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Abstract. We study the distribution of the distance of a pair of independent

random points from a concentric spherical shell in Rd selected according to
certain beta-type distributions. This model includes, as a special case, the

uniform distribution.

1. Introduction

We investigate geometric models based on certain beta-type distributions in Rd.
Let 1(·) denote the indicator function of a set and ∥x∥ the Euclidean norm of
a vector x ∈ Rd. We consider the d-dimensional beta-type distributions µd,β in
the unit ball Bd with the following density function with respect to the Lebesgue
measure

fd,β(x) = cd,β(1− ∥x∥2)β1(0 ≤ ∥x∥ ≤ 1)

for β > −1 with

cd,β =
Γ
(
d
2 + β + 1

)
π

d
2Γ(β + 1)

.

Important features of µd,β are that, on the one hand, µd,0 is the uniform distribution
in Bd, and, on the other hand, as β → −1+, µd,β converges weakly to the uniform
distribution on the unit sphere Sd−1.

There have been several papers published recently on random polytope models
based on µd,β , see, for example, Grote, Kabluchko and Thäle [6], Gusakova and
Kabluchko [7], Kabluchko, Temesvári and [10], Thäle Kabluchko, Thäle and Za-
porozhets [13], Kabluchko and Panzo [9], and Kabluchko and Steinerberger [11].
We refer to a history, recent results, and further references to [6,7,9–11,13] and to
the upcoming book by Kabluchko, Steinerberger and Thäle [12].

Let cl(·) denote the closure of a set in Rd. For 0 ≤ R < 1, let BR = cl(Bd \RBd)
denote the closed region between the two concentric balls Bd and RBd. We call
BR the spherical shell of inner radius R and outer radius 1.

For 0 ≤ R < 1, consider the restriction µd,β,R of µd,β to the spherical shell BR

normalized such that it is a probability distribution. Then µd,β,R is concentrated
in BR with the following density function with respect to the Lebesgue measure:

fd,β,R(x) = cd,β,R(1− ∥x∥2)β1(R ≤ ∥x∥ ≤ 1) (1.1)

for β > −1 with a suitable normalizing constant cd,β,R. We note that µd,β,0 is the
beta-type distribution µd,β in Bd, and µd,0,R is the uniform distribution in BR for
any 0 ≤ R < 1.
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Let x1 and x2 be independent, identically distributed (i.i.d.) random points
from BR chosen according to µd,β,R. We study the density g∗d,β,R(r) of the random

variable r = ∥x1 −x2∥. Our argument uses characteristic functions, and it is based
on Lord [16]. We compute the functions g∗d,β(r) and g

∗
d,0,R(r) explicitly, and we also

show that the analogous computation can be carried out for g∗d,β,R for any integer
β and sufficiently large d, depending on β.

The motivation for examining the distribution of pairs of random points comes,
in part, from the phenomenon that in the theory of random polytopes the significant
part of many asymptotic formulas is generated by points in a thin shell close to the
boundary; this explains the choice of the truncation of µd,β . For more information
on random polytopes see, for example, Hug [14], Reitzner [25] and Schneider [29].

Investigations of the distribution of the distance of two i.i.d. uniform random
points in a convex body K (compact convex set with non-empty interior) go back
to the first half of the twentieth century. The density functions for various bodies
have been determined by different methods. In the particular case where K is a ball
of dimension d, the density function was found by Borel [2] for d = 2, by Deltheil
[4] for d = 3, 5, 7, 9 by Crofton’s Theorem and by Boursin [3] for d = 11, 13. The
general case was solved by Hammersley [8], and alternative methods were given by
Lord [16], among others. One of the methods described in [16] uses characteristic
functions and can be (in theory) applied to radially symmetric distributions that
have a density with respect to the Lebesgue measure. We will use this method in
this paper. The density function was also determined for some other specific bodies
such as cubes, cylinders, etc. For the early history of the topic, see, for example,
Kendall and Moran [15], for more recent references Mathai [19, Section 2.6.3].

For general K, Piefke [24] established a connection between the distribution
of random chord lengths and distances of pairs in d-dimensions, extending earlier
results for d = 2 and 3.

Fairthorne [5] considered the random model in which two uniform random points
are selected from two concentric circular discs, such that one point is from the
smaller disc and the other one is from the larger one. He determined the density
function of the distance of the two random points. This result was extended to
d-dimensions by Ruben [26].

Although we concentrate only on random distances in this paper, we note that
more general models have also been investigated extensively. One such model is
when one takes 1 ≤ r ≤ d i.i.d. random points from Bd according to a beta-type
probability distribution. Such random points almost surely span an r-dimensional
simplex. This more general model naturally includes both the uniformly distributed
case and also the case of random distances of pairs of points (when r = 1). For
results on mean values and integer moments of the volume of such random r-
dimensional simplices see, for example, Miles [20] and Ruben and Miles [27]. The
exact density function of the r-volume was given by Mathai [18]), and it is expressed
in several forms, using hypergeometric functions, G-functions, H-functions, series
expansions, etc. See also, for example, Pederzoli [21–23]. We refer for more detailed
information, history and references to Mathai [19, Section 4.3 and pp. 427–428] and
the upcoming book by Kabluchko, Steinerberger and Thäle [12].

We will use the symbol ⟨·, ·⟩ for the usual Euclidean scalar product in Rd whose

induced norm is ∥ · ∥. The volume of Bd is κd = π
d
2 /Γ(d2 +1), where Γ(·) is Euler’s
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gamma function (see Artin [1]), and the surface volume of Sd−1 is ωd = dκd, see,
for example, Schneider [28].

We will use Gauss’s hypergeometric function 2F1(a, b, c, z), which is defined by
the following series for complex numbers with |z| < 1,

2F1(a, b, c, z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

where a, b, c ∈ R except when c is a nonpositive integer. The symbol (x)k is the
rising factorial. Furthermore, let

B(z; a, b) =

∫ z

0

ua−1(1− u)b−1 du =
za

a
2F1(a, 1− b, a+ 1, z).

be the incomplete beta function. If z = 1, then we get the (complete) beta function,
which we denote by B(a, b).

The function g∗d,0,0(r) was determined by Hammersley [8], see also Lord [16,17],

g∗d,0,0(r) =
dΓ
(
d
2 + 1

)
Γ
(
1
2

)
Γ
(
d
2 + 1

2

)rd−1B

(
1− r2

4
;
d+ 1

2
,
1

2

)
, 0 ≤ r ≤ 2. (1.2)

In this paper we study the model in which two i.i.d. random points x1 and
x2 are chosen according to the beta-type distribution µd,β,R from a spherical shell
BR. We study the density g∗d,β,R(r) of the random variable r = ∥x1 − x2∥ using
characteristic functions. We calculate explicitly, g∗d,0,R as follows.

Theorem 1.1. Let Cd =
d2Γ( d

2 )
2Γ( d

2+
1
2 )Γ(

1
2 )
. For R ∈ [0, 1) and r ∈ [0, 2], let

g1(d, r,R) =
Cd

2
d
2

rd−1

(1−Rd)2

∫ π

arccos
(

2−r2

2

) sind φ

(1− cosφ)
d
2

dφ,

g2(d, r,R) = −2Cd
Rdrd−1

(1−Rd)2

×
∫ π

arccos
(

1+R2−r2

2R

) sind φ

(1 +R2 − 2R cosφ)
d
2

dφ · 1(1−R < r ≤ 1 +R),

g3(d, r,R) = −2Cd
Rdrd−1

(1−Rd)2

∫ π

0

sind φ

(1 +R2 − 2R cosφ)
d
2

dφ · 1(0 < r ≤ 1−R),

g4(d, r,R) =
Cd

2
d
2

Rdrd−1

(1−Rd)2

∫ π

arccos
(

2R2−r2

2R2

) sind φ

(1− cosφ)
d
2

dφ · 1(0 < r ≤ 2R).

Then

g∗d,0,R(r) = g1(d, r,R) + · · ·+ g4(d, r,R). (1.3)

We note that Theorem 1.1 may also be obtained via Ruben’s method [26], besides
other techniques; however, our argument is short and very direct. Moreover, it can
also be carried out in a straightforward, although laborious, way for integer β and
sufficiently large d depending on β, see Section 7.

We note that in all dimensions, g∗d,0,0(r) = g∗d,0(r), and if R→ 1−, then g∗d,0,R(r)

tends to the density of the distance of two i.i.d. uniform random points from Sd−1.
We also note that the functions gi(d, r,R), i = 1, . . . , 4 can be expressed in terms
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of incomplete beta integrals and incomplete Gaussian hypergeometric functions by
standard substitutions; for details, see Section 8.

The paper is organized as follows. In Section 2, we describe the general method,
and in Section 3 we collect some tools from the theory of Bessel functions. We
illustrate the method by determining the density function g∗d,β in Bd in Section 4.
We prove Theorem 1.1 in Section 5, and we provide explicit formulas for g∗d,0,R for
d = 2, 3 cases as examples in Section 6. In Section 7, we show how this calculation
can be carried out for positive integer β and sufficiently large dimension d. Finally,
in Section 8, we show how one can express the functions in Theorem 1.1 in terms
of incomplete beta integrals and incomplete Gaussian hypergeometric functions.

2. The method of characteristic functions

In this section, we recall the main points of the method we use to determine the
density g∗d,β,R(r). For more details, we refer to Lord [16,17] and Mathai [19].

Let x be a random point in Rd with a spherically symmetric distribution. Assume
that this distribution has a continuous density f(x) with respect to the Lebesgue
measure. Then the characteristic function of f(x) is

ϕ(y) =

∫
Rd

ei⟨x,y⟩ dx,

where y is an arbitrary point of Rd. It is well-known that if x1, . . . , xn are in-
dependent random points with characteristic functions ϕ(y1), · · · , ϕ(yn), then the
characteristic function of x1 + . . . + xn is ϕ(y1) . . . ϕ(yn). Since f is assumed to
be spherically symmetric, it only depends on s = ∥x∥. We will use the notation
f(x) = h(s) for the d-dimensional density of x as a function of s. The correspond-
ing one-dimensional density is denoted by h∗(s). The connection between h(s) and
h∗(s), by the virtue of the spherical symmetry of the distribution of x, is

h∗(s) = ωds
d−1h(s).

Let ϱ = ∥y∥, and let ψ(ϱ) be the characteristic function of f in terms of ϱ. Then
(for details see, for example, Lord [16] or Mathai [19, pp. 289–292])

ϕ(y) = ψ(ϱ) = (2π)
d
2 ϱ−

d
2+1

∫ ∞

0

s
d
2 h(s)J d

2−1(sϱ) ds,

where Jα(z) denotes a Bessel function of the first kind defined by the following
series

Jα(z) =

∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(z
2

)2m+α

. (2.1)

Using the inverse Fourier transform, one obtains that

h∗(s) =
21−

d
2

Γ(d2 )

∫ ∞

0

(sϱ)
d
2 J d

2−1(sϱ)ψ(ϱ)dϱ. (2.2)

Since x has a spherically symmetric distribution, −x has the same density function
as x. Thus, if x1 and x2 are independent, then the densities of x1 + x2 and x1 − x2
are the same.

Therefore, the characteristic function of z = x1 − x2 is ϕ(z) = ϕ(y1)ϕ(y2) =
ψ1(ϱ)ψ2(ϱ). If r = ∥z∥, then using (2.2), we obtain that the one-dimensional
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density g∗(r) is

g∗(r) =
21−

d
2

Γ(d2 )

∫ ∞

0

(rϱ)
d
2 J d

2−1(rϱ)ψ1(ϱ)ψ2(ϱ)dϱ.

We are going to show that both ψd,β,R(ϱ) and g
∗
d,β,R(r) can be evaluated for certain

combinations of β and d using known properties of Bessel functions.
In particular, if x1 and x2 are i.i.d. random points from BR distributed according

to µd,β,R, then

ϕd,β,R(y) = ψd,β,R(ϱ) = (2π)
d
2 ϱ−

d
2+1

∫ ∞

0

s
d
2 hd,β,R(s)J d

2−1(sϱ) ds.

where
hd,β,R(s) = cd,β,R(1− s2)β1(R ≤ s ≤ 1).

Then the one-dimensional density g∗d,β,R(r) is

g∗d,β,R(r) =
21−

d
2

Γ(d2 )

∫ ∞

0

(rϱ)
d
2 J d

2−1(rϱ)ψ
2
d,β,R(ϱ)dϱ.

3. Tools from the theory of Bessel function

In this section, we collect some tools from the theory of Bessel functions that
we use in our arguments. For more detailed information and references, the reader
may consult Watson’s book [30]. Our main tool is∫ ∞

0

Jµ(aϱ)Jν(bϱ)

ϱλ
dϱ,

the so-called discontinuous integral of Weber and Schafheitlin. It is assumed that
0 < a, b so that the improper integral converges at ∞.

Lemma 3.1. Assume that µ + ν + 1 > λ > −1 and 0 < b < a. Then the integral
on the left-hand side converges and the following holds∫ ∞

0

Jµ(aϱ)Jν(bϱ)

ϱλ
dϱ =

bνΓ
(
1
2µ+ 1

2ν −
1
2λ+ 1

2

)
2λaν−λ+1Γ(ν + 1)Γ

(
1
2λ+ 1

2µ− 1
2ν +

1
2

)
× 2F1

(
µ+ ν − λ+ 1

2
,
ν − λ− µ+ 1

2
, ν + 1,

b2

a2

)
. (3.1)

Formula (3.1) (see [30, (2) on p. 401]) was obtained by Sonine (1887) and
Schafheitlin (1888) (for a historical discussion, we refer to [30, p. 398]).

The following formula, involving the product of three Bessel functions in the
integral, can be obtained from the Weber–Schafheitlin integral by substitution, see
[30, 2nd equation in Section 13.4].

Lemma 3.2. Assume that ν > − 1
2 , µ+ ν + 1 > λ > −1. Then∫ ∞

0

Jµ(aϱ)Jν(bϱ)Jν(cϱ)

ϱλ+ν
dϱ

=

(
1
2bc
)ν

Γ(ν + 1
2 )Γ(

1
2 )

∫ ∞

0

∫ π

0

Jµ(aϱ)Jν(ϖϱ)

ϖνϱλ
sin2ν φdφdϱ, (3.2)

where ϖ =
√
b2 + c2 − 2bc cosφ, and the integral on the right-hand side is abso-

lutely convergent.
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We will use the following formulas for evaluating indefinite integrals involving
Bessel functions. The recursion formula (3.3) is originally from Lommel, see [30, (4)
on p. 133],∫

zµ+1Jν(z) dz =

− (µ2 − ν2)

∫
zµ−1Jν(z) dz + (zµ+1Jν+1(z) + (µ− ν)zµJν(z)). (3.3)

In the case when µ = ν, (3.3) reduces to∫
zν+1Jν(z) dz = zν+1Jν+1(z),

see also [30, (1) on p. 132]. This yields, with a simple substitution of rϱ, that∫
r

d
2 J d

2−1(rϱ) dr = r
d
2 ϱ−1J d

2
(rϱ). (3.4)

4. The density g∗d,β(r)

First, we demonstrate the method by calculating the density in the case when
the independent random points x1 and x2 are distributed in Bd according to µd,β .
Since fd,β(x) is rotationally symmetric, the density of x can be written as a function
of s = ∥x∥, that is,

hd,β(s) = cd,β(1− s2)β1(0 ≤ s ≤ 1).

Using the (2.1) expansion of Bessel functions, we obtain that

ψd,β(ϱ) = (2π)
d
2 ϱ−

d
2+1

∫ ∞

0

s
d
2 hd,β(s)J d

2−1(sϱ) ds

= (2π)
d
2 ϱ−

d
2+1Γ

(
d
2 + β + 1

)
π

d
2Γ(β + 1)

×
∫ 1

0

s
d
2 (1− s2)β

∞∑
m=0

(−1)m

m!Γ(m+ d
2 )

(sϱ
2

)2m+ d
2−1

ds

= 2
Γ
(
d
2 + β + 1

)
Γ(β + 1)

∞∑
m=0

(−1)m

m!Γ(m+ d
2 )

(ϱ
2

)2m ∫ 1

0

(1− s2)βs2m+d−1 ds

= Γ

(
d

2
+ β + 1

) ∞∑
m=0

(−1)m

m!Γ(m+ d
2 + β + 1)

(ϱ
2

)2m
= Γ

(
d

2
+ β + 1

)
2

d
2+βϱ−

d
2−βJ d

2+β(ϱ).

Then

g∗d,β(r) =
21−

d
2

Γ
(
d
2

) ∫ ∞

0

(rϱ)
d
2 J d

2−1(rϱ)ψ
2
d,β(ϱ)dϱ

=
2

d
2+2β+1Γ2

(
d
2 + β + 1

)
Γ
(
d
2

) r
d
2

∫ ∞

0

ϱ−
d
2−2βJ d

2−1(rϱ)J
2
d
2+β

(ϱ) dϱ.

First, we use (3.2) with µ = d
2 − 1, ν = d

2 + β, λ = β, a = r, b = c = 1. Note that as

d ≥ 2 and β > −1, it holds that ν = d
2 +β > − 1

2 and µ+ν+2 = d+β+1 > β+1 =
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λ+ 1 > 0, so the conditions of Lemma 3.2 are satisfied. Next, we apply (3.1) with
µ = d

2 + β, ν = d
2 − 1, λ = β, a = ϖ, b = r. As µ+ ν +1 = d+ β > β = λ > −1, the

conditions of Lemma 3.1 are also satisfied. Assuming that 0 < r < ϖ, we get that∫ ∞

0

ϱ−
d
2−2βJ d

2−1(rϱ)J
2
d
2+β

(ϱ) dϱ

=
r

d
2−1

2
d
2+2βΓ( 12 )Γ(β + 1)Γ(d2 + β + 1

2 )

∫ π

A1

sind+2β φ

ϖd

(
1− r2

ϖ2

)β

dφ,

where ϖ =
√
2(1− cosφ) and A1 = arccos( 2−r2

2 ). Here, in the last step, we also
use Euler’s transformation

2F1(a, b, c; z) = (1− z)c−a−b
2F1(c− a, c− b, c; z).

Thus

g∗d,β(r) =
22β+1Γ2

(
d
2 + β + 1

)
Γ( 12 )Γ(

d
2 )Γ(β + 1)Γ(d2 + β + 1

2 )
rd−1

×
∫ π

A1

cos
(φ
2

)d+2β
(
sin2

(φ
2

)
− r2

4

)β

dφ

=
2Γ2

(
d
2 + β + 1

)
Γ( 12 )Γ(

d
2 )Γ(β + 1)Γ(d2 + β + 1

2 )
rd−1(4− r2)β

×
∫ 1− r2

4

0

u
d+2β−1

2 (1− u)−
1
2

(
1− 4

4− r2
u

)β

du. (4.1)

We obtained the last form by first substituting t = cos(φ/2), then u = t2. Note
that in the case when β = 0, (4.1) reduces to Hammersley’s formula (1.2). We note
that the integral in (4.1) is the incomplete Gaussian hypergeometric function.

5. Proof of Theorem 1.1

Let R ∈ [0, 1), and let the independent random points x1 and x2 be chosen from
the spherical shell BR according to the uniform probability distribution µd,0,R.
Thus, x1 and x2 have identical (d-dimensional) densities

hd,0,R(s) =
1

κd(1−Rd)
1(R ≤ s ≤ 1).

The common characteristic function of x1 and x2 is

ψd,0,R(ϱ) =
1

κd(1−Rd)
(2π)

d
2 ϱ−

d
2+1

∫ 1

R

s
d
2 J d

2−1(sϱ) ds.

Thus, by (3.4),

ψd,0,R(ϱ) =
2

d
2−1dΓ(d2 )

1−Rd
ϱ−

d
2

(
J d

2
(ϱ)−R

d
2 J d

2
(Rϱ)

)
. (5.1)

Let r = ∥x2 − x1∥, as before. Then, by (2.2), we obtain the (one-dimensional)
density g∗d,0,R(r) as follows

g∗d,0,R(r) =
21−

d
2

Γ(d2 )

∫ ∞

0

(rϱ)
d
2 J d

2−1(rϱ)ψ
2
d,0,R(ϱ) dϱ
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=
2

d
2−1d2 Γ(d2 )

(1−Rd)2
r

d
2

∫ ∞

0

ϱ−
d
2

(
J d

2
(ϱ)−R

d
2 J d

2
(Rϱ)

)2
J d

2−1(rϱ) dϱ. (5.2)

By expanding the square in (5.2), we get that g∗d,0,R(r) is the sum of the following
three terms:

g∗d,0,R(r) =
2

d
2−1d2 Γ(d2 )

(1−Rd)2
r

d
2

(
∫ ∞

0

ϱ−
d
2 J2

d
2
(ϱ)J d

2−1(rϱ) dϱ (5.3)

− 2R
d
2

∫ ∞

0

ϱ−
d
2 J d

2
(ϱ)J d

2
(Rϱ)J d

2−1(rϱ) dϱ (5.4)

+Rd

∫ ∞

0

ϱ−
d
2 J2

d
2
(Rϱ)J d

2−1(rϱ) dϱ

)
. (5.5)

We evaluate (5.3)–(5.5), with the help of Lemmas 3.1 and 3.2. Since the integrals
in (5.3) and (5.5) are very similar, we work out only (5.5) in detail.

We use Lemma (3.2) with the choice µ = d
2 − 1, ν = d

2 , a = r, b = c = R and

λ = 0. Since ν = d
2 > − 1

2 , and µ + ν + 2 = d + 1 > λ + 1 = 1 > 0, the conditions
of Lemma 3.2 are satisfied. Therefore, we obtain that

(5.5) = Rd

∫ ∞

0

ϱ−
d
2 J2

d
2
(Rϱ)J d

2−1(rϱ) dϱ

=
2−

d
2

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)R2d

∫ π

0

sind φ

ϖ
d
2
4

∫ ∞

0

J d
2−1(rϱ)J d

2
(ϖ4ϱ) dϱdφ, (5.6)

where ϖ4 =
√
2R2(1− cosφ).

Next, we apply formula (3.1) with µ = d
2 , ν = d

2 − 1, a = ϖ4, b = r, λ = 0. As

d ≥ 2, it holds that ν = d
2 − 1 > − 1

2 and µ + ν + 1 = d > λ = 0 > −1, thus the
conditions of Lemma 3.1 are satisfied. The condition 0 < r < ϖ4 holds precisely
when 0 < r ≤ 2R, and then the calculation yields

(5.6) =
2−

d
2

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)R2d

∫ π

A4

sind φ

ϖ
d
2
4

r
d
2−1Γ

(
d
2

)
ϖ

d
2
4 Γ
(
d
2

)
Γ(1)

2F1

(
d

2
, 0,

d

2
,
r2

ϖ2
4

)
dφ

=
2−

d
2

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)R2dr
d
2−1

∫ π

A4

(
sinφ

ϖ4

)d

dφ, (5.7)

with A4 = arccos
(

2R2−r2

2R2

)
. It is also clear that if r → 2R−, then (5.7) tends to 0.

If we apply (3.1) with µ = d
2 − 1, ν = d

2 , a = r, b = ϖ4, λ = 0, then 0 < ϖ4 < r
is satisfied when r > 2R, and the calculation yields that (5.6) = 0.

By a similar calculation, we obtain from (5.3) that∫ ∞

0

ϱ−
d
2 J2

d
2
(ϱ)J d

2−1(rϱ) dϱ =
2−

d
2

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)r d
2−1

∫ π

A1

(
sinφ

ϖ1

)d

dφ, (5.8)

with A1 = arccos
(

2−r2

2

)
and ϖ1 =

√
2(1− cosφ). This formula is valid for all

r ∈ [0, 2] and R ∈ [0, 1).
Now, we turn to the evaluation of the integral (5.4). We use (3.2) with the choice

µ = d
2 − 1, ν = d

2 , a = r, b = R, c = 1, λ = 0. Since µ, ν and λ are the same

https://orcid.org/0009-0009-7652-7179
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as when we used (3.2) in the evaluation of (5.5), the conditions of Lemma 3.2 are
satisfied. We obtain that

(5.4) = −2R
d
2

∫ ∞

0

ϱ−
d
2 J d

2
(ϱ)J d

2
(Rϱ)J d

2−1(rϱ)dϱ

= − 2−
d
2+1

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)Rd

∫ ∞

0

∫ π

0

J d
2−1(rϱ)J d

2
(ϖ2ϱ)

ϖ
d
2
2

sind φdφdϱ

= − 2−
d
2+1

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)Rd

∫ π

0

sind φ

ϖ
d
2
2

∫ ∞

0

J d
2−1(rϱ)J d

2
(ϖ2ϱ) dϱdφ (5.9)

where ϖ2 =
√
1 +R2 − 2R cosφ.

Finally, we use (3.1) with µ = d
2 , ν = d

2 − 1, a = ϖ2, b = r and λ = 0. Again,
as µ, ν and λ are the same as in the evaluation of (5.5) by (3.1), the conditions
of Lemma 3.1 are satisfied. The condition 0 < r < ϖ2 holds precisely when
0 < r ≤ 1 +R.

If 1−R < r ≤ 1 +R, then we get that

(5.9) = − 2−
d
2+1

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)Rd

∫ π

A2

r
d
2−1Γ

(
d
2

)
Γ
(
d
2

)
Γ(1)

2F1

(
d

2
, 0,

d

2
,
r2

ϖ2
2

)(
sinφ

ϖ2

)d

dφ

= − 2−
d
2+1

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)r d
2−1Rd

∫ π

A2

(
sinφ

ϖ2

)d

dφ, (5.10)

where A2 = arccos
(

1+R2−r2

2R

)
. If r → 1 +R−, then (5.10) → 0.

If r ≤ 1−R, then

(5.9) = − 2−
d
2+1

Γ
(
1
2

)
Γ
(
d
2 + 1

2

)r d
2−1Rd

∫ π

0

(
sinφ

ϖ2

)d

dφ. (5.11)

If r → 1−R+, then (5.10) tends to (5.11) evaluated at r = 1−R.
If we use (3.1) with µ = d

2 − 1, ν = d
2 , a = r, b = ϖ2 and λ = 0, then the

condition 0 < ϖ2 < r holds when r > 1 +R. In this case we get that (5.9) = 0.
Now, if we define the functions gi(d, r,R), i = 1, . . . , 4 as in Theorem 1.1, then

(5.7), (5.8), (5.10) and (5.11) show that the density function g∗d,0,R(r) is the sum of

the gi(d, r,R), i = 1, . . . , 4.
This finishes the proof of Theorem 1.1.

6. Examples

We provide, as examples, the explicit formulas for the planar (d = 2) and the
3-dimensional cases.

6.1. The d = 2 case. Direct calculations of the functions gi(2, r, R), i = 1, . . . , 4
yield the following.

g1(2, r, R) =
2r

π(1−R2)2

π − arccos

(
2− r2

2

)
−

√
1−

(
2− r2

2

)2
 ,

g2(2, r, R) = − 8R2r

π(1−R2)2
·
(
R2 − 1

2R2
· π
2
+

(R− 1)2π

4R2
+

π

2R
− sin (a(r,R))

2R
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−R
2 − 1

2R2
arctan

(
R+ 1

1−R
tan

(
a(r,R)

2

))
− (R− 1)2

4R2
a(r,R)− a(r,R)

2R

)
,

where a(r,R) = arccos

(
R2 + 1− r2

2R

)
,

g3(d, r,R) = − 4R2r

(1−R2)2
,

g4(d, r,R) =
2R2r

π(1−R2)2

π − arccos

(
2R2 − r2

2R2

)
−

√
1−

(
2R2 − r2

2R2

)2
 .

The graph of g∗2,0,R is shown in Figure 1 for a few values of R. The R = 1

case represents the density function of two i.i.d. random points from S1 chosen
according to the normalized arc-length.

Figure 1. The graph of g∗2,0,R(r) for various values of R drawn by Mathematica.

6.2. The d = 3 case. If d = 3 then we obtain the following formulas.

g1(3, r, R) =
9

4

r2

(1−R3)2

(
4

3
+

1

12
r3 − r

)
,

g2(3, r, R) = −3

2

r2

(1−R3)2

(
2 + 2R3 − 3R4 + 3− r4 − 6R2 + 6R2r2 + 6r2

4r

)
,

g3(3, r, R) = −6
R3r2

(1−R3)2
,

g4(3, r, R) =
9

4

R3r2

(1−R3)2

(
4

3
+

1

12

r3

R3
− r

R

)
.

https://orcid.org/0009-0009-7652-7179
https://orcid.org/0000-0001-9747-1981


PAIRS OF RANDOM POINTS FROM A SPHERICAL SHELL 11

The graph of the function g∗3,0,R is drawn in Figure 2 for a few specific values of
R. We note that the solid line represents the density of the distance of two i.i.d.
random points chosen from the surface S2 according to the normalized spherical
Lebesgue measure; this is marked with R = 1 in the figure. In this case, the density
function is linear in r.

Figure 2. The function g∗3,0,R(r) for different values of R drawn
by Mathematica.

Not surprisingly, the 3-dimensional density functions are better behaved than in
two dimensions; they have a single maximum in the interval [0, 2].

7. Beta type distributions in spherical shells

We return to the case of general truncated beta type distributions µd,β,R in
spherical shells BR for 0 ≤ R < 1, and we show how the density g∗d,β,R can be
determined explicitly for integer values of β and sufficiently large d, depending on
β. Let s = ∥x∥ be as before. Then the normalizing constant cd,β,R is

cd,β,R =
1∫

Rd fd,β,R(x) dx
,

where

c−1
d,β,R =

∫
cl(Bd\RBd)

(1− ∥x∥2)β dx = ωd

∫ 1

R

(1− s2)βsd−1 ds

=
ωd

2

(
B

(
1;
d

2
, β + 1

)
−B

(
R2;

d

2
, β + 1

))
=

1

cd,β
− ωd

2
B

(
R2;

d

2
, β + 1

)
.
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Now, as fd,β,R is rotationally symmetric, the d-dimensional density in terms of
s is

hd,β,R(s) = cd,β,R(1− s2)β1(R ≤ s ≤ 1),

and we have that

ψd,β,R(ϱ) = (2π)
d
2 ϱ−

d
2+1

∫ ∞

0

s
d
2 hd,β,R(s)J d

2−1(sϱ) ds

= (2π)
d
2 cd,β,R · ϱ− d

2+1

∫ 1

R

s
d
2 (1− s2)βJ d

2−1(sϱ) ds.

If β is a non-negative integer, then the Binomial Theorem yields that

ψd,β,R(ϱ) = (2π)
d
2 cd,β,R · ϱ− d

2+1

β∑
k=0

(−1)k
(
β

k

)∫ 1

R

s
d
2+2kJ d

2−1(sϱ) ds. (7.1)

Applying (3.3) recursively to each term
∫
s

d
2+2kJ d

2−1(sϱ) ds in (7.1), we arrive

in k steps to the indefinite integral
∫
s

d
2 J d

2−1(sϱ) ds, which can be evaluated by

(3.4).
In particular, for k = 1, . . . , β, the substitution z = sϱ and repeated application

of (3.3) yield, for some constants c0, . . . ck and e1, . . . , ek depending on d and i, that∫
s

d
2+2kJ d

2−1(sϱ) ds

= ϱ−
d
2−2k−1

(
ckz

d
2+2k + ck−1z

d
2+2(k−1) · · ·+ c0z

d
2

)
J d

2
(z)

+ ϱ−
d
2−2k−1

(
ekz

d
2+2k−1 + ek−1z

d
2+2(k−1)−1 · · ·+ e1z

d
2+1
)
J d

2−1(z)

=

(
ck
s

d
2+2k

ϱ
+ ck−1

s
d
2+2(k−1)

ϱ3
+ · · ·+ c0

s
d
2

ϱ2k+1

)
J d

2
(sϱ)

+

(
ek
s

d
2+2k−1

ϱ2
+ ek−1

s
d
2+2(k−1)−1

ϱ4
+ · · ·+ e1

s
d
2+1

ϱ2k

)
J d

2−1(sϱ)

=

k∑
i=0

ci
s

d
2+2i

ϱ2(k−i)+1
J d

2
(sϱ) +

k∑
j=1

ej
s

d
2+2j−1

ϱ2(k−j+1)
J d

2−1(sϱ)

Thus, after evaluating the definite integrals in (7.1), we get an explicit formula
for ψd,β,R(ϱ) in which each term contains a power of ϱ and a Bessel function Jν(ϱ)

or Jν(Rϱ) for ν ∈ {d
2 ,

d
2 − 1}. Therefore

ψd,β,R(ϱ) = (2π)
d
2 cd,β,R · ϱ− d

2+1

(
c0

s
d
2

ϱ2k+1
+

β∑
k=1

(
β

k

)
(−1)k

×

(
k∑

i=1

ci
1

ϱ2(k−i)+1
J d

2
(ϱ)−

k∑
i=1

ci
R

d
2+2i

ϱ2(k−i)+1
J d

2
(Rϱ)

+

k∑
j=1

ej
1

ϱ2(k−j+1)
J d

2−1(ϱ)−
k∑

j=1

ej
R

d
2+2j−1

ϱ2(k−j+1)
J d

2−1(Rϱ)

 .
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Now, substituting ψd,β,R(ϱ) into

g∗d,β,R(r) =
21−

d
2

Γ
(
d
2

) ∫ ∞

0

(rϱ)
d
2 J d

2−1(rϱ)ψ
2
d,β,R(ϱ)dϱ, (7.2)

then expanding the square ψ2
d,β,R(ϱ), one obtains a sum of integrals, each containing

the product of a power of ϱ, J d
2−1(rϱ) and two Bessel functions from among J d

2−1(ϱ),

J d
2−1(Rϱ), J d

2
(ϱ), J d

2
(Rϱ). First, we want to apply Lemma 3.2 to each integral.

In each integral, at least two of the Bessel functions have the same order and the
exponent of ϱ is between 0 and −d

2 − 4β. So, µ, ν ∈ {d
2 − 1, d2}, and 0 ≤ λ < 4β+1

in Lemma 3.2. Then ν > − 1
2 and λ > −1 are satisfied. The condition µ+ν+1 > λ

puts a lower bound d ≥ 4β+1 on the dimension. If this is satisfied, then Lemma 3.2
can be used. The applicability of Lemma 3.1 also follows as the conditions on µ,
ν and λ are weaker than in Lemma 3.2. This process is a straightforward, albeit
tedious computation that yields an explicit formula for g∗d,β,R(r) in the form of a

sum of functions each one of which comes from an integral in (7.2).

8. Concluding remarks

As mentioned after Theorem 1.1, the functions gi(d, r,R) can be transformed by
standard substitutions in the following way. Substituting first t = cos(φ/2), then
u = t2, we obtain∫ (

sinφ√
1− cosφ

)d

dφ = −2
d
2

∫
u

d−1
2 (1− u)−

1
2 du,

∫ (
sinφ√

1 +R2 − 2R cosφ

)d

dφ

= − 2d

(R+ 1)d

∫
u

d−1
2 (1− u)

d−1
2

(
1− 4R

(R+ 1)2
u

)− d
2

du.

Thus, for R ∈ [0, 1) and r ∈ [0, 2],

g1(d, r,R) = 2
d
2Cd

rd−1

(1−Rd)2
B

(
1− r2

4
;
d+ 1

2
,
1

2

)
,

g2(d, r,R) = −2d+1Cd
Rdrd−1

(1−Rd)2(1 +R)d
· 1(1−R < r ≤ 1 +R)

×
∫ (R+1)2−r2

4R

0

u
d−1
2 (1− u)

d−1
2

(
1− 4R

(R+ 1)2
u

)− d
2

du,

g3(d, r,R) = −2d+1Cd
Rdrd−1

(1−Rd)2(1 +R)d
B

(
d+ 1

2
,
d+ 1

2

)
× 2F1

(
d

2
,
d+ 1

2
, d+ 1,

4R

(R+ 1)2

)
· 1(0 < r ≤ 1−R),

g4(d, r,R) = 2
d
2Cd

Rdrd−1

(1−Rd)2
B

(
1− r2

4R2
;
d+ 1

2
,
1

2

)
· 1(0 < r ≤ 2R),

where, for g3(d, r,R), we also used Euler’s integral formula

B(b, c− b) 2F1(a, b, c, z) =

∫ 1

0

xb−1(1− x)c−b−1(1− zx)−a dx,
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which holds for c > b > 0 and z < 1.

9. Acknowledgements
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Probabilités et de ses Appliacations, Gauthier-Villar, Paris, 1925.
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