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1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is a respiratory
pathogen. The disease spreads mainly through respiratory droplets that are produced
when an infected person coughs, sneezes, sings, speaks, or breathes. The most
common symptoms of COVID-19 are fever, dry cough, fatigue, shortness of
breath, sore throat, muscle pain, loss of smell, loss of appetite, headache, and
conjunctivitis [1, 2]. Most infected persons (about 80%) develop mild to moderate
illness and recover without hospitalization. About 20% become seriously ill and
require oxygen, and 5% become critically ill and require intensive care. The
background of the disease in Iraq and Egypt can be found in [3].

A variety of mathematical models have been developed to understand the
epidemiological features of COVID-19 and the transmission dynamics for many
countries, including France [4], Germany [5], Hungary [9], the UK [6], and the
USA [7, 8]. Ibrahim and Al-Najafi [3] studied the spread of COVID-19 epidemic
in Iraq and Egypt by using compartmental, logistic regression, and Gaussian
models, providing a forecast of the spread of COVID-19 in Iraq. Furthermore,
we predicted the possible start of the second wave of the COVID-19 epidemic
in Egypt using generalized SEIR with time-periodic transmission rate. Here, we
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establish a compartmental mathematical model for the spread of COVID-19, taking
into account presymptomatic, mildly, and symptomatically infected individuals. We
estimate the parameters that provide the best fit to the incidence data from both
countries.

Extreme value theory (EVT) is widely applied in many disciplines, including
public health. We refer to some of these studies, Lim et al. [10], in which EVT was
used to model the extremes in dengue case counts using provincial-level data in
Thailand from 1993 to 2018. Lim et al. [11] analyzed the dengue incidence data in
Singapore by using time-varying extreme mixture (tvEM) methods to account for
the time dependence of dengue case numbers over extreme and non-extreme time
periods. In [12], the annual maxima of pneumonia and influenza deaths were plotted
against the return level over the period 1979-2011. Chen et al. [13] used EVT to
forecast the probability of outbreaks of highly pathogenic influenza. In more recent
research, the EVT has been used to project the future of COVID-19 confirmed cases
in Italy, Australia, Iran, South Africa, the USA, and Chile [14]. Here, we estimate
the return level and the return period of the COVID-19 epidemic to predict the future
of the disease in Egypt and Iraq. We provide several scenarios for the possible peak
and its timing using Gaussian2 fit model.

This chapter is organized as follows. Section 2 describes the various methods
applied in our work, while the results provided by these methods are given in Sect. 3.
This chapter is concluded by a discussion in Sect. 4.

2 Methods

2.1 Compartmental Model for COVID-19 Transmission

The population is divided into seven compartments: susceptible (denoted by S(¢)),
exposed (E (1)), presymptomatic infected (P (¢)), symptomatically infected (I;(¢)),
mildly infected (Z,,(¢)), treated (I.(¢)), and recovered individuals (R(¢)). The total
size of the population at any time ¢ is givenby N(¢) = S@)+ E(@#)+ P () + 1, (t) +
I(t) + L (t) + R(1).

The transmission dynamics is shown in the flow diagram in Fig. 1, and our model
takes the form

Fig. 1 Follow diagram of the COVID-19 transmission
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Table 1 Description of the model (1) parameters

Parameters Descriptions
B Transmission rate from infectious classes to susceptible
Kp, Ky Ky The relative transmissibility of P, I, and I., respectively
[% Proportion of asymptomatic infections
Vs Progression rate from I to I,
Vm,> Yr Recovery rates
3, Disease-induced death rate
Ve, Vp Incubation rates

S/(l): _ﬂKpP(t)+K”11”1(t)+15(t)+K]‘IT(t)S(t)’

N(@)
By = pr PO O SO A D ) - v,

P'(t) = v E(t) — v, P(1),

I'm(t) = 0vp P(t) = Y I (1),

U's@) = (1 =60, P(t) = ysIs(1),
L) =y ls() — v, L, (1) = 8, (1),
R(1) = Ymdn (1) + v, 1 (1).

D

The description of the model parameters is listed in Table 1. Susceptibles are
those who can be infected through COVID-19. Once a person has been infected
with the disease, who moves up to the exposed class, these individuals do not
yet have symptoms and can not transfer the virus to susceptible individuals.
Exposed individuals progress to presymptomatic class, and these individuals do
not yet have symptoms but can transfer the virus. Following the incubation period,
presymptomatic individuals move to one of the symptomatically infected class and
the mildly infected class, based on whether or not that individual shows symptoms
or not. Mildly infected individuals progress to the symptomatically compartment
or the recovered class. Symptomatically infected individuals move to the treated
compartment, which includes those who reported hospitalized. After the infectious
period, the treated persons move to the recovered class. To keep our model simpler,
we do not add separate compartments for the quarantined individuals. In particular,
B represents the transmission rate from symptomatically infected to susceptible,
while Bk, Bk, and Bk, are the transmission rates from presymptomatic, mildly
infected, and treated to susceptible, respectively. The length of the latent period for
humans is 1/v, while 1/y,,, 1/, denote the lengths of the infected period for mildly
and symptomatically infected people, respectively. The parameter € is the fraction
of mildly infected among all the infected people.
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2.1.1 Derivation of the Basic Reproduction Number

By using the next generation method introduced in [19], we derive a formula for
the basic reproduction number of (1). Then by considering the infectious states
E,P, Iy, I, and [, in (1) and substituting the values in the disease-free equilibrium
(N,0,0,0,0,0,0), we calculate the matrices F' and V for the new infection terms
and the remaining transfer terms. These two matrices are, respectively, given by

0 By Brem B B, Ve 0 00 0
00 000 —ve v 00 0
F=|00 000 |adV=|0 —6v, 3, 0 0
00 000 0 —(1—6)v, 0 y, 0
00 000 0 0 0 —vs % +6;

According to [19], the basic reproduction number is the largest absolute eigenvalue
of FV~! and thus, it is given by

+

Brp  O0Bkm (1 —=0)Bve (1 —0)Bves,
Lt )
Vp Ym VpVs Vp(VT + ST)

Ro=p(FV™hH = )

Besides calculating the basic reproduction number R of the model (1), effective
reproduction rate Ry = Ro% can also be estimated by this formula, measuring
the average number of secondary cases per infectious case in a population. In
addition, the time-dependent reproduction number can be calculated from incidence
data (see e.g., [20] for details).

2.2 Return Level Estimation

The application of EVT offers different techniques to study the behavior of a sample
with very high or very low levels. One of the important techniques of extreme value
theory is the idea of the return level. The return level is strongly related to the return
period: it is the quantile that will be reached or exceeded once in every year. In
this chapter, we will use it to investigate the upper-tail distribution properties of the
infection of the COVID-19 epidemic. In this subsection, we follow the methods and
definitions given in [15].

Let X be a random variable with cumulative distribution function F, and the
distribution function of this random variable is called excess distribution function
over the threshold u denoted by F,,, defined as
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Fu(x)zp(x—u§x|X>u)=%F(_mW, x>0,

where 1 — F(u) is the exceedance probability, and the mean excess function of X
e(u) = E(X —u | X > u) denotes the mean residual life function. The method
is based on exceedances over a specified threshold. Assuming that the appropriate
distribution is chosen and then the parameters are estimated, it is useful to calculate
the return level. For a given threshold u, assume that the generalized Pareto (GP)
distribution with scale o and shape £ parameters is a suitable model for exceedances.
For sufficiently large u, the distribution function of (X — u), conditional on X > u,
is therefore approximately

| —

Ex\
Hx)=1-|14+— ; £ >0, 3)
o2
where 6 = o + &(u — p). Let &, = P {X > u}, and let x,, be the value that is
exceeded once in every m periods on average, and the level x,, will be obtained

from

o
ut Zlme)* =11 §#0

Xm = 5 )
u + o log(mgy) £E=0

provided m is sufficiently large to ensure that x,,, > u.

To predict the second wave of the COVID-19 epidemic, we apply a Gaussian?2 fit
model. Let I (x) denote the Gaussian2 function, and it is given by

2 \2
1) =3 Iexp <_ (x;ﬂj> ) 5)
j=1 /

where /; is the amplitude, w; is the time of the peak, and o; is related to the peak
width.

3 Results

3.1 Parameter Estimation for Iraq and Egypt

The data were collected from the Worldometer website [16, 17]. We focus on the
data from 22 February to 31 October, 2020 in Iraq and from 15 February to 31
October, 2020 in Egypt.
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Fig. 2 The model (1) fitted to the daily confirmed cases in (a) Egypt and (b) Iraq with parameters
given in Table 2

Table 2 Parameters and
fitted values of model (1) in
the case of Iraq and Egypt

Value for Iraq | Value for Egypt
Parameters | Rog = 1.122 Ro = 1.129 Source

B 0.572 0.817 Fitted
Kp 0.284 0.277 Fitted
Km 0.275 0.235 Fitted
Ky 0.211 0.368 Fitted
0 0.728 0.805 Fitted
Vs 0.5 0.255 Fitted
Vm 0.23 0.203 Fitted
Y 0.098 0.336 Fitted
8, 0.164 0.191 Fitted
Ve 0.259 0.155 Fitted
vy 0.483 0.93 Fitted

To estimate the model (1) parameters giving the best fit, we applied Latin
hypercube sampling, a method used in statistics to measure simultaneous variation
of multiple parameters (see e.g., [18] for details).

Figure 2 shows the model (1) fitted to the daily number of confirmed cases in (a)
from Egypt, 15 February 2020 to 31 October 2020, and in (b) from Iraq, 22 February
2020 to 31 October 2020. Our model gives a reasonable good fit for both countries,
showing the peak in Egypt and predicting the peak in Iraq. The fitting parameter
results are listed in Table 2.
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Fig. 3 The contour plot of the basic reproduction number for Iraq and Egypt as a function of
transmission rate (f) and progression rate (y;) from I to I,

3.2 Reproduction Numbers

In order to quantify the effort needed to eradicate infectious diseases, the basic
reproduction rate ¢ is an important threshold parameter and is defined as the
expected number of secondary infections generated by one infected person in a
population where all individuals are susceptible to infection. The basic reproduction
number is estimated from the incidence data using exponential growth (EG) method
(see e.g., [20] for details), and we found that Rg = 1.047 for Egypt and Ro = 1.078
for Iraq. The reproduction number in both countries is greater than one and the
disease persists.

Formula (2) gives us the basic reproduction number in any time point by
substituting the parameter values into it. To assess the dependence of the basic
reproduction number on the parameters that can be subject to control the spread
of the virus, the contour plot of the basic reproduction number in terms of
the transmission rate (8) and progression rate from symptomatically infected to
hospitalized individuals (y;) for the two countries is shown in Fig. 3.

Figure 4 shows the effective reproduction number along with the number of
symptomatically infected in Egypt and Iraq, 2020-2021, showing that the number
of infected individuals begins to decline when the effective reproduction number
goes below 1. The highest value of the effective reproduction number is calculated
to be about R ~ 1.129 in Egypt and Ry ~ 1.122 in Iraq.
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Fig. 4 The effective reproduction number and the number of symptomatically infected in (a)
Egypt and (b) Iraq, 2020-2021
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Fig. 5 Mean excess plot with threshold in Iraq and Egypt, 2020

3.3 Prediction of the Second Wave of the COVID-19 Epidemic

The application of the return level required choosing an optimal threshold assuming
that data exceeding a specified threshold follows a Pareto distribution to determine
an accurate return level estimate. It is very important to choose a plausible threshold
value because choosing a threshold value that is too small leads to an imprecise
estimate and choosing a threshold value that is too high leads to a biased estimate.
The results of the empirical mean excess function show the appropriate threshold
value for our data and also the peak value for infections, with the peak value in Iraq
being 4200 and in Egypt 1400.

Figure 5 shows the peak values selected for infections, which are 4200 and 1400
in Iraq and Egypt, respectively.

The return level for the peaks corresponding to the selected threshold for 2020
and 2021 is shown in Fig. 6. Over the 2021 period, it indicates that 4434, 4468,
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Fig. 7 Two different scenarios with return level to the daily confirmed cases in Egypt and Iraq,
2020-2021

and 4498 infection cases per day are expected to be exceeded in next year in Iraq
with confidence intervals (4341.4, 4564.2), (4321, 4704.2), and (4302, 4858.5),
respectively, while 1534 (1502.2, 1577.7), 1549 (1511.2, 1598), and 1560 (1523.6,
1661.7) infection cases per day are expected to be exceeded once in the next year
in Egypt. The upper and lower confidence intervals for peaks 4468 and 4498 in Iraq
and 1549 and 1560 in Egypt indicate low precision and high uncertainty, while the
confidence intervals to the peaks 4434 and 1534 for Iraq and Egypt, respectively,
revealed narrower and less uncertainty. To predict the spread of COVID-19 in Iraq
and Egypt, we apply the Gaussian2 model (5) to estimate the value and time of the
expected peak for two different scenarios and estimate the time of the peak that
we obtained from return level. Figure 7 shows the daily cases with three expected
maximum peak values at its timing in Iraq and Egypt. Table 3 shows the parameters
that were used to obtain each scenario and return level estimation. The return level
peak timing is estimated to occur on 12 October 2021 with R = 0.9574 for Iraq,
while on 18 April 2021 in Egypt with R? = 0.9578. The second wave peak timing
is estimated to occur between 21 March and 4 July, 2021 in Iraq, while in Egypt it
is estimated to occur between 17 February and 29 March, 2021.
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Table 3 Estimated parameter results for two scenarios and return level of the Gaussian model to
Iraq and Egypt

Gaussian2 model

Parameters Scenario one Scenario two Return level
Iraq

Estimated peak day cases 8200 6500 4434
Estimated peak date 21/3/2021 04/07/2021 12/10/2021
Goodness of fit (R?) 0.9675 0.9544 0.9574
Root-mean-square error (RMSE) 364.8 364.9 365

Egypt

Estimated peak day cases 4000 2700 1535
Estimated peak date 17/02/2021 29/03/2021 28/04/2021
Goodness of fit (R?) 0.9498 0.9779 0.9578
Root-mean-square error (RMSE) 111.3 1114 111.7

4 Discussion

We have studied the spread of COVID-19 epidemic in Egypt and Iraq by using
compartmental (generalized SEIR) model considering presymptomatic, mildly, and
severely infected individuals. We estimated the parameters that best fit the incidence
data. Our model provides a reasonable good fit to the incidence data in both
countries.

The reproduction number was estimated based on the cumulative confirmed cases
by using the exponential growth (EG) method and was found to be 1.078 and 1.047
for Iraq and Egypt, respectively. Using our compartmental model, we obtained a
formula for the basic reproduction number that allowed us to calculate the value
of Ro. Using the estimated parameter set resulting from fitting our model to the
incidence data in both countries, we found that Rg = 1.122 and Ry = 1.129 for
Iraq and Egypt, respectively. The basic reproduction number is greater than one,
indicating that the virus still persists in both countries. The highest value of the
effective reproduction number is estimated to be about 1.129 in Egypt and 1.122
for Iraq (see Fig. 4). The contour plots of the basic reproduction number (see Fig. 3)
suggest that to control the spread of the COVID-19 outbreak, both countries should
work to decrease the transmission rate enough by making more restrictions and
precaution measures in the cities that have large numbers of infected people.

The return level for the peaks indicates that infection cases per day are expected
to be exceeded once in next year and corresponds to a number of 4434 and
1535 infection cases with narrower and less uncertain confidence intervals in Iraq
and Egypt, respectively. The Gaussian2 fit model was used to obtain statistical
predictions for the spread of COVID-19 pandemic in Iraq and Egypt, and we fitted
the Gaussian2 model to the daily confirmed cases to estimate the value and timing
of the expected peak for two different scenarios and to determine the timing of the
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peak that we obtained from the return level for both countries. The results of the
return level in Iraq illustrate that the predicted daily cases are estimated to be 4434,
while the peak values of scenario one and scenario two are expected to be 8200 and
6500 on March 21, 2021 and July 4, 2021, respectively. In Egypt, the predicted daily
cases are estimated to be 1535, while the peaks of scenario one and scenario two are
expected to be 4000 and 2700 on 17 February and 29 March, 2021, respectively.
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