Az itt található fájlok NEM egyeznek meg a cikkek végsõ, megjelent változataival.
The files available here are NOT the final versions of the papers.
(1) K. J. Böröczky, F. Fodor, V. Vígh: Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges, Beitrage Algebra Geom., 49 (2008), no. 1, 177-193. (OPEN ACCESS pdf)
(2) V. Vígh: Typical faces of best approximating polytopes with a restricted number of edges, Acta Sci. Math. (Szeged), 75 (2009), no. 1-2, 313-327. (pdf)
(3) K. J. Böröczky, F. Fodor, M. Reitzner, V. Vígh: Mean width of random polytopes in a reasonable smooth convex body, J. Multivariate Anal., 100 (2009), 2287-2295. DOI (pdf)
(4) I. Bárány, F. Fodor, and V. Vígh: Intrinsic volumes of inscribed random polytopes in smooth convex bodies, Adv. Appl. Probab., 42 Number 3 (2010), 605-619. DOI (pdf)
(5) F. Fodor and V. Vígh: Disc-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged) 78 (2012), 331-350. (OPEN ACCESS pdf)
(6) R. Trelford and V. Vígh: How to sew in practice?, manuscript (arXiv)
(7) G. Ambrus, P. Kevei, and V. Vígh: The diminishing segment process, Stat. Prob. Letters., 82 (2012), 191-195. DOI (pdf)
(8) F. Fodor, P. Kevei, and V. Vígh: On random disc-polygons in smooth convex discs, Advances in Applied Probability 46 (4) (2014), 899-918. DOI (pdf)
(9) P. Kevei and V. Vígh: On the diminishing process of Bálint Tóth, Transactions of the AMS 368 (12) (2016) 8823-8848. DOI (pdf)
(10) G. Fejes Tóth, F. Fodor and V. Vígh: The packing density of the n-dimensional cross-polytope, Discrete and Computational Geometry 54 (1) (2015), 182-194. DOI (pdf)
(11) F. Fodor, Á. Kurusa and V. Vígh: Inequalities for hyperconvex sets, Advances in Geometry 16 (3) (2016), 337-348. DOI (pdf)
(12) F. Fodor, V. Vígh and T. Zarnócz: On the angle sum of lines, Archiv der Mathematik, 106(1) (2016), 91-100 DOI (pdf)
(13) F. Fodor, V. Vígh and T. Zarnócz: Covering the sphere by equal zones, Acta Mathematica Hungarica 149 (2) (2016) 478-489. DOI (pdf)
(14) F. Fodor, V. Vígh: Variance estimates for random disc-polygons in smooth convex discs, J. Appl. Probab. 55 (2018), no. 4, 1143-1157. DOI (arXiv)
(16) F. Fodor, D. Papvári, V. Vígh: On random approximations by generalized disc-polygons, Mathematika 66 (2020), 498-513., DOI (arXiv)
(16) Á. Kurusa. Z. Lángi, V. Vígh: Tiling a circular disc with congruent pieces, Mediterr. J. Math., 17 (2020) 156. DOI (arXiv)
(17) F. Fodor, B. Grünfelder, V. Vígh: Variance bounds for disc-polygons, Doc. Math. 27, 1015-1029 (2022). DOI (arXiv)
(18) K. Nagy, V. Vígh: Monohedral Tilings of a Convex Disc with a Smooth Boundary, Discrete Mathematics (2023).(DOI)
(19) F. Fodor, P. Kevei, V. Vígh: On random disc-polygons in a disc-polygon, Electronic Communications in Probability 28, 1-11 (2023).(DOI)
(20) F. Fodor, N. A. Montenegro Pinzón, V. Vígh, On Wendel's equality for intersections of balls, Aequationes Mathematicae 97, 439–451 (2023), (DOI) .
(21) K. Nagy, V. Vígh: Best and random approximations with generalized disc-polygons, Disc. Comput Geom. (2023). (DOI, preprint)
(22) K. Nagy, V. Vígh: Random spherical disc-polygons in a spherical spindle convex disc, to appear in Studia Sci. Math. Hungar. (2024). (preprint)
(23) A. Bezdek, F. Fodor, V. Vígh and T. Zarnócz: On the multiplicity of arrangements of equal zones on the sphere, to appear in Studia Sci. Math. Hungar. (2024), (arXiv)
(24) K. Nagy, V. Vígh: Random spherical disc-polygons and a duality, submitted for publication (2024), (preprint).
Magyar nyelvű PhD-értekezésem letölthető innen. (English summary)