|  | Research papers 
Ferenc Fodor and Dániel I. Papvári, On generalized disc-polygons in plane convex bodies with a higher degree
  of smoothness, submitted, (2025).Alexandra Bakó-Szabó and Ferenc Fodor, 
On the distribution of pairs of random points from a spherical shell, submitted, (2025).Ferenc Fodor and Florian Grunbacher, On the minimal area of quadrangles circumscribed about planar convex bodies, 
submitted, (2025). Ferenc Fodor and Balázs Grünfelder,  
					Variances and Central Limit Theorems for Random Beta-Polytopes and in Other Geometric Models, submitted, (2025).Károly J. Böröczky, Ferenc Fodor and Pavlos Kalantzopoulos, 
Equality in Liakopoulos's generalized dual Loomis-Whitney inequality via Barthe's Reverse Brascamp-Lieb inequality, Anal. Math., accepted, (2025).Károly J. Böröczky, Ferenc Fodor, Daniel Hug, 
					Strengthened inequalities for the mean width and the ℓ-norm of origin symmetric convex bodies, 
					Math. Ann. 393 (2025), 271–316.  arXiv versionFerenc Fodor and Balázs Grünfelder, 
					Note on the variance of generalized random polygons, 
					Aequationes Math. 99 (2025), 869-882. Ferenc Fodor and Dániel I. Papvári, 
					A central limit theorem for random disc-polygons 
					in smooth convex discs, 
					Discrete Comput. Geom., Published: 18 November 2024.A. Bezdek, F. Fodor, V. Vígh, T. Zarnócz, 
					
					On the multiplicity of arrangements of equal zones on the sphere, 
					Studia Sci. Math. 61, No. 3 (2024), 262-273. 
					ArXiv version
					Alexandra Bakó-Szabó and Ferenc Fodor, 
					On the variance of the mean width of random polytopes circumscribed around a convex body, 
					Mathematika 70, No. 4 (2024), e12266.Ferenc Fodor, Nicolás A. Montenegro Pinzón, 
					Series expansions for random disc-polygons in smooth plane convex bodies, 
					J. Appl. Probab. 61, No. 4 (2024), 1407-1423. 
					Ferenc Fodor, Péter Kevei, Viktor Vígh, On random disc-polygons in a 
					disc-polygon, 
					Electron. Commun. Probab. 28 (2023), 1-11. 
					arXiv version
					Ferenc Fodor, Nicolás A. Montenegro Pinzón, Viktor Vígh,  On Wendel's equality for intersections of balls, 
					Aequationes Math. 97 (2023), 439-451.Ferenc Fodor, Balázs Grünfelder, Viktor Vígh, Variance bounds for disc-polygons, 
					Doc. Math. 27 (2022), 1015-1029. arXiv versionF. Fodor, Perimeter 
					approximation of convex discs in the hyperbolic plane and on the sphere,
					Discrete Comput. Geom. 66 (2021), 1190–1201.
					arXiv version					
					Károly J. Böröczky, Ferenc Fodor, and Daniel Hug, Strengthened inequalities for the mean width and the l-norm , 
					J. London Math. Soc. 104, No. 1 (2021), 233-268. arXiv version F. Bartha, F. Fodor, and B. Gonalez Merino, 
					Central diagonal sections of the n-cube, 
					Int. Math. Res. Not. IMRN 
					 Volume 2021, Issue 4, February 2021, Pages 2861–2881. arXiv version
					F. Fodor, Random ball-polytopes in smooth convex bodies, 
				2019.F. Fodor, D. Papvári, and V. Vígh, On random approximations by 
					generalized disc-polygons, Mathematika, 
					66 (2020), 498-513.  arXiv version  F. Fodor, M. Naszódi and T. Zarnócz,
					
					On the volume bound in the Dvoretzky-Rogers lemma
					, 
					Pacific. J. Math.,
					301 (2019), No. 1, 89-99. arXiv version
					Károly J. Böröczky and Ferenc Fodor,
					
					The L_p dual Minkowski problem for p>1 and q>0
					,
					J. Differential Equations, 266 (2019), no. 12, 7980-8033.
					arXiv version					
					Károly J. Böröczky, Ferenc Fodor, Daniel Hug, 
						
						Strengthened volume inequalities for L_p zonoids of even isotropic measures,
						Trans. Amer. Math. Soc. 371 (2019), no. 1, 505-548. 
						arXiv version
						 
						
					Ferenc Fodor and Viktor Vígh, 
					
					Variance estimates for random disc-polygons in smooth
					convex discs
					, 
					J. Appl. Probab.  55 (2018), no.4, 1143-1157.
					arXiv version
						
					F. Fodor, Á. Kurusa, and V. Vígh,
						 
						Inequalities for hyperconvex sets, 
						Adv. Geom., 16 (2016), no. 3, 337-348.						
						pdf
						F. Fodor, V. Vígh, and T. Zarnócz,
						Covering the sphere by equal zones,
						Acta. Math. Hungar. 149 (2016), no. 2, 478-489. 												
						pdf					
						F. Fodor, V. Vígh, and T. Zarnócz, 
						
						On the angle sum of lines,
						Arch. Math. (Basel) 106 (2016), no. 1, 91-100. 
						pdf
						F. Fodor, D. Hug, and I. Ziebarth, 
						
						The volume of random polytopes circumscribed around a convex body,
						Mathematika 62 (2016), no. 1, 283—306. 
						pdf
						T. Bisztriczky and F. Fodor, 
						
						A separation theorem for totally-sewn 4-polytopes, 
						Studia Sci. Math. Hungar. 52 (2015), no.3, 386—422.
						G. Fejes Tóth, F. Fodor, and V. Vígh, 
						
						The packing density of the n-dimensional cross-polytope,
						Discrete	Comput. Geom 54 (2015), no. 1, 182—194.
						pdf
						G. Fejes Tóth and F. Fodor, 
						
						Dowker-type	theorems for hyperconvex discs,
						Period. Math. Hungar. 70 (2015), no. 2, 131—144. 
						pdf
						I. Bárány, F. Fodor, A. Martínez-Pérez, L. Montejano, D. Oliveros, and A. Pór, 
						
						A fractional Helly theorem for boxes,						
						Comput. Geom. 48 (2015), no. 3, 221—224. 
						F. Fodor, P. Kevei, and V. Vígh, 
						
						On random disc-polygons in smooth convex discs,
						Adv. in Appl. Probab. 46 (2014), no. 4, 899—918. 
						I. Bárány, F. Fodor, L. Montejano, D. Oliveros, and A. Pór,
						
						Colourful and Fractional (p,q)-theorems, 
						Discrete Comput. Geom. 51 (2014), no. 3, 628-642. 
						Károly J. Böröczky, Ferenc Fodor, Daniel Hug, 
						
						Intrinsic volumes of random polytopes with vertices on the boundary of a
						convex body,
						Trans. Amer. Math. Soc. 365 (2013), no. 2, 785-809
						T. Bisztriczky, F. Fodor, and D. Oliveros,
						
						Separation in totally-sewn 4-polytopes with the decreasing
						universal edge property,
						Beitrage Algebra Geomet. 53 (2012), no. 1, 123-138. 
						F. Fodor, V. Vígh, 
						
						Disc-polygonal approximations of planar spindle convex sets,
						Acta Sci. Math. (Szeged) 78 (2012), no. 1-2, 331-350. 
						András Bezdek	and Ferenc Fodor, 
						Extremal triangulations of convex polygons, 
						Symmetry Cult. Sci. 22 (2011), no 3-4, 427-434.
						I. Bárány, F. Fodor, and V. Vígh, 
						
						Intrinsic volumes of inscribed random polytopes in	smooth convex bodies,
						Adv. Appl. Probab. 42 (2010), no. 3, 605-619. 
						T. Bisztriczky, K. Böröczky, F. Fodor, A. Heppes, and D. Oliveros, 
						Centred subpolytopes of the 4-cube, pp. 1-13,
						E-Yellow Series Preprints #862, Department of Mathematics and
						Statistics, University of Calgary, Canada (2010).
						Károly J. Böröczky, Ferenc Fodor, and Daniel Hug, 
						
						The mean width or random polytopes circumscribed around a convex body,
						J. London Math. Soc. 81 (2010), no. 2, 499-523. 
						K. J. Böröczky, F. Fodor, V. Vígh, and M. Reitzner,
						
						Mean width of random polytopes in a reasonably smooth convex body, 
						J. Multivariate Anal. 100 (2009), 2287-2295.
						T. Bisztriczky, F. Fodor, and D. Oliveros, 
						
						The T(4) property of families of unit disks,
						Israel J. of Math. 168 (2008),	239-252.
						K. J. Böröczky, F. Fodor, and V. Vígh, 
						
						Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges,
						Beitrage Algebra Geom. 49	(2008), no. 1, 177-193.
						T. Bisztriczky, F. Fodor, and D. Oliveros, 
						
						A transversal property of families of eight or nine unit disks,
						Bol. Soc. Mat. Mexicana (3) 12 (2006), no. 1, 59-73.
						G. Ambrus and F.	Fodor, 
						
						A new lower bound on	the surface area of a Voronoi polyhedron,
						Period. Math. Hungar. 53 (2006), no.1-2, 45-58.
						G. Ambrus, A.	Bezdek, and F. Fodor, 
						
						A Helly-type transversal theorem for n-dimensional unit balls,
						Arch.	Math. (Basel) 86 (2006), no. 5, 470-480.
						T. Bisztriczky, F. Fodor, and D. Oliveros,
						
						Large transversals to small families of unit disks,
						Acta Math. Hungar. 106 (2005), no. 4, 285-291.
						Ferenc Fodor,
						Packing of 14 congruent circles in a circle, 
						Studies Univ. Zilina Math. Ser. 16 (2003), no. 1, 25-34.
						Ferenc Fodor,
						The densest packing of 13 congruent circles in a circle,
						Beitrage Algebra Geom. 44 (2003), no. 2, 431-440.
						A. Bezdek, F. Fodor, and I. Talata, 
						
						Sylvester-type theorems for unit circles,
						Discrete	Math. 241 (2001), no. 1-3, 97-101.
						Ferenc Fodor,
						The densest packing of 12 congruent circles in a circle,
						Beitrage Algebra Geom. 41 (2000), no. 2, 401-409. 
						A. Bezdek and F.	Fodor, 
						
						On convex polygons of maximal width,
						Arch.	Math. (Basel) 74 (2000), no. 1, 75-80.
						Ferenc Fodor,
						New developments in packing equal circles in a circle,
						Paul Erdős and his mathematics (Budapest, 1999), János Bolyai
						Math. Soc., Budapest, 1999, pp. 65-68.
						Ferenc Fodor,
						
						The densest packing of 19 congruent circles in a circle,
						Geom.	Dedicata 74 (1999), no. 2, 139-145.
						András Bezdek	and Ferenc Fodor, 
						
						Minimal diameter of certain sets in the plane,
						J.	Combin. Theory Ser. A 85 (1999), no. 1, 105-111.
						A. Bezdek, F.	Fodor, and I. Talata, 
						Applications of inscribed affine	regular polygons in convex discs, 
						International Scientific Conference on Mathematics, Proceedings (Zilina, 1998), 19-27,
						Univ. Zilina, Zilina, 1998, pp. 19-27.
						Ferenc Fodor,
						
						Linear spaces and	partitioning the projective plane,
						J.	Combin. Theory Ser. A 79 (1997), no. 1, 168-172.						
						 Editorial work in special volumes 
					K. J. Böröczky and F. Fodor (eds.), 
					Issue dedicated to Professors T. Bisztriczky, G. Fejes Tóth and E. Makai on occasion of their 70th birthdays, 
					Acta Math. Hungar. 155 (2018), no 1. link
					K. Böröczky, K. J. Böröczky, F. Fodor, H. Harborth, and W. Kuperberg (eds.), 
						Issue dedicated to Prof. T. Bisztriczky on occasion of his 60th birthday, 
						Canad Math.	Bull. 52 (2009) no 3. 
						link
						T. Bisztriczky, G. Fejes Tóth, F. Fodor, and W. Kuperberg (eds.), 
						Intuitive Geometry, 
						Period. Math. Hungar 57 (2008), no. 2.
						T. Bisztriczky, F. Fodor, and W. Kuperberg (eds.), 
						Discrete geometry, 
						Period. Math. Hungar. 53 (2006), no. 1-2.
						 Conference reports, etc. 
						K. Böröczky, K. J. Böröczky, F. Fodor, H. Harborth, and W. Kuperberg,
						Dedication: Ted Bisztriczky, 
						Canad. Math. Bull. 52 (2009), no. 3, 323-326.
						T. Bisztriczky, F. Fodor, G. Fejes Tóth, and W. Kuperberg, 
						Intuitive Geometry Workshop and Intuitive Geometry Day in Calgary (August
						31, 2007-September 3, 2007), 
						Period. Math. Hungar. 57 (2008), no. 2, 105-116.
						T. Bisztriczky, F. Fodor, G. Fejes Tóth, and W. Kuperberg, 
						Dedication [Dedicated to Professor András Bezdek], 
						Period. Math. Hungar. 57 (2008), no. 2, 103.
						T. Bisztriczky, F. Fodor, and W. Kuperberg, 
						Calgary Workshop in Discrete Geometry, 
						Period. Math. Hungar. 53 (2006), no. 1–2, 15–25. 
						Held at the University of Calgary, Calgary, AB, May
						13–14, 2005.
						Csörgő Sándor	and Fodor Ferenc, 
						Jelentés a 2003. évi Schweitzer Miklós	Matematikai Emlékversenyről, 
						Mat. Lapok (new series) 12 (2004–2005), no. 1, 49–52. (Hungarian)
						 Lecture notes in Hungarian (Elérhetők a kurzus Coospace oldalán) 
					Fodor Ferenc, Vígh Viktor,  
					Praxisorientált kalkulus előadások, 2021, 
					[Online oktatási csomag (e-learning lecke/téma)], (Kalkulus előadás üzemmérnök informatikusoknak), EFOP-3.4.3-16-2016-00014.
					Fodor Ferenc, Vas Gabriella Ágnes, Kalkulus I, jegyzet Matematika alapszakosoknak (BSc), 2021.Fodor Ferenc, Kalkulus II, jegyzet Matematika alapszakosoknak (BSc), 2021.Fodor Ferenc, Kalkulus III, jegyzet Matematika alapszakosoknak (BSc), 2021.Fodor Ferenc, Geometria I, jegyzet Matematika alapszakosoknak (BSc), 2021. |  |