K

κ1/2(x)dx.

One can see that there exists an ω = ω(K, ε) > 0 such that if F is

a face of P c
n and ∃C ∈ Ĉ with Π∂K(C) ∩ Π∂K(F ) 6= ∅ then diam F 5

ω/
√

n. Now, if n > Nε then for every facet F of P c
n there is at most one

C ∈ C such that Π∂K(F )∩Π∂K(C) 6= ∅. Let us denote by CC the set of
those facets of P c

n which are ”above” C; namely, their projection into
affC intersects C, and whose exterior unit normal encloses an acute
angle with u(xC). For any F ∈ CC , let ΠF = pC(F ), let xF ∈ ∂K
satisfy that u(xF ) is the exterior unit normal to F . Let kF denote the
number of sides of F . Now if n is large, then aF = pC(xF ) lies in C,
and let αF be defined by xF − αF u(xC) ∈ affF , hence αF ≤ 0. Let us
denote with F the set of facets of P c

n, furthermore let F+ := {F ∈ F :
Π∂KF ∩X 6= ∅} and F0 := F\F+.

Our first goal is to show that there are only very few facets over the
flat part compared to the curved part of ∂K. To obtain the following
sequence of inequalities, apply Lemma 5 and Lemma 2.

δH(P c
n, K) ≥ (1−O(ε)) max

C∈bC
max
F∈CC

max
y∈ΠF

(1
2
QxC

(y − aF )− αF )

≥ (1−O(ε)) ·max
C∈bC

max
F∈CC

κ1/2(xC) · A(ΠF )

kF

(12)

≥ (1−O(ε)) ·
(

max
C∈bC

max
F∈CC∩F+

κ1/2(xC) · A(ΠF )

kF

)
.
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Now, using Lemma 4 and Lemma 6 we get

max
C∈bC

max
F∈CC∩F+

κ1/2(xC) · A(ΠF )

kF

≥

≥ (1−O(ε)) ·
∑

C∈bC
∑

F∈CC∩F+
(κ1/2(xC) · A(ΠF ))∑

C∈bC
∑

F∈CC∩F+
kF

≥

≥ (1−O(ε))

∫
∂K

κ1/2(x)dx · 1

2n+

,

where n+ stands for number of edges in F+. From (10) it follows
that if bn < ε, then n+ > (1−O(ε))n.

We note that for all elements F ∈ F+, there is a unique point xF ∈
∂K such that u(xF ) is an exterior normal also to F , and QxF

is positive
definite.

In the next step, we use the same inequalities in a different way.

max
C∈bC

max
F∈CC∩F+

κ1/2(xC) · A(ΠF )

kF

≥ (1−O(ε))

∫
∂K

κ1/2(x)dx · 1

2n+

≥

≥ (1−O(ε)) max
C∈bC

max
F∈CC∩F+

max
y∈ΠF

(
1
2
QxC

(y − aF )− αF

)
(13)

holds if n is large enough.
Next, we divide the facets in F+ into two classes. Let Fnsq ⊆ F+

contain those elements F ∈ F+ for which

max
y∈ΠF

(1
2
QxC

(y − aF )− αF ) ≥ (1 + 3
√

ε) · 1

kF

· A(ΠF )κ1/2(xC),

and let Fsq = F+\Fnsq, the other class. Now, we continue the sequence
of inequalities in (13). In particular,

max
C∈bC

max
F∈CC∩F+

max
y∈ΠF

(1
2
QxC

(y − aF )− αF ) ≥

≥ max( max
C∈bC

max
F∈CC∩Fsq

κ1/2(xC) · A(ΠF )

kF

,

, max
C∈bC

max
F∈CC∩Fnsq

(1 + 3
√

ε) · κ1/2(xC) · A(ΠF )

kF

)
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Now, we apply Lemma 4 two times and we obtain that

max
C∈bC

max
F∈CC∩F+

κ1/2(xC) · A(ΠF )

kF

≥

≥ (1−O(ε)) max(

∑
C∈bC

∑
F∈CC∩Fsq

(κ1/2(xC) · A(ΠF ))∑
C∈bC

∑
F∈CC∩Fsq

kF

,

,

∑
C∈bC

∑
F∈CC∩Fnsq

(κ1/2(xC) · A(ΠF ))

(1− 4
√

ε)
∑

C∈bC
∑

F∈CC∩Fnsq
kF

)

In order to reach a contradiction, assume that

2nnsq :=
∑
C∈bC

∑
F∈CC∩Fnsq

kF > 2n+
4
√

ε.

Using Lemma 4 again, it follows that

max
C∈bC

max
F∈CC∩F+

κ1/2(xC) · A(ΠF )

kF

≥

(1−O(ε))

∑
C∈bC

∑
F∈CC∩F+

(κ1/2(xC) · A(ΠF ))

2nsq + (1− 4
√

ε)2nnsq

≥ (1 + 3
√

ε)(1−O(ε))

∑
C∈bC

∑
F∈F+

A(ΠF )

2n+

This is clearly a contradiction, since (1 + 3
√

ε)(1 − O(ε)) > 1 if ε
is small enough. Thus, we have obtained, that nnsq < 4

√
εn+, which

implies that |Fnsq| < 4
√

ε|F+|.
By the definition of Fsq, we know that for all F ∈ Fsq

max
y∈ΠF

(1
2
QxC

(y − aF )− αF ) ≤ (1 + 3
√

ε) · 1

kF

· A(ΠF )κ1/2(xC).

The conditions of statement (9) in Lemma 2 are satisfied, and so all
ΠF for F ∈ Fsq are 16

√
ε-close to a QxC

-square. Furthermore, if ε is
small enough, then from inequality (8) in Lemma 2 it follows that Fsq

contains only quadrilaterals, or equivalently, for all F ∈ Fsq we have
that kF = 4.

Next we show that each F ∈ Fsq is close to a QxF
-square. To obtain

this, we recall (4) and (5) from Lemma 1 and Propositions 1, 2 and 3.
From these the claim readily follows.

Finally, we will consider the areas. We proved that almost every face
belongs to Fsq. Now, we will decompose Fsq into two sets. To simplify
the notation, we introduce

T = max
C∈bC

max
F∈CC∩Fsq

κ1/2(xC)A(ΠF ).
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And now let

FM = {F ∈ Fsq : κ1/2(xC)A(ΠF ) > (1− 4
√

ε)T, F ∈ CC}
and FN = Fsq\FM . On the contrary, assume |FN | > (1− 4

√
ε)|Fsq|.

On one hand observe that∑
C∈bC

∑
F∈CC∩Fsq

(κ1/2(xC) · A(ΠF ))

|Fsq|
5

|FM |T + |FN |(1− 4
√

ε)T

|Fsq|
=

= T − |FN |
|Fsq|

T 4
√

ε 5 (1−
√

ε)T.

On the other hand ∑
C∈bC

∑
F∈CC∩Fsq

(κ1/2(xC) · A(ΠF ))

4|Fsq|
=

=

∑
C∈bC

∑
F∈CC∩Fsq

(κ1/2(xC) · A(ΠF ))∑
C∈bC

∑
F∈CC∩Fsq

kF

=

= (1−O(ε))

∫
∂K

κ1/2(x)dx · 1

2n
=

= (1−O(ε)) max
C∈bC

max
F∈CC∩Fsq

κ1/2(xC) · A(ΠF )

kF

=
(1−O(ε))

4
T.

This clearly leads to a contradiction if ε small enough. From the esti-
mates above, we have that

T

4
= (1−O(ε))

∫
∂K

κ1/2(x)dx · 1

2n
=

(1−O(ε))

4
T.

It follows from Lemma 1 that we may estimate κ(xF ) by κ(xC) and
A(F ) by A(ΠF ), and so if F ∈ FM , then

(1+O( 4
√

ε)) ·
2
∫

∂K
κ1/2(x)dx

nκ1/2(xF )
≥ A(F ) ≥ (1−O( 4

√
ε)) ·

2
∫

∂K
κ1/2(x)dx

nκ1/2(xF )
.

In summary, we have showed the following: ∃ε0 : ∀0 < ε < ε0 :
∃N(ε) > 0 such that if n > N(ε) then for all but 4

√
ε percent of the

F faces of P c
n we have that there exists a unique point xF ∈ ∂K such

that u(xF ) is an outer normal also to F , QxF
is positive definite, and

F is 16
√

ε-close to a square with respect to QxF
which is of area

2
∫

∂K
κ1/2(x)dx

nκ1/2(xF )
.

This completes the proof of the theorem in the case of circumscribed
polytopes.
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In order to prove the theorem in the inscribed case, observe that ev-
ery step of the argument can be repeated, with only two minor changes.
One is that we have to apply the second part of Lemma 5 instead of
the first, second that we use Lemma 3 instead of Lemma 2.

Acknowledgement: I am indebted to Károly Böröczky Jr. and
Ferenc Fodor whose remarks considerably improved the paper.
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