Publikációk

[34] F. A. Bartha, P. Boldog, T. Tekeli, Zs. Vizi, A. Dénes, G. Röst, Potential severity, mitigation, and control of Omicron waves depending on pre-existing immunity and immune evasion, in: R. P. Mondaini (Ed.), Trends in Biomathematics: Stability and oscillations in environmental, social and biological models – Selected works from the 21st BIOMAT Consortium Lectures, Rio de Janeiro, Brazil, 2021, megjelenés alatt.

[33] S. Barua, A. Dénes, M. A. Ibrahim, A seasonal model to assess intervention strategies for preventing periodic recurrence of Lassa fever, Heliyon 7(2021), No. 8, e07760.

[32] A. Dénes, S. Marzban, G. Röst, Global analysis of a cancer model with drug resistance due to Lamarckian induction and microvesicle transfer J. Theor. Biol. 527(2021), 110812.

[31] S. Barua, A. Dénes, Global dynamics of a model for anaerobic wastewater treatment process, in: R. P. Mondaini (Ed.), Trends in biomathematics: chaos and control in epidemics, ecosystems, and cells, Springer, 2021.

[30] M. A. Ibrahim, A. Al-Najafi, A. Dénes, Predicting the COVID-19 spread using compartmental model and extreme value theory with application to Egypt and Iraq, in: R. P. Mondaini (Ed.), Trends in biomathematics: chaos and control in epidemics, ecosystems, and cells, Springer, 2021.

[29] M. V. Barbarossa, N. Bogya, A. Dénes, G. Röst, H. V. Varma, Zs. Vizi, Fleeing lockdown and its impact on the size of epidemic outbreaks in the source and target regions – a COVID-19 lesson, Sci. Rep. 11(2021), 9233.

[28] M. A. Ibrahim, A. Dénes, A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal. Real World Appl. 60(2021), 103310.

[27] M. A. Ibrahim, A. Dénes, Threshold dynamics in a model for Zika virus disease with seasonality, Bull. Math. Biol. 83(2021), Article No. 27, 28 pp.

[26] A. Dénes, G. Röst, Single species population dynamics in seasonal environment with short reproduction period, Comm. Pure Appl. Anal. 20(2021), 755–762.

[25] M. A. Ibrahim, A. Dénes, Threshold and stability results in a periodic model for malaria transmission with partial immunity in humans, Appl. Math. Comput. 392(2021), 125711, 19 pp.

[24] A. Dénes, G. Röst, Global analysis of a cancer model with drug resistance due tomicrovesicle transfer, in: R.P.Mondaini (Ed.), Trends in biomathematics: modeling cells, flows, epidemics, and the environment, Springer, Cham, 2020, pp. 71–80.

[23] G. Röst, F. A. Bartha, N. Bogya, P. Boldog, A. Dénes, T. Ferenci, K. J. Horváth, A. Juhász, Cs. Nagy, T. Tekeli, Zs. Vizi, B. Oroszi, Early phase of the COVID-19 outbreak in Hungary and post-lockdown scenarios, Viruses, 12(2020) No. 7, 708.

[22] A. Dénes, Y. Muroya, G. Röst, Global stability of a multistrain SIS model with superinfection and patch structure, Math. Methods Appl. Sci. 43(2020), 9671–9680.

[21] P. Boldog, T. Tekeli, Zs. Vizi, A. Dénes, F. A. Bartha, G. Röst, Risk assessment of novel coronavirus 2019-nCoV outbreaks outside China, J. Clin. Med. 9(2020), No. 571, 12 pp.

[20] A. Dénes, M. A. Ibrahim, L. Olouch, M. Tekeli, T. Tekeli, Impact of weather seasonality and sexual transmission on the spread of Zika fever, Sci. Rep.  9(2019), 17055, 10 pp.

[19] A. Dénes, M. A. Ibrahim, Global dynamics of a mathematical model for a honeybee colony infested by virus-carrying Varroa mites, J. Appl. Math. Comput. 61(2019), 349–371.

[18] E. Bánhegyi, A. Dénes, J. Karsai, L. Székely, The efect of the needle exchange program on the spread of some sexually transmitted diseases, Math. Biosci. Eng. 16(2019), No. 5, 4506–4525.

[17] K. Muqbel, A. Dénes, G. Röst, Optimal temporary vaccination strategies for epidemic outbreaks, in: R. P. Mondaini (Ed.), Trends in biomathematics: mathematical modeling for health, harvesting, and population dynamics, Springer, 2019, pp. 299–307.

[16] A. Dénes, A. B. Gumel, Modeling the impact of quarantine during an outbreak of Ebola virus disease, Infect. Dis. Model. 4(2019), 12–27.

[15] A. Dénes, L. Székely,  Small solutions of the damped half-linear oscillator with step function coefficients, Electron. J. Qual. Theory Differ. Equ. 2018, No. 46, 1–13. [pdf]

[14] A. Dénes, G. Röst, Dynamics of an infectious disease including ectoparasites, rodents and humans, in: Trends in Biomathematics: Modeling, Optimization and Computational Problems (ed. R. Mondaini), Springer, 2018, pp. 59–73.

[13] A. Dénes, L. Székely, Global dynamics of a mathematical model for the possible re-emergence of polio, Math. Biosci. 293 (2017), 64-74. [pdf]

[12] A. Dénes, Y. Muroya, G. Röst, Global stability of a multistrain SIS model with superinfection,  Math. Biosci. Eng. 14 (2017), No. 2, 421-435 [pdf].

[11] A. Dénes, L. Hatvani, On the asymptotic behaviour of solutions of an asymptotically Lotka-Volterra model, Electron. J. Qual. Theory Differ. Equ. 2016, No. 67, 1–10. [pdf]

[10] A. Dénes, G. Röst, Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 1101–1117.

[9] M. V. Barbarossa, A. Dénes, G. Kiss, Y. Nakata, G. Röst, Zs. Vizi, Transmission dynamics and final epidemic size of Ebola Virus Disease outbreaks with varying interventions, PLoS ONE 10(7) (2015)  e0131398. [pdf]

[8] A. Dénes, G. Röst, Impact of excess mortality on the dynamics of diseases spread by ectoparasites, in: M. Cojocaru, I.S. Kotsireas, R. Makarov, R.V.N. Melnik, H. Shodiev, (Eds.),  Interdisciplinary Topics in Applied Mathematics, Modeling and Computational ScienceSpringer Proceedings in Mathematics & Statistics, Vol. 117, Springer International Publishing, 2015.

[7] A. Dénes, G. Röst, Global dynamics of a compartmental system modeling ectoparasite-borne diseases, Acta Sci. Math. (Szeged) 80 (2014), 553–572. [pdf]

[6] A. Dénes, G. Röst, Global dynamics for the spread of ectoparasite-borne diseases, Nonlinear Anal. Real World Appl. 18 (2014) 100–107. [pdf]

[5] A. Dénes, P. Kevei, H. Nishiura, G. Röst, Risk of infectious disease outbreaks by imported cases with application to the European Football Championship 2012, International Journal of Stochastic Analysis2013, Article ID 576381, 9 pages. [pdf]

[4] A. Dénes, G. Röst, Structure of the global attractors in a model for ectoparasite-borne diseases, BIOMATH 1 (2012), Article ID A016 (1–5) [pdf]

[3] A. Dénes, G. Makay, Attractors and basins of dynamical systems, Electron. J. Qual. Theory Differ. Equ. 2011, No. 20, 1–11. [pdf]

[2] A. Dénes, L. Hatvani, L. L. Stachó, Eventual stability properties in a non-autonomous model of population dynamics, Nonlinear Anal. 73 (2010) 650–659. [pdf]

[1] A. Dénes, Neimark-Sacker bifurcation in a discrete dynamical model of population genetics, Electron. J. Qual. Theory Differ. Equ., Proc. 8th Coll. Qualitative Theory of Diff. Equ. 2007,  No. 6, 1–10. [pdf]
Design downloaded from free website templates.