Tárgy neve: Topológia és sokaságok gy. (MSc 2017-2025)
Tanszék: Geometria Tanszék
Tematika:
Topológiák lokális és globális megadási módjai, bázis, szubbázis, környezetbázis, lezárási operátor, Moore Smith konvergencia, konvergenciaosztályok. Altér, szorzattér, faktortér, folytonosság. Metrikus terek, fixponttételek, teljes térbe való beágyazás, Baire kategória tétel. Reguláris, normális terek, Uriszon tétel, Tietze tétel. Kompaktság.
A sokaság definíciója, érintőtér, vektormező, Lie-derivált, kovariáns deriválás, Christofel-szimbólumok, torzió, Riemann-görbület. Riemann-metrika, Levi-Civita kovariáns deriválás, görbe és ívhossza, geodetikusok, szorzatgörbület, konstansgörbületű terek. Szimpliciális felbontások. Kompakt felületek osztályozása. Homotópia. Sima sokaságok, tenzorok és differenciálformák. A d-operátor és Stokes tétele, bevezetés a de Rham-elméletbe. Gauss-Bonnet-tétel.
Gyakorlat kódja: MMNV41G, óraszám: 2, kredit: 0