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Abstract. In this work, we consider the asymptotic behaviour of the expec-

tation of the perimeter deviation of a uniform random spherical disc-polygon

in a spherical spindle-convex disc with smooth boundary. We also introduce
a notion of duality on the sphere, define a model of random circumscribed

disc-polygons, and determine some asymptotic results about them.

1. Introduction

With their 1963 paper [18], Rényi and Sulanke launched the investigation of the
now well-studied topic of random polytopes. For a convex bodyK in Rd, the convex
hull of n independently chosen points from K according to the uniform probability
distribution is called a uniform random polytope in K. The questions of interest are
mainly focused on the asymptotic behaviour of this random object, for example,
the expectation of the volume of K missed by the random polytope.

More recently, similar problems started to arise in different settings. Consider
the following notion of convexity in the plane: the r spindle convex hull of a set
H is the intersection of all discs of radius r containing H. The spindle convex hull
of finitely many points is called a disc-polygon, which is the intersection of finitely
many discs. The notion of spindle convexity, including it’s higher dimensional
form, was studied in [3], see also [8]. With the use of this form of convexity, one
can define a similar uniform model of random disc-polygons in a spindle convex
body K, and investigate its asymptotic properties. Such results on the expected
number of vertices of the random disc-polygon Kn, the expectation of the missed
area Area(K \Kn), and the perimeter deviation Per(K) − Per(Kn) were given in
[7], in two different settings: either choosing points from an r0 spindle convex disc
with some value 0 < r0 < r, or from a circular disc of radius r. In the former, the
expected number of vertices has order of magnitude n1/3, similarly to the linear
convex case, but in the latter, the expectation tends to a finite constant, which has
no analogue in linear convexity. In [5], Fodor generalised these results to higher
dimensions, and showed a similar distinction between the two types of models.
Recently, results have also been obtained for the series expansion [9] and variance
[6,11] of the expected number of vertices, as well as a central limit theorem in [10].

In a recent paper by Marynych and Molchanov [15], it was shown that the
f -vector of a uniform random r ball-polytope in a ball of radius r converges in
distribution, and in power moments of all orders, to the f -vector of the polar body
of the zero cell of a Poisson hyperplane tessalation induced by the unit ball, or
equivalently, the convex hull of a Poisson point process induced by the unit ball
(see [15, Corollary 6.7]). Specifically, as the expected number of facets of the convex
hull of the above point process is known, it follows that the expected number of
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facets of a uniform random ball-polytope tends to a finite number, namely 2−dd!κ2
d,

where κd denotes the volume of the unit ball of Rd. This result is a special case of
a much broader theorem, which is set in a more general notion of strong convexity
with respect to an arbitrary convex body.

Another approach to random polytopes was introduced by Bárány, Hug, Reitzner
and Schneider in their 2017 paper [1]. They considered the spherical counterpart
of the problems discussed previously: the n random points are chosen from a half-
sphere, and a random spherical polytope is obtained by taking their spherical convex
hull i.e. the intersection of all half-spheres containing them. It was shown by the
authors that the expected number of facets tends to a constant (dependent on the
dimension d) as n → ∞, and this constant coincides with the limit obtained in the
corresponding dimensional Euclidean spindle convex case.

In [2], Besau et al. considered the following related problem: a uniform random
spherical polytope is constructed in a so-called wedge, which in the intersection of
two half-spheres whose defining hyperplanes are orthogonal. They obtained that
the number of facets in this construction is of order log n.

In [16], the authors introduced the notion of spherical spindle-convexity (see also
[4]) as an extension of the previous two models. Namely, for some set X in S2

contained in a spherical disc of radius 0 < r ≤ π/2, its (closed) spherical r spindle
convex hull, denoted by conv r(X), is the intersection of all spherical circular discs
of radius r containing X, and X is spherically r spindle convex if it coincides with
conv r(X). Similarly to the planar case, for a finite point set X, conv r(X) is called
a spherical disc–polygon, which is the intersection of finitely many spherical discs.
We note that as a special case, r = π/2 gives us half-spheres and the usual notion
of spherical convexity. They determined the following result: if K is a spherically
convex disc with C2 boundary and with the property that κg(s) > cot r for every
x ∈ ∂K, where κg denotes the geodesic curvature, and Kn is a uniform spherical
disc–polygon in K, then

lim
n→∞

E(SArea(K \Kn))n
2
3 =

3

√
2A2

3
Γ

(
5

3

) ∫
∂K

(
κg − cot r

) 1
3 ds, (1)

where A denotes the surface area SArea(K), and Γ(·) is the Gamma function,
and the integration is taken with respect to arc length. In the case when K is
a sphericaul circular disc of radius r, the expectation tends to the constant π2/2
without normalisation.

In this work, we first determine a similar result concerning the perimeter devia-
tion in the above model.

Theorem 1. Let K be a spherical convex disc with C5 boundary and with the
property that κg(x) > cot r for every x ∈ ∂K, where κg = κg(s) denotes the
geodesic curvature. Then

lim
n→∞

E
(
(Per(K)−Per(Kn)

)
n

2
3 =

3

√
2A2

3
Γ

(
5

3

) ∫
∂K

(
κg − cot r

) 1
3

(
3κg + cot r

4

)
ds,

where A denotes SArea(K).

Similarly to case of the surface area, if the points are chosen from a spherical
circular disc of radius r, we obtain a different order of magnitude.
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Theorem 2. Let K be a spherical circular disc of radius r. Then

E(Per(K)− Per(Kn)
)
= n−1 · π3(1− cos r) cot r+

+ n−2 · 2π3 (1− cos r)2

sin r
(1− cot2 r) + o(n−2) as n → ∞.

Note that this means that for 0 < r < π/2, the expectation of the perimeter
deviation is of order of magnitude n−1. However, when r = π/2, i.e. we are in stan-
dard spherical convexity, the coefficient of n−1 is 0, hence the order of magnitude
is actually n−2.

In addition to the results on perimeter deviation, we also introduce a notion
of duality, which is the spherical counterpart of the planar spindle convex duality
defined in [8] (see also [3]). This provides a natural way to define a model for
circumscribed disc-polygons. For a spherically spindle convex disc K, let Xn =
{P1, . . . , Pn} be an independently chosen set of points from Kr according to the
uniform probability distribution. Then a random circumscribed disc-polygon K(n)

can be defined as the dual of conv r(Xn). This is the spherical analogue of the
model defined in [11, Section 5]. In this model of random circumscribed spherical
disc-polygons, we obtain the following results.

Theorem 3. Assume that K has C5 boundary, and κg > cot r. With the notation
above,

lim
n→∞

E(SArea(K(n) \K))n2/3 = Γ

(
5

3

)
(sin r)−2/3·

· 3

√
2((1− cos r) · 2π − sin r · L+ cos r ·A)2

3
· 3
4

∫
∂K

∆κ−1/3
g ds

and

lim
n→∞

E(Per(K(n))− Per(K))n2/3 = Γ

(
5

3

)
(sin r)−2/3·

· 3

√
2((1− cos r) · 2π − sin r · L+ cos r ·A)2

3
·
∫
∂K

∆κ−1/3
g

(
κg −

cot r

4

)
ds,

where L and A denote Per(K) and SArea(K), respectively.

The paper is structured as follows. In Section 2, we state and prove some geo-
metric lemmas necessary for the proof of Theorems 1 and 2, which are discussed in
Section 3. In Section 4, we define the spherical spindle convex dual of a set, and
consider the relationship between a set and its dual. Finally, in Section 5, we show
the assertions of Theorem 3.

2. Geometric tools

In the section, we introduce some terminology, and prove some lemmas used in
the proof of Theorems 1 and 2.

By the distance of two points, we will generally mean their spherical distance.
We will also use the usual o and O notation, and write f ∼ g as x → x0 when
f = f(x) and g = g(x) are asymptotically equal, that is, f(x)/g(x) → 1 as x → x0.



4 KINGA NAGY AND VIKTOR VÍGH

A subset D of a spherical spindle convex disc K is called an r spherical disc cap
if D = cl (K ∩Bc) for some spherical disc B of radius r, where cl (·) and ·c denote
the closure and complement of a set, respectively.

From now on, we fix the radius r of the spindle convexity, and will generally
omit it from the notation.

Lemma 1 ([16], Lemma 2). Let D = cl (K∩Bc) be a nonempty spherical disc-cap.
Then there is a unique point x0 of ∂K and a nonnegative real number t such that the
spherical center of B is of distance r + t from x0 along the great circle determined
by the normal plane at x0.

Lemma 2. Let K be a spherical spindle convex disc with C5 boundary and with
the property that κg(x) > cot r for every x ∈ ∂K, and let ϱ be an arc-length
parametrisation of ∂K. We denote by A(t, s0) the area of the spherical disc-cap
with vertex ϱ(s0) and height t, and by ∆θ(t, s0) the central angle of the circular arc
that determines this disc-cap. Then

∆θ(t, s0) = ϑ1t
1/2 + ϑ2t

3/2 +O(t2) and A(t, s0) = v1t
3/2 + v2t

5/2 +O(t7/2),

where the coefficients are dependent on s0, namely

ϑ1 =
2

sin r
·

√
2

∆κg
, v1 =

4

3
·

√
2

∆κg
,

ϑ2 =

√
2

∆κg

− 1
2∆κ4

g − 3
2 cot r ·∆κ3

g − 5
6 (1 + cot2 r)∆κ2

g − 1
6κ

′′
g∆κg +

5
18 (κ

′
g)

2

sin r ·∆κ3
g

,

and

v2 =

√
2

∆κg

− 1
5∆κ4

g − 3
5 cot r ·∆κ3

g − 3
5 (1 + cot2 r)∆κ2

g − 1
15κ

′′
g∆κg +

1
9 (κ

′
g)

2

∆κ3
g

,

where ∆κg = ∆κg(s0) = κg(s0)− cot r.

Proof. We may assume without loss of generality that ϱ is a parametrisation with
positive orientation, s0 = 0, ϱ(0) = (0, 0, 1) and ϱ̇(0) = (1, 0, 0), hence ϱ(0)× ϱ̇(0) =
(0, 1, 0). It is straightforward to check geometrically that ϱ̈ = κg · ϱ× ϱ̇− ϱ, hence
we can express the first four derivatives of ϱ in terms of the orthonormal basis
(ϱ̇, ϱ × ϱ̇, ϱ), and by the smoothness condition on the boundary, we obtain the
fourth-order series expression for ϱ(s) around ϱ(0):

ϱ(s) =
(
s− s3

6
(κ2

g + 1)− s4

8
κgκ

′
g +O(s5),

s2

2
κg +

s3

6
κ′
g +

s4

24
(κ′′

g − κg − κ3
g) +O(s5),

1− s2

2
+

s4

24
(κ2

g + 1) +O(s5)
)
. (2)

Now, let C = C(t) be the spherical disc that determines the spherical disc-cap
with vertex ϱ(0) and height t. Then clearly by Lemma 1, C has center (0, sin(r +
t), cos(r + t)), and hence an othonormal basis in the plane containing ∂C is given
by the vectors (1, 0, 0) and (0,− cos(r+ t), sin(r+ t)), thus ∂C can be parametrised
as
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sin r cosφ, cos r sin(r + t) + sin r cos(r + t) sinφ,

cos r cos(r + t)− sin r sin(r + t) sinφ
)
, φ ∈ [0, 2π], (3)

since the Euclidean radius of the ∂C is sin r, and its center is of distance cos r
from the origin. Note that the closest point of C to ϱ(0) is at the parameter value
φ = 3π/2.

Our first aim is to express the intersection points x+ and x− of ∂K and ∂C in
terms of t.

Figure 1. Projection of a disc-cap to the tangent plane

Consider the orthogonal projection of the construction to the tangent plane z = 1
to the sphere at ϱ(0), or equivalently, the xy plane. It is straightforward to check
from the above parametrisations that the projection of ∂K is described by the
function

K(x) :=
x2

2
κg +

x3

6
κ′
g +

x4

24
(κ′′

g + 3κg + 3κ3
g) + f(x),

where f(x) = O(x5), and the necessary arc of the projection of ∂C by

C(x) := cos r sin(r + t)− cos(r + t)
√

sin2 r − x2,

for arbitrary t when r = π/2, and for t < π/2− r when r < π/2.
Thus equating K(x) = C(x) gives us an implicit relationship between t and x

at the points of intersection. Using implicit differentiation (see [14]), we can derive
the fourth-order Taylor expansion of t around 0, and obtain

t =
x2

2
(κg − cot r) +

x3

6
κ′
g +

x4

24
(κ′′

g + 3κ3
g + 9κg − 3 cot3 r − 9 cot3 r) +O(x5).

Note that since ∂K is of class C5, the function K(x), and by consequence the
remainder term f(x) is four times differentiable. If a function is O(xn) and is dif-
ferentiable at 0, its derivative is O(xn−1) around zero, which in our case implies
that the first four derivatives of f(x) equal 0 at x = 0. Since the implicit differen-
tiation used above requires at most the fourth derivative of K(x) at point x = 0,
the term f(x) does not affect the results.
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By introducing the notation ∆κg = κg − cot r, the above formula can be refor-
mulated as

t =
x2

2
∆κg +

x3

6
κ′
g +

x4

24
(κ′′

g + 3∆κ3
g + 9 cot r∆κ2

g + 9(1 + cot2 r)∆κg) +O(x5).

We note that while this theoretically could be computed by hand, it is an extremely
long calculation, which we used a computer for, see [17].

By [9] Lemma 2 (see also [13] Lemma 2 in a more general form), the inverse of
the above function is of the form

x+ = C1t
1/2 + C2t+ C3t

3/2 +O(t2) and x− = −C1t
1/2 + C2t− C3t

3/2 +O(t2),

where

C1 =

√
2

∆κg
, C2 =

−κ′
g

3∆κ2
g

, and

C3 =

√
2

∆κg

− 1
4∆κ4

g − 3
4 cot r ·∆κ3

g − 3
4 (1 + cot2 r)∆κ2

g − 1
12κ

′′
g∆κg +

5
36 (κ

′
g)

2

∆κ3
g

.

Now, by (3) we have sin r cosφ = x, hence for the point x+ of intersection, the
parameter value θ+ can be expressed as

θ+ =
3π

2
+

x+

sin r
+

x3
+

6 sin3 r
+O(x5

+) =

=
3π

2
+

C1

sin r
t1/2 +

C2

sin r
t+

(
C3

sin r
+

C3
1

6 sin3 r

)
t3/2 +O(t2).

Using a similar argument for θ−, we obtain that

∆θ = θ+ − θ− =
2C1

sin r
t1/2 +

2

sin r

(
C3 +

C3
1

6 sin2 r

)
t3/2 +O(t2),

which yields the statement of the lemma after some algebraic manipulations.
The surface area can be computed via the integral

x+∫
x−

C(x)∫
K(x)

1√
1− x2 − y2

dydx =

x+∫
x−

C(x)∫
K(x)

1 +
x2

2
+

3x4

8
+ h(x) +

y2

2
+ g(x)dydx,

where f(x) = O(x6) and g(y) = O(y4). We will also use an expansion of C(x),
namely

C(x) = t+O(t3) +
x2

2

(
cot r − t+O(t2)

)
+

x4

8

(
cot r +O(t)

)
+O(x6).

Clearly, K(x) and C(x) are positive for all values of x ∈ [x−, x+] by the constru-
cion. For small enough t, and some M > 0, it also holds that

x+ < Mt1/2, C(x) < Mt, |h(x)| < Mx6,

x− > −Mt1/2, K(x) < Mx2, |g(y)| ≤ My4

for the values of x and y that are in the examined interval for that value of t. Then∣∣∣∣∣∣∣
x+∫

x−

C(x)∫
K(x)

h(x)dydx

∣∣∣∣∣∣∣ <
x+∫

x−

C(x)∫
0

|h(x)|dydx <
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<

x+∫
x−

Mt ·Mx6dydx =
M2

7
· t
(
x7
+ − x7

−
)
dx <

2M2

7
t9/2.

Similarly,∣∣∣∣∣∣∣
x+∫

x−

C(x)∫
K(x)

g(y)dydx

∣∣∣∣∣∣∣ <
x+∫

x−

C(x)∫
0

|g(y)|dydx <

<
M

5

x+∫
x−

C5(x)dydx <
M6

5
t5(x+ − x−) <

2M6

5
· t11/2.

Hence the integrals of f(x) and g(y) carry no significant terms.
After integrating with respect to y, we obtain that the surface area is equal to∫ x+

x−

t+O(t3)− x2

2

(
∆κg +O(t2)

)
− x3

6
κ′
g+

+
x4

24

(
κ′′
g + 3∆κ3

g + 9 cot r∆κ2
g + 9∆κg(1 + cot2 r) +O(t2)

)
dx+O(t7/2).

Using a similar argument as before, the integral of O(t3) and x2O(t2) is O(t7/2), and
the integral of x4O(t2) is O(t9/2), thus the terms not explicitly determined carry
no significant terms. The remaining terms are all necessary, and computing the
integral of the polynomial yields the desired result after a long but straightforward
calculation. □

For the proof of Theorem 2, we need a similar geometric result for when K is
a spherical circular disc of radius r. In that case, a disc-cap of height t is the
complement of the intersection of two circular discs of radius r whose spherical
centers are of distance t, or equivalently their set theoretical difference. Clearly,
the surface area and central angle do not depend on the vertex of the disc-cap,
hence we reduce the above notation to A(t) for the surface area and ∆θ(t) for the
central angle. By Lemma 6 of [16], the corresponding central angle is

∆θ(t) = 2 arccos

(
sin t

1 + cos t
· cot r

)
.

For the area, we need an improvement on Lemma 5 of [16].

Lemma 3. Let A(t) denote the surface area of the set theoretical difference of two
spherical circular discs of radius r whose distance is t. Then

A(t) = 2 ·
(
2 arcsin

(
sin(t/2)

sin r

)
+ 2 cos r arccos

(
tan(t/2)

tan r

)
− π cos r

)
.

Moreover, the third-order expansion of A(t) around t = 0 is

A(t) = 2 sin r · t− 1

12
cos r cot r · t3 +O(t5).

Proof. We determine the surface area of the intersection of two such discs, which
yields the statement when substracted from SArea(K) = 2π(1− cos r).

Let A be the center of one of the discs, B and C the two intersection points of
their boundaries, and D the midpoint of the segment connecting B and C, which
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coincides with the midpoint of the segment connecting the two centers, see Figure 2.
By the construction, d(A,B) = r, d(A,D) = t/2, and the angle ADB is π/2. Let
β and α denote the angles DBA abd BAC, respectively, and let a = d(B,D). We
use spherical trigonometry in the triangle ABD. By the spherical sine theorem,
sinβ = sin(t/2)/ sin r. By the spherical cosine theorem used for the side AB,
cos r = cos a cos(t/2), and for the side BD

cos(α/2) =
cos a− cos r cos(t/2)

sin r sin(t/2)
=

tan(t/2)

tan r
.

Figure 2. The surface area of the intersection of two spherical discs.

The surface area of half of the intersection is then obtained by subtracting the
area of the triangle from the area of the circular sector:

α · (1− cos r)− (α+ β + π/2− π),

which yields the assertions after substituting in the above formulas obtained for α
and β. □

3. Proof of Theorems 1 and 2

In the proof of Theorem 1, we closely follow the proof of the corresponding planar
result in [7, Theorem 1.2], whose argument is based on the technique used in [18]
by Rényi and Sulanke.

Let P1 and P2 be two disctinct points in K. There are exactly two spherical
discs or radius r that contain both points in their boundaries. Let D−(P1, P2) and
D+(P1, P2) denote the spherical disc-caps determined by these discs, i.e. the closure
of the subset of K that is not covered by the corresponding disc. We also intro-
duce the notation A−(P1, P2) = A(D−(P1, P2)) and A+(P1, P2) = A(D+(P1, P2)).
Furthermore, let i(P1, P2) denote the length of the shorter r-arc connecting P1 and
P2.



RANDOM SPHERICAL DISC-POLYGONS AND A DUALITY 9

The random pair of points P1, P2 ∈ K determines an edge of conv r(Kn) if and
only if D−(P1, P2) or D+(P1, P2) don’t contain more points from Kn. Hence our
goal is to determine E (Per(K)− Per(Kn)) = Per(K)−

(
n
2

)
· In, where

In = E
(
1(P1, P2 is an edge of Kn) · i(P1, P2)

)
=

=
1

A2

∫
K

∫
K

((
1− A−(P1, P2)

A

)n−2

+

(
1− A+(P1, P2)

A

)n−2
)
i(P1, P2)dP1dP2.

To compute this integral, we carry out the transformation described in [16]
Section 3, which can be described as follows. For every pair of distinct points
P1, P2 ∈ K, there are exactly two disc-caps where both points are contained in the
boundary of the defining spherical disc. Each of these is uniquely determined by
its vertex ϱ(s) and height t by Lemma 1. After fixing a circle on which the two
points lie, we can define an orthonormal basis in the plane the circle’s contained in,
in which the points can each be described by a single parameter, say φ1 and φ2. In
general, this transformation is twofold, but because of the properties of the specific
integrand here, every cap gets counted exactly twice.

By Lemma 3 in [16], and the fact that in the new parametrisation we have
i(P1, P2) = sin r|φ1 − φ2|, carrying out the above transformation yields

In =
1

A2

∫
∂K

∫ t(s)

0

∫
L(s,t)

∫
L(s,t)

(
1− A(t, s)

A

)n−2

· sin r · |φ1 − φ2|·

· sin2 r(sin(r + t)κg(s)− cos(r + t))| sin(φ1 − φ2)|dφ1dφ1dtds.

After integrating with respect to φ1 and φ2, and we obtain

In =
sin3 r

A2

∫
∂K

∫ t(s)

0

(
1− A(t, s)

A

)n−2

(sin(r + t)κg(s)− cos(r + t))·

· 2(2−∆θ sin∆θ − 2 cos∆θ) dtds

Fix ε > 0. There exists some t′ > 0 such that for all 0 < t < t′ the following
conditions hold:

i)
∣∣ sin(r + t)κg(s)− cos(r + t)− sin r ·

(
∆κg(s) + (1 + cot2 r + cot rκg(s))t

)∣∣ < εt

by the first order series expansion of the trigonometric functions;

ii)
∣∣A(t, s)− (v1t

3/2 + v2t
5/2)

∣∣ < εt5/2 using the expansion of A(t, s) in Lemma 2;

iii)

∣∣∣∣2(2−∆θ sin∆θ − 2 cos∆θ)− 1

6
·
(
ϑ4
1t

2 +

(
4ϑ3

1ϑ2 −
ϑ6
1

15

)
t3
)∣∣∣∣ < ε

6
t3

using the expansion of ∆θ in Lemma 2, as well as the sixth-order Taylor polynomial
x4/6− x6/90 + o(x6) of 2(2− x sinx− 2 cosx), and

iv)

∣∣∣∣(1 + cot2 r + cot rκg(s)± ε
)(

4ϑ3
1ϑ2 −

ϑ6
1

15
± ε

)∣∣∣∣ t4 < εt3

by the boundedness of the expression in the absolute value on the left hand side.
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Using essentially the same analytical tools as in [7] (see (5.17) and the preceding
formula), we obtain that

lim
n→∞

E(Per(K)− Per(Kn))n
2/3 = lim

n→∞

(
Per(K)−

(
n

2

)∫
∂K

În(s)ds

)
n2/3,

where

În(s) :=
sin3 r

A2

∫ t′

0

(
1− A(t, s)

A

)n (
sin(r + t)κg − cos(r + t)

)
·

· 2(2−∆θ sin∆θ − 2 cos∆θ) dt.

By the choice of t′,

În(s) ≤
sin4 r

6A2

∫ t′

0

(
1− A(t, s)

A

)n (
∆κg(s) + (1 + cot2 r + cot rκg(s) + ε)t

)
·

·
(
ϑ4
1t

2 +

(
4ϑ3

1ϑ2 −
ϑ6
1

15
+ ε

)
t3
)

dt

≤ sin4 r

6A2

∫ t′

0

(
1− v1

A
t3/2 − v2 − ε

A
t5/2

)n

·
(
D1t

2 +D1D
ε
2t

3
)
dt,

where D1 := ∆κgϑ
4
1 and

D1D
ε
2 = ϑ4

1(1 + cot2 r + cot r∆κg + ε) + ∆κg ·
(
4ϑ3

1ϑ2 −
ϑ6
1

15
+ ε

)
+ ε.

By the same analytical computation as in the proof of Theorem 1.2 of [7], using
the tools (5.13)-(5.16) therein, we obtain that

În(s) ≤
sin4 rD1

9n2v21

[
1 + n−2/3A2/3

(
Dε

2

v
2/3
1

Γ

(
8

3

)
− v2 − ε

v
5/3
1

Γ

(
11

3

)
+ 2ε

)]
.

We can obtain a similar lower bound, and as ε was arbitrary, În(s) is equal to
the formula on the right hand side with ε = 0.

If we write in the formulas for D1 and v1, we see that sin4 rD1/(18v
2
1) = 1, and

since
∫
∂K

1ds = Per(K), in the limit the perimeter cancels out, hence

lim
n→∞

E(Per(K)− Per(Kn))n
2/3 = lim

n→∞

(
Per(K)−

(
n

2

)∫
∂K

În(s)ds

)
n2/3 =

=

∫
∂K

sin4 rD1A
2/3

18v21

(
v2

v
5/3
1

Γ

(
11

3

)
− D0

2

v
2/3
1

Γ

(
8

3

))
ds.

After expanding the formulas, we obtain that the limit of the expectation is
finally equal to

3

√
2A2

3
Γ

(
5

3

)
1

4

∫
∂K

∆κ1/3
g (3∆κg + 4 cot r)−

5(κ′
g)

2 − 3κ′′
g∆κg

3∆κ
8/3
g

ds =

=
3

√
2A2

3
Γ

(
5

3

)
1

4

∫
∂K

∆κ1/3
g (3κg + cot r)−

5(κ′
g)

2 − 3κ′′
g∆κg

3∆κ
8/3
g

ds.
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By an elementary calculation, the last term in the integral is exactly the deriva-

tive of the expression κ′
g/∆κ

5/3
g , hence its integral is zero. The remaining expression

is exactly the statement of the theorem.
In the case when K is the circular disc of radius r, we follow similar steps. The

integral transformation used is geometrically similar to the previous one, and its
Jacobian is given by Lemma 1 of [16], hence we obtain

lim
n→∞

E(Per(Kn)) = lim
n→∞

(
n

2

)
2 sin3 r

A2
×

×
∫ t′

0

(
1− A(t)

A

)n

sin t · (2−∆θ sin∆θ − 2 cos∆θ)dt,

where A := SArea(K) = 2π(1 − cos r), and the upper bound of the integral t′ is
some appropriately small fixed number. Using the appropriate series expansions,
we obtain that the integral is of the form∫ t′

0

(
1− 2 sin r

A
· t+ cot r cos r

12A
· t3 +O(t5)

)n

×

×
(
t− t3

6
+O(t5)

)(
4− π cot r · t+O(t3)

)
dt.

Using similar analytical tools as above, we obtain the statement of the theorem.

4. Duality

We define the spherical r-convex dual of the set H as

Hr = {y ∈ S2 | H ⊆ B(y, r)} =
⋂
x∈H

B(x, r).

Figure 3. The spherical spindle convex dual
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It is clear that if H = K is an r spindle convex disc, K = (Kr)r, justifying
the name ’duality’. If K has C1 boundary, then for any x = ϱ(s) ∈ ∂K, the
smoothness guarantees that there is a unique point, denoted by xr := xr(s), such
that the spherical disc with center xr and radius r supports K at x, i.e. B(xr, r)
contains K, and their supporting great circles at x coincide (see Figure 3. By the
definition of the dual set, xr ∈ Kr, and more specifically it is a boundary point. It
is also straightforward to check that (xr)r = x.

We note that in the special case of r = π/2, it is easy to see that Kπ/2 = −K◦,
where K◦ = {y ∈ S2 | ⟨y, x⟩ ≤ 0 ∀x ∈ K} is the spherical polar body.

Lemma 4. Let K ⊆ S2 be a spherically convex disc. Then for the r-spindle convex
dual Kr of K we have

(i) Per(Kr) = sin r · 2π − cos r · Per(K)− sin r · SArea(K) and

(ii) SArea(Kr) = (1− cos r) · 2π − sin r · Per(K) + cos r · SArea(K).

Furthermore, if K has C2 boundary with the property that κg(x) > cot r for every
x ∈ ∂K, the equality

(iii) sin2 r · (κr
g(x

r)− cot r)(κg(x)− cot r) = 1

also holds.

Proof. First, we assume K is of class C2 and κg > cot r, and let ϱ(s) be an arc-
length parametrisation of ∂K with positive orientation. Then the center xr of the
support r-disc at x = ϱ(s) ∈ ∂K can be explicitly determined using the parametri-
sation of ∂K, namely

xr = cos r · ϱ(s) + sin r · ϱ(s)× ϱ̇(s).

Hence a parametrisation of ∂Kr is given by

ζ(s) = cos r · ϱ(s) + sin r · ϱ(s)× ϱ̇(s), s ∈ [0,Per(K)]. (4)

Differentiating and using the relationship ϱ̈ = κg · ϱ× ϱ̇− ϱ, we obtain that

ζ̇(s) = −ϱ̇(s) · sin r · (κg(s)− cot r).

Hence

Per(Kr) =

∫ Per(K)

0

|ζ̇(s)|ds =
∫ Per(K)

0

sin r(κg(s)− cot r)ds =

= sin r

∫ Per(K)

0

κg(s)ds− cos r · Per(K),

and as the Gaussian curvature of S2 is constant 1, by the Gauss-Bonnet theorem
we have ∫ Per(K)

0

κg(s)ds = 2π −
∫
K

1dA = 2π − SArea(K),

which yields the first part of the assertion. Since (Kr)r = K, using the correspond-
ing formula for K := Kr and some algebraic manipulations, we obtain the second
expression.

For the curvature, again a simple computation yields that

|ζ̇(s)× ζ̈(s)| = sin2 r(κg(s)− cot r)2κ(s),
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hence the curvature κr(s) of ∂Kr at xr(s) is

κr(s) =
|ζ̇ × ζ̈|
|ζ|3

=
κ(s)

sin(r) · (κg(s)− cot r)

and since (xr)r = x, we can express κ(s) in terms of κr(s) in a similar way, which
yields the desired equality.

As the duality transformation is continuous, for general K we can obtain the
results for surface area and perimeter by using standard approximating tools.

□

Corollary 1. For the spherical polar body K◦ = −Kπ/2 we have

Per(K◦) + SArea(K) = 2π.

We note that if we consider the perimeter and surface area as special intrinsic
volumes, the case for the polar body follows from combining Theorem 4.3.1 and
Corollary 4.3.3 of [12] in dimension 2.

Lemma 5. Let K be a spherical convex disc with C2 boundary and with the property
that κg(x) > cot r for every x ∈ ∂K. Then∫

∂Kr

F (xr(s))ds =

∫
∂K

F (x(s)) · sin r · (κg(s)− cot r)ds

for any integrable function F .

Proof. Let ϱ be an arc-length parametrisation of ∂K of positive orientation again.
Using the parametrisation of ∂Kr described in (4), as well as the second-order series
expansion of ϱ(∆s) and ϱ(∆s) × ϱ̇(∆s) around ϱ(0) and ϱ(0) × ϱ̇(0), respectively,
we obtain that

⟨ζ(0), ζ(∆s)⟩ = 1−
(
∆s · sin r(κg(s)− cot r)

)2
2

+ o(∆s2).

On the other hand,

⟨ζ(0), ζ(∆s)⟩ = cos d = 1− d2

2
+ o(d2),

where d denotes the spherical distance of ζ(0) and ζ(∆s), or equivalently, the angle
between them as vectors. As it is well-known that d is asymptotically equal to
the length of the arc of ∂Kr between ζ(0) and ζ(∆s), it is enough to show that
d is asymptotically equal to ∆s · sin r(κg(0) − cot r) as ∆s → 0. From the above
formulas, we have that

(∆s · sin r(κg(0)− cot r))2

d2
= 1− o(d2)

d2
+

o(∆s2)

d2
. (5)

It is clear geometrically that ∆s → 0 as d → 0 and d → 0 as ∆s → 0. Assume
that for some sequence of the quotient ∆sn sin r(κg(0)− cot r)/dn → c ∈ [0,∞] as
n → ∞. Then the limit of the formulas in (5) exist, and we obtain that

c2 = lim
n→∞

(∆sn · sin r(κg(0)− cot r))2

d2n
= lim

n→∞
1− o(d2n)

d2n
+

o(∆s2n)

∆s2n
· ∆s2n

d2n
.

If c < ∞, the rightmost limit is 1, hence c2 = 1, but since all values are positive,
we have c = 1. If c = ∞, we have that dn/∆sn sin r(κg(0) − cot r) → 0, and
as the formulas are symmetric in dn and ∆sn sin r(κg(0) − cot r), this leads to a
contradiction by the previous point. □
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5. A circumscribed model

In this section, we prove the asymptotic formulae stated in Theorem 3, regarding
the expectation of the area- and perimeter deviation of a spherical spindle convex
disc K and a circumscribed spherical disc-polygon K(n). Recall that K(n) is ob-
tained by taking the spherical spindle convex dual of the spherical spindle convex
hull of n uniformly distributed, independent points chosen from Kr.

By Lemma 4, we have

Per(K(n))− Per(K) = cos r · (Per(Kr)− Per(Kr
(n))) + sin r · SArea(Kr \Kr

(n)),

SArea(K(n) \K) = sin r · (Per(Kr)− Per(Kr
(n)))− cos r · SArea(Kr \Kr

(n)),

(6)

and by definition, Kr
(n) is a uniform disc-polygon in Kr.

To be concise, we use the notation ∆κg(s) = κg(s) − cot r as previously, and
∆κr

g(s) = κr
g(s) − cot r for the dual disc, as well as A(·) for SArea(·). From (1),

and using the integral transformation in Lemma 5,we obtain

lim
n→∞

E(SArea(Kr \Kr
(n))) · n

2/3 =
3

√
2A(Kr)2

3
Γ

(
5

3

)∫
∂Kr

(
∆κr

g(s)
)1/3

ds =

=
3

√
2A(Kr)2

3
Γ

(
5

3

)∫
∂K

(
1

sin2 r∆κg

)1/3

sin r∆κgds =

=
3

√
2A(Kr)2

3
Γ

(
5

3

)
(sin r)1/3

∫
∂K

∆κ2/3
g ds.

Similarly, from Theorem 1 we have

lim
n→∞

E(Per(Kr)− Per(Kr
(n))) · n

2/3 =

=
3

√
2A(Kr)2

3
Γ

(
5

3

)∫
∂Kr

(∆κr
g)

1/3 ·
(
3

4
∆κr

g + cot r

)
ds =

=
3

√
2A(Kr)2

3
Γ

(
5

3

)∫
∂K

(
1

sin2 r∆κg

)1/3(
3

4 sin2 r∆κg

+ cot r

)
sin r∆κgds =

=
3

√
2A(Kr)2

3
Γ

(
5

3

)
(sin r)1/3

∫
∂K

∆κ2/3
g

(
3

4 sin2 r∆κg

+ cot r

)
ds.

Combining these results with (6), we have

lim
n→∞

E(SArea(Kn \K))n
2
3 =

3

√
2A(Kr)2

3
Γ

(
5

3

)
·

· (sin r)1/3
∫
∂K

∆κ2/3
g

(
sin r

(
3

4 sin2 r∆κg

+ cot r

)
− cos r

)
ds,

and

lim
n→∞

E(Per(Kn)− Per(K))n2/3 =
3

√
2A(Kr)2

3
Γ

(
5

3

)
·

· (sin r)1/3
∫
∂K

∆κ2/3
g

(
cos r

(
3

4 sin2 r∆κg

+ cot r

)
+ sin r

)
ds,
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which yield the desired formulas after simplification of the integrand, and sub-
stituting A(Kr) with (1− cos r)2π − sin rPer(K) + cosA(K) from Lemma 4.
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