Az itt található fájlok NEM egyeznek meg a cikkek végsõ, megjelent változataival.

The files available here are NOT the final versions of the papers.

(1) K. J. Böröczky, F. Fodor, V. Vígh: Approximating $3$-dimensional convex bodies by polytopes with a restricted number of edges, Beitrage Algebra Geom., 49 (2008), no. 1, 177-193.(pdf)

(2) V. Vígh: Typical faces of best approximating polytopes with a restricted number of edges, Acta Sci. Math. (Szeged), 75 (2009), no. 1-2, 313-327.(pdf)

(3) K. J. Böröczky, F. Fodor, M. Reitzner, V. Vígh: Mean width of random polytopes in a reasonable smooth convex body, J. Multivariate Anal., 100 (2009), 2287-2295.(pdf)

(4) I. Bárány, F. Fodor, and V. Vígh: Intrinsic volumes of inscribed random polytopes in smooth convex bodies, Adv. Appl. Probab., 42 Number 3 (2010), 605-619.(pdf)

(5) F. Fodor and V. Vígh: Disc-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged) 78 (2012), 331-350 (pdf)

(6) R. Trelford and V. Vígh: How to sew in practice?, submitted (pdf)

(7) G. Ambrus, P. Kevei, and V. Vígh: The diminishing segment process, Stat. Prob. Letters., 82 (2012), 191-195. (pdf)

(8) F. Fodor, P. Kevei, and V. Vígh: On random disc-polygons in smooth convex discs, Advances in Applied Probability 46 (4) (2014), 899-918. (pdf)

(9) P. Kevei and V. Vígh: On the diminishing process of Bálint Tóth, accepted for publication in Transactions of the AMS (pdf)

(10) G. Fejes Tóth, F. Fodor and V. Vígh: The packing density of the n-dimensional cross-polytope, submitted (pdf)

(11) F. Fodor, Á. Kurusa and V. Vígh: Inequalities for hyperconvex sets, accepted for publication in Advances in Geometry (pdf)

Magyar nyelvű PhD-értekezésem letölthető innen. (English summary)