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RANDOM POLYTOPES

FERENC FODOR AND BALÁZS GRÜNFELDER

Abstract. We prove asymptotic upper bounds on the variances of the volume
and vertex number of spherical random polytopes in spherical convex bodies,
and hyperbolic random polytopes in convex bodies in hyperbolic space. We
also consider a circumscribed model on the sphere.

1. Introduction and results

Random polytopes in non-Euclidean geometries have recently attracted much
attention. It is a natural problem to try to transfer statements from Euclidean
theory to more general settings. For an overview of such results, see, for example,
Besau, Ludwig, and Werner [BLW18], Besau and Thäle [BT20], Kabluchko and
Panzo [KP25], Schneider [Sch22], and the references therein.

For d ≥ 2, let Md denote one of the following spaces: Euclidean d-space
Rd, the unit sphere Sd in Rd+1, or the hyperbolic space Hd = {x ∈ Rd+1 :
x21 + . . . x2d − x2d+1 = −1, xd+1 > 0}. Endow each space with the corresponding
geodesic distance: the metric d induced by the Euclidean scalar product ⟨·, ·⟩ in Rd,
dS(x, y) = arccos⟨x, y⟩ for x, y ∈ Sd, and cosh dH(x, y) = xd+1yd+1−x1y1−. . .−xdyd
for x, y ∈ Hd.

We call a set K convex in Md if, together with any two of its points, the unique
geodesic segment connecting them is also contained in K. A convex body is a
compact convex set in Md with non-empty interior. We note that a spherical
convex body is always contained in an open hemisphere.

The volume (Lebesgue measure) of a measurable set in Md is denoted by
VolMd(·), or specifically V (·) in Rd for short. Let K(Md) denote the family of
convex bodies in Md. The convex hull of a closed set X ⊂ Md is the intersection
of all closed half-spaces containing X if Md = Rd or Hd, and the intersection of all
closed hemispheres containing X if Md = Sd.

We consider the following probability model. Let K ∈ K(Md), and let x1, . . . , xn
be n independent random points chosen according to the uniform distribution in
K. The convex hull of the points x1, . . . , xn is a random polytope Kn in K.

Let HMd

d−1(x) denote the generalized Gauss–Kronecker curvature at a boundary
point x ∈ ∂ K. The spherical and hyperbolic cases of the following theorem were
proved by Besau, Ludwig, and Werner [BLW18, Theorems 2.2, 3.2, and Corollaries
2.3, 3.3]. The Euclidean case is due to Schütt [Sch94] extending results of Bárány
[Bár92].
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Theorem 1. Let K ∈ K(Md). If Kn is the convex hull of n random points chosen
uniformly in K, then

lim
n→∞

E(VolMd(K \Kn)) · n
2

d+1 = βd VolMd(K)
2

d+1

∫
∂ K

HMd

d−1(K,x)
1

d+1 dx,

lim
n→∞

f0(Kn) · n−
d−1
d+1 = βd VolMd(K)−

d−1
d+1

∫
∂ K

HMd

d−1(K,x)
1

d+1 dx.

where βd is an explicitly known constant that depends only on d.

For real sequences f and g, we write f ≪ g if there exists a constant γ > 0 such
that |f(n)| ≤ γg(n) for all n ∈ N. If f ≪ g and g ≪ f , we write f ≈ g.

We say that a ball of radius r > 0 rolls freely in K (K slides freely in a ball of
radius R > 0, resp.) if for any x ∈ ∂ K there exists a ball of radius r (R, resp.)
containing x on its boundary and contained in K (containing K, resp.). If K has a
rolling ball and slides freely in a ball at the same time, then ∂ K is C1 and strictly
convex. However, ∂ K is not necessarily C2. One of our main results is the following
theorem.

Theorem 2. Let K ∈ K(Md) that has a rolling ball and which slides freely in a
ball. Then

VarVolMd(Kn) ≪ n−
d+3
d+1 ,

Var f0(Kn) ≪ n
d−1
d+1 .

The variance upper bound of the volume implies a strong law of large numbers
that can be proved by standard arguments (see, for instance, [BFV10], [Rei03]).

Corollary 1. Under the same assumptions as in Theorem 2, it holds with proba-
bility one, that

lim
n→∞

(VolMd(K \Kn)) · n
2

d+1 = βd VolMd(K)
2

d+1

∫
∂ K

HMd

d−1(K,x)
1

d+1 dx.

The number of vertices is not a monotone function of n, but using the fact that it
may be increased by at most one when another point is added, for d ≥ 4, similarly
to [Rei03], a strong law of large numbers can be proved for f0 as well.

Corollary 2. Under the same assumptions as in Theorem 2, for d ≥ 4, it holds
with probability one, that

lim
n→∞

f0(Kn) · n−
d−1
d+1 = βd VolMd(K)−

d−1
d+1

∫
∂ K

HMd

d−1(K,x)
1

d+1 dx.

Since Besau and Thäle [BT20] proved in Sd and Hd that if K has C2
+ boundary,

then VarVolMd(Kn) ≫ n−
d+3
d+1 , Theorem 2 yields the following.

Theorem 3. Let K ∈ K(Md) with C2
+ boundary. Then

VarVolMd(Kn) ≈ n−
d+3
d+1 .

For Md = Rd, both the lower and the upper bounds are due to Reitzner [Rei03,
Rei05].

Our proof of Theorem 2 uses results of a weighted model described in Sub-
section 2.1, and thus it is indirect. We also give a direct proof of Theorem 2 in
Section 4 via a non-euclidean version of the economical cap theorem that avoids
using spherical integral geometry.
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1.1. Circumscribed model. The probability model discussed in this section con-
siders circumscribed spherical polytopes containing a convex bodyK. This model is
naturally connected to the inscribed ones discussed via spherical polarity. The role
of random points inside of K is replaced by random closed hemispheres containing
K, and the intersection of n such hemispheres is a random polytope containing K.
This model was studied, for example, by Besau, Ludwig and Werner [BLW18].

Let H denote the space of closed hemispheres in Sd. Each point x ∈ Sd is the
pole of a unique closed hemisphere H−(x) = {y ∈ Sd : ⟨x, y⟩ ≤ 0}. We define the
measure of a Borel set A ⊂ H as

µ(A) =
1

ωd

∫
Sd

1(H−(x) ∈ A) dx,

where ωd is the surface volume of Sd and integration is with respect to spherical
Lebesgue measure.

Let HK = {H− ∈ H : K ⊂ H−}. Choose n i.i.d. random hemispheres
containing K according to the uniform distribution with the probability measure
µK = µ/µ(HK). The intersection of these hemispheres is a random polytope con-
taining K, denoted by K(n).

The spherical polar K∗ of a convex body K is defined as K∗ =
⋂

x∈K H−(x).
Since polarity reverses set inclusion, a hemisphere H−(x) contains K if and only
if x ∈ K∗. The polar body (K(n))∗ is a polytope contained in K∗, and it is the
convex hull of those n i.i.d. random points in K∗ that are the poles of the random
hemispheres containing K. This provides a direct connection between the inscribed
and circumscribed models.

Based on this connection, Besau, Ludwig, and Werner [BLW18] proved asymp-
totic formulas for the expectation of the spherical mean width and the number of
facets fd−1 of K(n). The spherical mean width U1(K) is defined as

U1(K) =
1

2

∫
G(d+1,d)

χ(K ∩H) dν(H),

where G(d+ 1, d) denotes the Grassmannian of the d-dimensional linear subspaces
of Rd+1, ν is the unique rotation invariant probability measure on G(d+1, d), and
χ denotes the Euler characteristic.

Theorem 4 ([BLW18], Corollary 2.6). Let K ∈ K(Sd). If K(n) is the intersection
of n random hemispheres containing K and chosen uniformly according to µK , then

lim
n→∞

EµK
(U1(K

(n))− U1(K)) · n
2

n+1 =
βd
ωd

VolSd(K
∗)

2
d+1

∫
∂ K

HSd
d−1(K,x)

d
d+1 dx,

lim
n→∞

EµK
fd−1(K

(n)) · n−
d−1
n+1 = βd VolSd(K

∗)−
d−1
d+1

∫
∂ K

HSd
d−1(K,x)

d
d+1 dx.

Our variance upper bounds in Theorem 2 yield the following upper bounds on
the variances of U1(K

(n)) and fd−1(K
(n)) due to spherical polarity.

Corollary 3. Let K ∈ K(Sd) that has a rolling ball and which slides freely in a
ball. Then

VarU1(K
(n)) ≪ n−

d+3
d+1 ,

Var fd−1(K
(n)) ≪ n

d−1
d+1 .
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2. Geometric tools

2.1. Weighted non-uniform models in Rd. Let K ∈ K(Rd) and let ϱ : K →
(0,∞) be a probability density function that is continuous in a neighbourhood
of the boundary of K (in K). Then Pϱ(A) :=

∫
A
ϱ(x) dx for any measurable set

A ⊂ K. We denote the expectation and variance with respect to Pϱ by Eϱ and Var ϱ,
respectively. Let x1, . . . , xn be i.i.d. random points from K distributed according
to Pϱ, and let K(n) be their convex hull, a random polytope in K.

Furthermore, let λ : K → (0,∞) be a weight function that is integrable in K and
continuous in a neighborhood of ∂ K and let Vλ(A) =

∫
A
λ(x) dx for all measurable

subsets A ⊂ K . For ϱ ≡ 1/V (K) and λ ≡ 1, we obtain the uniform model.
In this model, with no smoothness condition on K, Böröczky, Fodor and Hug

[BFH10] studied the asymptotic behavior of the expectation of the weighted volume
of missed part of K and the number of vertices f0(K(n)) of the random polytope
K(n), and proved that

lim
n→∞

Eϱ(Vλ(K(n))) · n
2

d+1 = βd

∫
∂ K

ϱ(x)
−2
d+1λ(x)HRd

d−1(K,x)
1

d+1 dx,

lim
n→∞

Eϱ(f0(K(n))) · n−
d−1
d+1 = βd

∫
∂ K

ϱ(x)
d−1
d+1HRd

d−1(K,x)
1

d+1 dx.

Assuming that ∂ K is C2
+, Besau and Thäle [BT20] proved the following asymp-

totic variance lower bound and a central limit theorem:

Var ϱ(Vλ(K(n))) ≫ n−
d+3
d+1 , (1)

The lower bounds in [BT20] for Sd and Hd were deduced from (1) by choosing
particular weight functions that come from the gnomonic projections.

Under weaker smoothness assumptions, Bakó-Szabó and Fodor [BSF24] proved
matching asymptotic upper bounds for the variance of the weighted volume and
the number of vertices.

Theorem 5 ([BSF24], Theorem 1.1). For a convex body K ⊂ Rd that has a rolling
ball and which slides freely in a ball, it holds that

Var ϱ(Vλ(K(n))) ≪ n−
d+3
d+1 ,

Var ϱ(f0(K(n))) ≪ n
d−1
d+1 ,

where the implied constants depend only on K, ϱ, λ and the dimension d.

We use Theorem 5 in our proof of Theorem 2.

2.2. Gnomonic projection. The gnomonic projection maps a d-dimensional open
hemisphere from the origin radially to a tangent hyperplane. We refer to the point
of tangency as the center of the projection. We may assume that the convex body
K ⊂ Sd is contained in the (upper) open hemisphere Sd+ = {x ∈ Sd : ⟨x, ed+1⟩ > 0},
and the center of projection is ed+1. Then the gnomonic projection g : Sd+ → Rd is

g(x) =
x

⟨x, ed+1⟩
− ed+1,

and the hyperplane {x ∈ Rd+1 : ⟨x, ed+1⟩ = 0} is identified with Rd. The map g is
bijective and C∞. Geodesic arcs of Sd+ are mapped into straight line segments in
Rd, thus the image of a spherical convex body is a convex body in the Euclidean
sense. The gnomonic image of a set X is often denoted by X = g(X).
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The gnomonic projection can be defined in the hyperbolic model similarly: h :
Hd → Rd maps the points of the hyperboloid centrally to the tangent hyperplane
H = {x ∈ Rd+1 : ⟨x, ed+1⟩ = 1}, then identify H with Rd, i.e. identify

h(x) =

(
x1
xd+1

, . . . ,
xd
xd+1

)
.

As ∥h(x)∥ < 1 for all x ∈ Hd, the image g(Hd) is the open unit ball of Rd. The map
h is C∞, geodesic arcs are mapped into straight line segments, and it is bijective
between Hd and intBd. The image of a hyperbolic convex body is a convex body
in Rd.

2.3. Non-euclidean economic cap covering theorem. LetK ∈ K(Md) and let
H− be a closed half-space if Md = Rd or Hd, and a closed hemisphere if Md = Sd.
Let H+ denote the other closed half-space (hemisphere) determined by H−. For
t > 0, we define the convex floating body of K as

K[t] =
⋂

{H− : VolMd(K ∩H+) ≤ t}. (2)

Euclidean floating bodies were defined by Bárány and Larman [BL88], Schütt and
Werner [SW04], the spherical floating body was introduced by Besau and Werner
[BW16], and hyperbolic floating bodies were defined by Besau and Werner [BW18].

The closure of the complement of K[t] in K is called the wet part of K with
parameter t, and it is denoted by K(t). It was proved in [BW16, Theorem 2.1] that

VolSd(K(t)) ≈ t
2

d+1 , as t→ 0+. (3)

The economic cap covering theorem in Rd was proved by Bárány and Larman
[BL88] and Bárány [Bár89].

Theorem 6 ([BL88], [Bár89]). Assume that K ⊂ Rd is a convex body with V (K) =
1 and 0 < t < t0 = (2d)−2d. Then there exist caps C1, . . . , Cm and pairwise disjoint
convex sets C ′

1, . . . , C
′
m such that C ′

i ⊂ Ci for each i, and
(i)

⋃m
1 C ′

i ⊂ K(t) ⊂
⋃m

1 Ci,
(ii) V (C ′

i) ≫ t and V (Ci) ≪ t for each i,
(iii) for each cap C with C ∩K[t] = ∅ there is a Ci containing C.

We will use the following lemma as a technical tool.

Lemma 1. The gnomonic projection preserves the order of magnitude of the volume
of caps.

Proof. Assume that K ∈ K(Sd) and ed+1 is the center of the minimum radius ball
(circumball) containing K. Note that the radius RK of the circumball is less than
π/2. Consider a cap C of K with VolSd(C) = t. Then

V (g(C)) ≤ t · 1

⟨v, ed+1⟩d+1
,

where v is the farthest point of C from the center of projection, ed+1. On the one
hand, V (g(C)) > t. On the other hand, the quantity 1

⟨v,ed+1⟩d+1 is bounded from
above by a constant cK,d depending only on K and d. Thus, V (g(C)) ≤ cK,d · t.

For the hyperbolic case, assume again that the center of the circumball of K ∈
K(Hd) is ed+1. Let D be a hyperbolic cap of K with VolH(D) = t. Then V (h(D)) <
t, and V (h(D)) ≥ t · 1

⟨v,ed+1⟩d+1 , where 1
⟨v,ed+1⟩d+1 is bounded from below, similarly

to the spherical case. □
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Theorem 7. Let K ∈ K(Sd) (or K(Hd), resp.) and 0 < t < (2d)−2d cosd+1RK

(or 0 < t < (2d)−2d resp.). Then there exist caps C1, . . . , Cm and pairwise disjoint
convex sets C ′

1, . . . , C
′
m′ , with m ≈ m′, such that

(i)
⋃m′

i=1 C
′
i ⊂ K(t) ⊂

⋃m
i=1 Ci,

(ii) VolMd Ci ≪ t, (i = 1, . . . ,m) and VolMd C ′
i ≫ t, (i = 1, . . . ,m′),

(iii) for every cap C of volume at most t, there is a Ci containing C,
(iv) every convex set C ′

i is contained in some Cj.

Proof. We only give the proof for the case of Sd, the hyperbolic variant can be
shown essentially in the same way. The wet part K(t) is the union of caps Cα

of spherical volume at most t. The images of the caps Cα under the gnomonic
projection g are the caps Cα = g(Cα) in K = g(K) with possibly different volumes
of t̄α. By compactness, there exists a minimal and a maximal volume among t̄α, let
us denote these by t̄min and t̄max, respectively. Consider the (Euclidean) wet parts
in K with parameters t̄min and t̄max. Then

K(t̄min) ⊂ g(K(t)) ⊂ K(t̄max).

Apply Theorem 6 to both wet parts. Denote the caps and the convex sets
contained in them provided by Theorem 6 corresponding to t̄max by Di and D′

i

(i = 1, . . . ,m) and those corresponding to t̄min by Ei and E′
i (i = 1, . . . ,m). Let

Ci = g−1(Di), (i = 1, . . . ,m) and C ′
i = g−1(E′

i) for some indices i = 1, . . . ,m′

specified later.
The large caps Di cover K(t̄max) so they cover g(K(t)) as well. Furthermore,

for any spherical cap C of (spherical) volume at most t, its image g(C) has volume
at most t̄max, therefore, it is contained in some Di.

The sets E′
i are disjoint and contained in caps of volume t̄min, therefore they

are contained in g(K(t)), and there are caps Dj(i) such that E′
i ⊂ Dj(i) for each

i ∈ {1, . . . ,m}. However, the same index j can belong to multiple i’s, so some of
the sets E′

i can be dropped to avoid multiplicity. The number of these sets cannot
be too large due to the criteria on the volumes of Di and E′

i. The preimages of the
remaining sets will be the spherical sets C ′

i, (i = 1, . . . ,m) with m ≈ m′.
Lemma 1 and the corresponding part of the Euclidean theorem yield (ii).

□

3. Proof of Theorem 2

3.1. The spherical case. Assume that a spherical ball of radius r rolls freely in
K. Let ed+1 be the center of the circumsphere of K. Then K is contained in the
upper hemisphere.

For a boundary point x ∈ ∂ K, denote by Bx the ball of radius r for which
x ∈ ∂ Bx and Bx ⊂ K. Then g maps balls in S2+ to ellipsoids in Rd, and those
balls, whose center is ed+1, are mapped to Euclidean balls in Rd. Thus, for each
x ∈ ∂ K, Bx = g(Bx) is an ellipsoid in K. Due to compactness, there is a maximal
κmax among the principal curvatures of all Bx. Then, a Euclidean ball of radius
1/κmax rolls freely in any Bx (see [Sch14, Corollary 3.2.13.]) and, in turn, it rolls
freely in K, thus K also has a rolling ball.

Now, assume that K slides freely in a spherical ball of radius R. Then its
spherical polar body K∗ has a rolling ball of radius (π/2−R) This can be seen in
the following way: For a boundary point x on ∂ K∗, there is at least one supporting
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hypersphere G∗. Its polar G is a point on the boundary of K. Since K has a sliding
ball, a ball BG of radius R contains K, and G is on its boundary. Then B∗

G is a
ball of radius (π/2− R) contained in K∗ and intersects G∗ at a boundary point y
of K∗. If y ̸= x then ∂ K∗ contains a great circle segment, thus ∂ K must have a
point where it is not smooth. However, this contradicts the assumption that K has
a rolling ball, therefore x = y, and K∗ also has a rolling ball.

Note that the assumptions on K yield that the rolling ball inside K∗ is in the
lower open hemisphere for all x ∈ ∂ K∗.

Let g̃ be the gnomonic projection whose center is −ed+1. Let (·)◦ denote Eu-
clidean polarity in Rd. It is known, see Schneider [Sch22, Lemma 3.2.2.], that
g(K)◦ = g̃(K∗). By the above argument, the existence of a rolling ball of K∗ im-
plies that its image, g̃(K)◦ has a rolling ball too. Hug [Hug00, Prop. 1.45.] proved
that if a convex body L ⊂ Rd has a rolling ball, then L◦ slides freely in a ball of
finite radius. Hence, g(K) slides freely in a ball.

The gnomonic projection maps VolSd into the Lebesgue measure in Rd with the
density ψ(x) = (1 + ||x||2)−(d+1)/2 (see [BW16, Proposition 4.2]), and VolSd(Kn)
has the same distribution as the weighted volume of the convex hull of n i.i.d.
random points in Rd (cf. [BT20, Section 5.1]). Thus, we may apply Theorem 5, as
the boundary conditions are satisfied for K.

3.2. The hyperbolic case. Assume that the center of a maximal radius inscribed
ball B1 in K is the point ed+1. Then h(ed+1) = o and h(B1) = B1 ⊂ intBd in Rd.

Suppose that K slides freely in a ball of radius R. Let B2 denote the smallest
ball centered at ed+1 that contains the union of all the sliding balls of radius R of K.
The boundary of K is contained in the spherical shell determined by the concentric
balls B1 and B2, and ∂ K is in the (Euclidean) spherical shell determined by B1

and B2.
The gnomonic image of a hyperbolic ball contained in B2 is an ellipsoid in B2

(contained in intBd in Rd). It is clear that in the images of such balls the ratio of
the ellipsoid’s largest and shortest axes is bounded from above.

For a fixed boundary point x ∈ ∂ K, the image of the sliding ball Bx of K at x
is an ellipsoid that slides freely in a Euclidean ball of radius Rx. By compactness,
there is a maximum radius R̃ among all such Rx. Then K slides freely in a radius
R̃ ball.

Now suppose that a ball of radius r rolls freely in K. Then at every boundary
point x, a ball inside of K intersects K at x. The gnomonic projection of this ball
is an ellipsoid in K for which the ratio of the axes is bounded. There is a maximal
principal curvature κmax among all these ellipsoids, and a ball of radius 1/κmax

rolls freely in all of them. Consequently, it rolls freely in K.
The hyperbolic volume of K has the same distribution as the weighted volume of

the convex hull of n i.i.d. random points chosen by the probability density function
ψ/
∫
K
ψ(x) dx in Rd, where ψ = (1−||x||2)−(d+1)/2, x ∈ intBd is the density of the

image measure of VolHd . For more information, see [BT20, Section 5.2].
Thus, the conditions of Theorem 5 are satisfied, so we may apply its statement,

which yields the desired asymptotic variance upper bound for VolHd(Kn).
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4. Direct proof of Theorem 2

We only prove the spherical case, the hyperbolic case is similar. The proof is
based on the argument in [BFV10] and [Rei03], with some modifications required
by the intrinsic geometry of the sphere.

Denote the event that the spherical floating body K[VolSd (K)(c logn)/n)] is con-
tained in Kn by Tn for a suitable constant c that will be specified later. There is a
constant δ such that the probability of T c

n, i.e., the complement of Tn, is at most
n−δc. This can be seen as follows.

Suppose that the floating body has a point x in K \ Kn. If there is a cap C
containing x whose boundary great sphere supports Kn, then C does not contain
any of the random points. If this is not the case, we show that there is a sufficiently
large empty part of the cap C. We may assume that x is in the plane xd+1 = 0.
Thus, the coordinate surfaces of the standard spherical polar coordinate system
through x cut C into 2d pieces. If all of these parts contained a random point, then
their convex hull would contain x. Thus, there must be at least one part of C that
is empty and its volume is at least constant times that of the cap C. However,
the definition of floating body yields VolSd(C) ≥ VolSd(K)(c log n)/n). Thus, the
probability of T c

n is at most (1− (δc log n)/n)
n, which tends to n−δc as n→ ∞. In

the Euclidean case, more precise asymptotics of probabilities are proven in [BD97].
We estimate the variance from above by the Efron-Stein jackknife inequality

[ES81]. We choose c to be sufficiently large, so the conditional expectation on the
event T c

n can be omitted.

VarVolSd(Kn) ≪ n · E(VolSd(Kn+1)−VolSd(Kn))
2

≪ n · E[(VolSd(Kn+1)−VolSd(Kn))
21(Tn)]. (4)

For an index set I = {i1, . . . , id} ⊂ {1, . . . , n}, let FI denote the spherical convex
hull of xi1 , . . . , xid , which is a (d−1)-dimensional spherical simplex with probability
1. Note that Kn+1\Kn is either empty or a union of spherical simplices determined
by xn+1 and the facets of Kn that can be seen from xn+1. We say that a facet F of
Kn is visible from a point x /∈ Kn, if the open geodesic arc between x and a point in
the relative interior of F is disjoint from Kn. Let F(xn+1) denote the set of facets
of Kn that are visible from xn+1, and let AI denote the event that FI ∈ F(xn+1).

Then we can estimate (4) as follows.

(4) =
n

VolSd(K)n+1

∫
Kn+1

( ∑
F∈F(xn+1)

VolSd (conv [F, xn+1])

)2

1(Tn) dx1 . . . dxn+1

≪ n

VolSd(K)n+1

∫
Kn+1

(∑
I

1(AI)V+(FI)

)2

1(Tn) dx1 . . . dxn+1

≪ n

VolSd(K)n+1

∑
I,J

∫
Kn+1

1(AI)V+(FI)1(AJ)V+(FJ)1(Tn) dx1 . . . dxn+1, (5)

where V+(FI) is the volume of the spherical cap C(FI) determined by FI , and the
summation goes through all d-tuples I and J , so I and J might intersect. Fix the
number of common elements of I and J to k.

For any given k ∈ {0, 1, . . . , d} let I = {1, . . . , d} and J = {d− k + 1, . . . 2d− k}
and set F = conv {xi : i ∈ I} and G = conv {xj : j ∈ J}. The corresponding terms
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in (5) are independent of the choice of i1, . . . , id and j1, . . . , jd. Thus,

(5) ≤ n

VolSd(K)n+1

d∑
k=0

(
n

d

)(
d

k

)(
n− d

d− k

)∫
Kn+1

1(F ∈ F(xn+1))V+(F )×

× 1(G ∈ F(xn+1))V+(G)1(Tn) dx1 . . . dxn+1. (6)

Due to the symmetric roles of F and G, we may restrict the integration to those
pairs of F andG for which diam(F ) ≥ diam(G), where diam(·) denotes the spherical
diameter of a set. Thus,

(6) ≪ 1

VolSd(K)n+1

d∑
k=0

n2d−k+1

∫
Kn+1

1(F ∈ F(xn+1))V+(F )×

× 1(G ∈ F(xn+1))V+(G)1(diam(F ) ≥ diam(G))1(Tn) dx1 . . . dxn+1.

Since C(F ) and C(G) have at least xn+1 in common, replacing 1(G ∈ F(xn+1))
to 1(C(F ) ∩ C(G) ̸= ∅) in the integrand does not decrease the integral.

We estimate the terms in the sum separately for each k = 0, . . . , d, denoted by
Σk.

Σk ≪ n2d−k+1

VolSd(K)n+1

∫
Kn+1

1(F ∈ F(xn+1))V+(F )1(C(F ) ∩ C(G) ̸= ∅)V+(G)×

× 1(diam(F ) ≥ diam(G))1(Tn) dx1 . . . dxn+1. (7)

If F ∈ F(xn+1) then all the points x2d−k+1, . . . , xn must be contained inK\C(F )
and xn+1 has to be contained in C(F ). Then we can integrate with respect to
x2d−k+1, . . . , xn, xn+1 and the condition Tn can be replaced by the condition Wn =
{V+(F ) ≤ VolSd(K)(c log n)/n}.

(7) ≪ n2d−k+1

∫
K2d−k

(
1− V+(F )

VolSd(K)

)n−2d+k

V+(F )
21(C(F ) ∩ C(G) ̸= ∅)×

× V+(G)1(diam(F ) ≥ diam(G))1(Wn) dx1 . . . dx2d−k. (8)

According to Lemma 1, the gnomonic images C(F ) and C(G) are not too dis-
torted. Although, the relation of their diameters may be reversed, their ratio is
bounded by a constant depending only on K. Thus, there exists a constant γ with
the following property. Let Cγ be the cap with the same vertex as C(F ) and height
equal to that of C(F ) times γ. Then the diameter of Cγ is at least as large as that
of C(G), and Cγ is still sufficiently small. Then V (C(F )) ≈ V (Cγ). We showed
above that the conditions of the rolling and the sliding balls are preserved by g.
In [BSF24], it was proved (see (8) and its proof on pp. 6–7) that under these con-
ditions, V (C(G)) ≪ V (Cγ), and, in turn, V (C(G)) ≪ V (C(F )). Projecting these
back to the sphere, we obtain V+(G) ≪ V+(F ). Hence,∫

Kd−k

1(C(F )∩C(G) ̸= ∅)1(diam(F ) ≥ diam(G))×V+(G)1(Wn) dxd+1 . . . dx2d−k

≪ V+(F )
d−k+1. (9)

Based on (9), we may estimate (8) from above.

(8) ≪ n2d−k+1

∫
Kd

(
1− V+(F )

VolSd(K)

)n−2d+k

V+(F )
d−k+31(Wn) dx1 . . . dxd. (10)
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Now we use the spherical economic cap covering theorem. Due to the condition
Wn, every cap C(F ) has volume at most VolSd(K)(c log n)/n. Let h be a (positive)
integer with 2−h ≤ (c log n)/n. For each such h, let Ch be a collection of caps
{C1, . . . , Cm(h)} forming the economic cap covering of the wet part of K with
t = VolSd(K)2−h (we assume that n is sufficiently large). Then VolSd(Ci) ≪
VolSd(K)2−h. Consider an arbitrary (x1, . . . , xd) with the corresponding C(F )
having volume at most VolSd(K)(c log n)/n, and associate with (x1, . . . , xd) the
maximal h such that for some Ci ∈ Ch, C(F ) ⊂ Ci. Such an h clearly exists. Then

V+(F ) ≤ VolSd(Ci) ≪ 2−h.

On the other hand, by the maximality of h,

V+(F )

VolSd(K)
≥ 2−(h+1).

Let us now calculate the integral over Kd under the condition Wn by integrating
each (x1, . . . , xd) on its associated Ci. We can estimate the integrand in (10) as(

1− V+(F )

VolSd(K)

)n−2d+k

V+(F )
d−k+3 ≪

(
1− 2−(h+1)

)n−2d+k

· 2−h(d−k+3),

which yields that the integral on (Ci)
d (Ci ∈ Ch) is bounded by

exp
(
−(n− 2d+ k) · 2−(h+1)

)
· 2−h(d−k+3) ·VolSd(Ci)

d

≪ exp
(
−(n− 2d+ k) · 2−(h+1)

)
· 2−h(d−k+3) · 2−hd.

The last piece needed for the proof is to calculate the number of elements of Ch.
By (3), the volume of the wet part of K with parameter 2−h is VolSd(K(2−h)) ≈
(2−h)

2
d+1 . (The ≈ notation makes sense, since h→ ∞ as n→ ∞). Therefore,

|Ch| ≪
2−

2h
d+1

2−h
= 2

h(d−1)
d+1 .

Assembling the pieces estimating (10), we obtain with h0 = ⌊c log n/n⌋,

(10) ≪ n2d−k+1
∞∑

h=h0

exp
(
−(n− 2d+ k) · 2−(h+1)

)
· 2−h(d−k+3) · 2−hd · |Ch|

= n2d−k+1
∞∑

h=h0

exp
(
−(n− 2d+ k) · 2−(h+1)

)
· 2−h(2d−k+1+ d+3

d+1 ). (11)

The sum in (11) can be calculated the same way as in [BFV10, p. 617], its order
of magnitude is n−2d+k−1n−

d+3
d+1 , therefore

Σk ≪ n2d−k+1n−2d+k−1n−
d+3
d+1 = n−

d+3
d+1 .

This holds for all k = 0, . . . , d, thus the sum of them is of the same order of
magnitude, which proves the theorem.
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