Év szerint Hónap szerint Ugrás a hónaphoz

Andrea Freschi (University of Birmingham): Typical Ramsey properties of abelian groups

iCal fájl letöltése
Kedd, 23. Július 2024, 14:00 - 15:00
A classical result of Rado characterises all those integer matrices $A$ for which any finite colouring of $\mathbb N$ yields a monochromatic solution to the system of equations $Ax=0$. 
Rödl and Rucinski \cite{rr} and Friedgut, Rödl and Schacht \cite{frs} proved a random version of Rado’s theorem where one considers a random subset of the first $n$ positive integers $\{1,2,\dots,n\}$ instead of $\mathbb N$.

In this talk, we consider the analogous random Ramsey problem in the more general setting of abelian groups.

Given a matrix $A$ with integer entries, a subset $S$ of an abelian group and $r\in\mathbb N$, we say that $S$ is $(A,r)$-Rado if any $r$-colouring of $S$ yields a monochromatic solution to the system of equations $Ax=0$. 
Given a well-behaved sequence $(S_n)_{n\in\mathbb N}$ of $(A,r)$-Rado finite subsets of abelian groups,
we are interested in determining the probability threshold $\hat p:=\hat p(n)$ such that
$$\lim _{n \rightarrow \infty} \mathbb P [ S_{n,p} \text{ is }
(A,r)\text{-Rado}]=
\begin{cases}
0 &\text{ if } p=o(\hat p); \\
1 &\text{ if } p=\omega(\hat p).
\end{cases}$$
where $S_{n,p}$ denotes the random subset of $S_n$ obtained by including each element of $S_n$ independently with probability $p$.

Our main result is a general black box to tackle problems of this type.
Using this tool in conjunction with a series of supersaturation results, we determine the probability threshold for a number of different cases.
For example, a consequence of the Green--Tao theorem \cite{gt} is the \emph{van der Waerden theorem for the primes}:
every finite colouring of the primes contains arbitrarily long monochromatic arithmetic progressions. 
Using our machinery, we obtain a random version of this result. 
We also prove a novel supersaturation result for  $S_n:=[n]^d$ and use it to prove an integer lattice generalisation of the random version of Rado's theorem.

This talk is based on joint work with Robert Hancock and Andrew Treglown.

Vissza

JEvents v3.1.8 Stable   Copyright © 2006-2013