Publications |
19 | M. A. Ibrahim | Threshold dynamics in a periodic epidemic model with imperfect quarantine, isolation and vaccination, AIMS Mathematics 9(8): 21972–22001 (2024) [Pdf] |
18 | Rafiullah, M., Asif, M.,
Jabeen, D., M. A. Ibrahim | Threshold dynamics in a periodic epidemic model with imperfect quarantine, isolation and vaccination, Axioms 13(5), 311 (2024) [Pdf] |
17 | S. Barua, M. A. Ibrahim, A. Dénes | A compartmental model for the spread of Nipah virus in a periodic environment, AIMS Mathematics 8(12): 29604–29627 (2023) [Pdf] |
16 | M. A. Ibrahim, A. Dénes | Mathematical Modeling of SARS-CoV-2 Transmission between Minks and Humans Considering New Variants and Mink Culling, Tropical Medicine and Infectious Disease 8(8), 398(2023) [Pdf] |
15 | F. K. Alalhareth, M. H. Alharbi, M. A. Ibrahim | Modeling Typhoid Fever Dynamics: Stability Analysis and Periodic Solutions in Epidemic Model with Partial Susceptibility, Mathematics 11(17), 3713(2023) [Pdf] |
14 | M. H. Alharbi, F. K. Alalhareth, M. A. Ibrahim, A. Dénes | Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination, Mathematics 11(15), 3298(2023) [Pdf] |
13 | M. A. Ibrahim, A. Dénes | Stability and Threshold Dynamics in a Seasonal Mathematical Model for Measles Outbreaks with Double Dose Vaccination, Mathematics 11(8):1791(2023) [Pdf] |
12 | M. A. Ibrahim, A. Dénes | A Mathematical Model for Zika Virus Infection and Microcephaly Risk Considering Sexual and Vertical Transmission, Axioms 12(3):263(2023) [Pdf] |
11 | O. J. Peter, H. S. Panigoro, M. A. Ibrahim, O. M. Otunuga, T. A. Ayoola, A. O. Oladapo | Analysis and dynamics of measles with control strategies: a mathematical modeling approach, International Journal of Dynamics and Control 1-15(2023) [Pdf] |
10 | M. A. Ibrahim, A. Dénes | A mathematical model for the spread of Varroa mites in honeybee populations: two simulation scenarios with seasonality, Heliyon 8(9):e10648(2022) [Pdf] |
9 | S. Barua, A. Dénes, M. A. Ibrahim | A seasonal model to assess intervention strategies for preventing periodic recurrence of Lassa fever, Heliyon 7(8):e07760(2021) [Pdf] |
8 | M. A. Ibrahim, A. Dénes | A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Analysis: Real World Applications, 60(2021), 103310. [Pdf] |
7 | M. A. Ibrahim, A. Dénes | Threshold dynamics in a model for Zika virus disease with seasonality, Bulletin of Mathematical Biology, 83(2021), 27. [Pdf] |
6 | M. A. Ibrahim, A. Dénes | Threshold and stability results in a periodic model for malaria transmission with partial immunity in humans, Applied Mathematics and Computation, 392(2021), 125711. [Pdf] |
5 | M. A. Ibrahim, A. AL-Najafi, A. Dénes | Predicting the COVID-19 Spread Using Compartmental Model and Extreme Value Theory with Application to Egypt and Iraq, Trends in Biomathematics: Chaos and Control in Epidemics, Ecosystems, and Cells,(2021), in press. [Pdf] |
4 | M. A. Ibrahim, A. AL-Najafi | Modeling, Control, and Prediction of the Spread of COVID-19 Using Compartmental, Logistic, and Gauss Models: A Case Study in Iraq and Egypt, Processes, 8(2020), 1400. [Pdf] |
3 | A. Dénes, M. A. Ibrahim, L. Olouch, M. Tekeli, T. Tekeli | Impact of weather seasonality and sexual transmission on the spread of Zika fever, Scientific Reports, 9(2019), 17055, 10. [Pdf] |
2 | A. Dénes, M. A. Ibrahim | Global dynamics of a mathematical model for a honeybee colony infested by virus-carrying Varroa mites, Journal of Applied Mathematics and Computing, 61(2019), 349–371. [Pdf] |
1 | E. M. Elabbasy, W. W. Mohammed, M. A. Ibrahim | The Approximate Solutions of the stochastic Generalized Swift-Hohenberg Equation with Neumann Boundary Conditions, International Journal of Partial Differential Equations and Applications 3, no.1 (2015), 12-19. [Pdf] |