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Abstract. We make more realistic our model [Nonlinear Anal. 73(2010), 650–659] on the
coexistence of fishes and plants in Lake Tanganyika. The new model is an asymptoti-
cally autonomous system whose limiting equation is a Lotka–Volterra system. We give
conditions for the phenomenon that the trajectory of any solution of the original non-
autonomous system “rolls up” onto a cycle of the limiting Lotka–Volterra equation as
t → ∞, which means that the limit set of the solution of the non-autonomous system
coincides with the cycle. A counterexample is constructed showing that the key integral
condition on the coefficient function in the original non-autonomous model cannot be
dropped. Computer simulations illustrate the results.
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1 Introduction

A group of scale-eating cichlid fishes from Lake Tanganyika provide an interesting and well
known example of an evolved asymmetry in vertebrates [5]. Members of the Perissodini tribe
of these fishes have evolved dental and craniofacial asymmetries as a result of which they
obtained an increased efficacy to remove scales from the left or right flanks of prey. This
means that one morphological group of the fishes have their mouth parts twisted to the left,
thus they can better eat scales off their prey’s right flank. The other morph, whose mouth is
turned to the right, eats scales off its prey’s left flank.

In [1], the authors investigated a non-autonomous model which describes the change in
time of the amount of two fish species – a herbivore and a carnivore – living in Lake Tan-
ganyika and the amount of the plants eaten by the herbivores. The model considers n groups
of the carnivore fish, corresponding to n different morphs. The model consists of two parts:
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reproduction taking place at the end of each year is described by a discrete dynamical system,
while the development of the population during a year is described by a non-autonomous
system of differential equations. The authors assumed that the whole system of the nutrition
chain consisting of plants, herbivores and carnivores is supported by the constant energy flow
provided by the Sun.

In several steps, the original system was transformed into the following equation:

L̇ = c− LG,

Ġ = (L− λ(t))G,
(1.1)

where L(t) corresponds to the amount of plants and G(t) corresponds to the prey fish. The
function λ(t) is monotonically decreasing and tends to a positive constant λ∗ exponentially as
t→ ∞. In [1], it was shown that the point (λ∗, c/λ∗) is an eventually uniform-asymptotically
stable point in the large of (1.1) on the quadrant {(L, G) : L ≥ 0, G > 0}.

In the present paper we make the above model more realistic: instead of assuming a
constant energy flow, we consider exponential growth for the plants in the absence of the
herbivores. Under this condition the first equation of (1.1) changes and we obtain the new
model

L̇ = (c− G)L,

Ġ = (L− λ(t))G.
(1.2)

This is an asymptotically autonomous system, which has a special case of the classical Lotka–
Volterra predator–prey model as the limiting equation. In this paper we show that the limit
set of all solutions of (1.2) is a solution of the Lotka–Volterra-type limiting equation.

2 Numerical experiments

For a numerical simulation we first consider equation (1.2) with λ(t) chosen as (for details,
see [1, Section 2])

λ(t) =
5e−5t + 4e−4t + 0.2e−2t

e−5t + e−4t + 0.1e−2t .

It is easy to see that the limiting equation in this case takes the form

L̇ = (c− G)L,

Ġ = (L− 2)G.
(2.1)

As shown in Figure 2.1, numerical simulation of solutions of the two systems (1.2) and (2.1)
suggests that trajectories of (1.2) “roll up” on cycles of the limit system (2.1).

3 The results

Consider the classical Lyapunov function [2]

V(L, G) := Lλ∗Gc exp[−(L + G)] (3.1)

to the Lotka–Volterra equation

L̇ = (c− G)L,

Ġ = (L− λ∗)G, (L ≥ 0, G ≥ 0).
(3.2)



On the asymptotic behaviour of solutions of an asymptotically Lotka–Volterra model 3

Figure 2.1: Trajectories of the original system (blue dashed line)
and the limiting equation (thin red line)

It is well-known [2] that the level curves

V(L, G) = Lλ∗Gc exp[−(L + G)] = const.
(

const. 6= (λ∗)λ∗cc

exp[(λ∗ + c)]

)
(3.3)

are Jordan curves around the equilibrium (λ∗, c), which are the trajectories of the solutions.
In other words, all solutions are periodic; i.e., all trajectories are cycles.

Let a piecewise continuous function λ : R+ := [0, ∞)→ (0, ∞) be given such that

lim
t→∞

λ(t) = λ∗ > 0. (3.4)

Then equation (3.2) is the limiting equation of the original equation

L̇ =(c− G)L,

Ġ =(L− (λ(t)− λ∗)− λ∗)G, (L ≥ 0, G > 0).
(3.5)

The derivative of (3.1) with respect to the original equation (3.5) is

V̇(L, G, t) = Lλ∗Gc exp[−(L + G)](λ(t)− λ∗)(G− c). (3.6)

Lemma 3.1. Suppose that ∫ ∞

0
|λ(t)− λ∗|dt < ∞. (3.7)

Then for every solution t→ (L(t), G(t)) of (3.5) the finite limit

lim
t→∞

V(L(t), G(t)) =: V∗

exists.

Proof. By (3.6) there exists a K such that V̇(L, G, t) ≤ K|λ(t)− λ∗| holds for all (L, G) ∈ (R+)2

and t ∈ R+. Therefore, for every pair t1 < t2 we have

|V(L(t2), G(t2))−V(L(t1), G(t1))| =
∣∣∣∣∫ t2

t1

V̇(L(s), G(s), s)ds
∣∣∣∣

≤ K
∫ t2

t1

|λ(s)− λ∗|ds.
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Using condition (3.7) we obtain that for the function v(t) := V(L(t), G(t)) the following condi-
tion is satisfied: for every ε > 0 there exists a T such that t1, t2 > T implies |v(t2)− v(t1)| < ε.
By the Cauchy criterion on the convergence the limit limt→∞ v(t) = V∗ exists.

Lemma 3.2. Suppose that (3.7) and the condition

λ(t) ≥ λ∗ (t ∈ R+) (3.8)

are satisfied. Then every solution t→ (L(t), G(t)) of (3.5) is bounded on [0, ∞).

Proof. Since the level sets V(L, G)≥ const.> 0 are compact in the first quadrant {L> 0, G> 0},
it is enough to prove V∗ > 0. By (3.6) we have

V̇(L, G, t) = V(L, G)(G− c)(λ(t)− λ∗),

from which it follows that the total negative variation
∨−

[0,∞) ln v on [0, ∞) satisfies the estimate

∨
[0,∞)

−
ln v =

∫ ∞

0

[v̇]−
v

=
∫ ∞

0
(λ(t)− λ∗)[G(t)− c]− dt

≤ c
∫ ∞

0
(λ(t)− λ∗)dt < ∞,

where [α]− := max{−α; 0} denotes the negative part of the number α ∈ R. This means that
ln V∗ > −∞, i.e., V∗ > 0.

To prove our main theorem we recall some definitions and results from stability theory.
Consider the general system of differential equations

ẋ = f (t, x) (3.9)

with f : R+ ×Ω → Rn, where Ω is an open subset of Rn; 0 ∈ Ω. Let ‖ · ‖ denote any norm
in Rn. Suppose that for every t0 ≥ 0 and x0 ∈ Ω there exists a unique solution x(t) =

x(t; t0, x0) of equation (3.9) for t ≥ t0 satisfying the initial condition x(t0; t0, x0) = x0.
A point x∗ ∈ Ω is said to be a positive limit point of a solution x of (3.9) if there exists a

sequence
{

tj
}

such that tj → ∞ and x(tj) → x∗ as j → ∞. The set of all positive limit points
of x is called the positive limit set of x and is denoted by Λ+(x).

The translate of a function f : R+ ×Ω → Rn by a > 0 is defined as fa(t, x) := f (t + a, x).
The function f is called asymptotically autonomous if there exists a function f ∗ : Ω → Rn such
that fa(t, x) → f ∗(x) as a → ∞ uniformly on every compact subset of R+ × Ω. f ∗ and
ẋ = f ∗(x) will be called a limit function and a limiting equation, respectively.

Let f (t, x) be asymptotically autonomous. A set F ⊂ Ω is said to be semi-invariant with
respect to equation (3.9) if for every (t0, x0) ∈ R+ × F there is at least one non-continuable
solution x∗ : (α, ω) → Rn of the limiting equation ẋ = f ∗(x) with x∗(t0) = x0 such that
x∗(t) ∈ F for all t ∈ (α, ω).

Theorem A ([4]). Suppose that f is asymptotically autonomous. Then for every solution x of equation
(3.9) the limit set Λ+(x) ∩Ω is semi-invariant.

L. Markus [3] proved (see also [6]) the following generalization of the Poincaré–Bendixson
theorem: if n = 2, then the positive limit set of a forward bounded solution of an asymptoti-
cally autonomous equation either contains equilibria of the limiting equation or is the union
of cycles of the limiting equation. Our main result gives an analogous, more precise theorem
for (3.5) without assuming forward boundedness.
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Theorem 3.3. Suppose that the conditions

(i) λ(t) ≥ λ∗ (t ∈ R+),

(ii) limt→∞ λ(t) = λ∗ > 0,

(iii)
∫ ∞

0 |λ(t)− λ∗|dt < ∞

are satisfied. Then for every solution t → (L(t), G(t)) of the original non-autonomous equation (3.5)
the solution tends to (λ∗, c) as t→ ∞, or there is a cycle γ of the Lotka–Volterra limiting equation (3.2)
such that the curve t→ (L(t), G(t)) “rolls up” onto the γ as t→ ∞, which means that Λ+(L, G) = γ.

Proof. By Lemma 3.2, Λ+(L, G) is not empty; let (L∗, G∗) ∈ Λ+(L, G), and define

γ := {(L, G) ∈ R2 : V(L, G) = V(L∗, G∗)}.

It is easy to see that Λ+(L, G) ⊂ γ. On the other hand, by Theorem A, Λ+(L, G) is semi-
invariant with respect to (3.5). Now this means that γ ⊂ Λ+(L, G), so γ = Λ+(L, G).

The following question arises: is every trajectory of the Lotka–Volterra limiting equa-
tion (3.2) (included the equilibrium (λ∗, c)) the limit set of some solution of the original equa-
tion (3.5)?

Conjecture 3.4. Every cycle of the Lotka–Volterra limiting equation (3.2) is the limit set of some
solution of the original equation (3.5).

4 A counterexample

In this section we construct an example showing that condition (iii) in Theorem 3.3 is essential
in the sense that without (iii) the theorem is not true. The suitable coefficient λ(t) will be a
step function. The function will be constructed dynamically step by step:

λ(t) := λk if tk−1 ≤ t < tk (k ∈N), (4.1)

where the sequences

0 =: t0 < t1 < · · · < tk−1 < tk < · · · (k ∈N);

λ1 > λ3 > · · · > λ2n−1 > λ2n+1 > · · · ,

lim
n→∞

λ2n−1 =: λ∗; λ2n := λ∗ (n ∈N)

have to be found so that equation (3.5) with (4.1) have an unbounded solution. The kth piece
of the trajectory of the desired unbounded solution will be a “half” of a cycle of the Lotka–
Volterra equation

L̇ = (c− G)L, Ġ = (L− λ)G, (L ≥ 0, G ≥ 0) (4.2)

with λ = λk (see Figure 4.1). At first we will fix λ∗ and {λk}∞
k=1 properly, and require the

initial condition G(t0) = c. Then, by the method of the mathematical induction, if t1, . . . , tk−1
are already defined, then we choose tk so that G(tk) = c be satisfied, i.e., so that the piece of
the trajectory over the interval [tk−1, tk] be a half of a cycle of (4.2) with λ = λk.
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Figure 4.1: The result of the first two steps of the procedure

According to (3.3), trajectories of (4.2) are Jordan curves (cycles) around the equilibrium
(λ, c) satisfying the equation

α(L; λ) · β(G; λ) = K = const.
(

0 < K <
cc

ec
λλ

eλ

)
,

α(L; λ) :=
Lλ

eL , β(G; λ) :=
Gc

eG

for different fixed values of constant K. The abscissae Lmin(λ, K) and Lmax(λ, K) of the nearest
and the farthest points of a cycle from the G-axis, respectively, (see Figure 4.1) are the solutions
of the equation

α(L; λ) =
Lλ

eL =
ec

cc K. (4.3)

Obviously, Lmin(λ, K) (resp. Lmax(λ, K)) is an increasing (resp. decreasing) function of K, and
limK→0+0 Lmin(λ, K) = 0. It is also obvious that

λ1 > λ2 ⇒ α(L; λ1) < α(L; λ2) for 0 < L < 1 and α(L; λ1) > α(L; λ2) for L > 1 (4.4)

(see Figure 4.2).
For fixed (L, G), t and λ̃, let us denote by t → (L(t; L, G, t, λ̃), G(t; L, G, t, λ̃)) the solution

of equation (4.2) with λ = λ̃ starting from the initial point (L, G) at time t.
Now we can start the construction. At first let us choose λ∗ > 1 and K0 > 0 so that

L0 := Lmin(λ∗, K0) < 1 hold. According to (4.3) we have

Lλ∗
0

eL0
=

ec

cc K0. (4.5)

Then define
λ2n−1 := λ∗ +

1
n

, λ2n := λ∗ (n ∈N).
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Figure 4.2: The graphs of α(·; λ) at three different values of λ

In the first step we take the solution of (4.2) with λ = λ1 starting from the point (L0, c) at
time t0. If this solution corresponds to constant K1, then, by (4.4), we have the estimate

K1 :=
cc

ec
Lλ1

0
eL0

<
cc

ec
Lλ∗

0
eL0

= K0.

Let us denote by t1 the smallest value of times t > t0 for which G(t1; L0, c, t0, λ1) = c, and
define L1 by

L1 := Lmax(λ1, K1) = L(t1; L0, c, t0, λ1) > λ1 > 1

(see Figure 4.2).
In the second step we take the solution of (4.2) with λ = λ2 = λ∗ starting from the point

(L1, c) at time t1, which belongs to the constant

K2 :=
cc

ec
Lλ∗

1
eL1

<
cc

ec
Lλ1

1
eL1

= K1 < K0.

Let t2 > t1 be the smallest value for which G(t2; L1, c, t1, λ2) = c, and define L2 by

L2 := Lmin(λ
∗, K2) = L(t2; L1, c, t1, λ2) < L0 < 1.

In the third step we use the solution of (4.2) with λ = λ3 starting from the point (L2, c) at
time t2. This solution belongs to the constant

K3 :=
cc

ec
Lλ3

2
eL2

<
cc

ec
Lλ∗

2
eL2

= K2 < K1.

Let t3 > t2 be the smallest value for which G(t3; L2, c, t2, λ3) = c, and define L3 by

L3 := Lmax(λ3, K3) = L(t3; L2, c, t2, λ3) > 1.
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In the fourth step we take the solution of (4.2) with λ = λ4 = λ∗ starting from the point
(L3, c). The corresponding constant is

K4 :=
cc

ec
Lλ∗

3
eL3

<
cc

ec
Lλ3

3
eL3

= K3 < K2.

Since

L0 = Lmin(λ
∗, K0), L2 = Lmin(λ

∗, K2); L1 = Lmax(λ
∗, K2), L3 = Lmax(λ

∗, K4),

we have the estimates L0 > L2 and L1 < L3.
If we continue this procedure (see Figure 4.2), then by the method of induction we get a

sequence {tk, Lk, Kk}∞
k=1 such that

t0 < t1 < · · · < tk < tk+1 < · · · ; K0 > K1 > · · · > Kk > Kk+1 > · · · ;

L2n+1 = Lmax(λ2n+1, K2n+1) = L(t2n+1; L2n, c, t2n, λ2n+1) > λ∗ > 1 (4.6)

L2n+2 = Lmin(λ
∗, K2n+2) = L(t2n+2; L2n+1, c, t2n+1, λ∗) < 1 (4.7)

L2n+1 = Lmax(λ
∗, K2n+2), L2n+2 = Lmin(λ

∗, K2n+2),

L0 > L2 > · · · > L2n > L2n+2 > · · · , L1 < L3 < · · · < L2n+1 < L2n+3 < · · · (4.8)

It remains to prove that the solution t → (L(t), G(t)) of the original equation (3.5) with
(4.1) consisting of the solution pieces defined during the procedure on [tk, tk+1) (k = 0, 1, 2, . . .)
are unbounded. Introduce the notation v(t) := V(L(t), G(t)). By (3.6), (4.6)–(4.8), using also
the first equation of (3.5) we get the estimate

ln
v(t2N+1)

v(t0)
=

2N

∑
k=0

ln
v(tk+1)

v(tk)
=

2N

∑
k=0

∫ tk+1

tk

v̇(t)
v(t)

dt

=
N

∑
n=0

∫ t2n+1

t2n

(λ(t)− λ∗)(G(t)− c)dt =
N

∑
n=0

1
n + 1

∫ t2n+1

t2n

(G(t)− c)dt

= −
N

∑
n=0

1
n + 1

(
ln

L(t2n+1)

L(t2n)

)
= −

N

∑
n=0

1
n + 1

(
ln

L2n+1

L2n

)
≤ −

N

∑
n=0

1
n + 1

(
ln

L1

L0

)
→ −∞ (N → ∞).

This means that t→ (L(t), G(t)) is unbounded as t→ ∞.
Numerical simulation illustrates the example, see Figure 4.3.
The method in the above counterexample is suitable also for making a contribution to

Conjecture 3.4. It is easy to construct a sequence {(λk, tk)}∞
k=1 so that equation (3.5) with (4.1)

have a solution tending to the equilibrium (λ∗, c). In fact, for an arbitrarily given λ∗ > 1
define λk := λ∗ + 1/k2.

Setting t0 := 0, let us start the solution of (3.5) from (λ∗, c) at t0. Then define {tk}∞
k=1 so

that the trajectory of (3.5) cross the point (λ∗, c) at every tk, i.e., so that the equality

L(tk; λ∗, c, tk−1, λk) = λ∗ (k ∈N)

be satisfied. Then the solution consisting of the pieces defined on intervals [tk−1, tk) (k ∈ N)
tends to (λ∗, c) as t→ ∞ (see Figure 4.3).
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Figure 4.3: The trajectory of the unbounded solution

Figure 4.4: Trajectory tending to the equilibrium (λ∗, c)
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