Év szerint Hónap szerint Ugrás a hónaphoz

Papvári Dániel: Véletlen politópok súlyozott vegyes térfogatainak várható értéke

iCal fájl letöltése
Kedd, 1. Július 2025, 12:30 - 13:30
Let K be a convex body in R^d, let  j\in \{1,\ldots,d-1\} and let \varrho be a suitable probability density function with respect to the $d$-dimensional Hausdorff measure on K.
Denote by $K_{(n)}$ the convex hull of $n$ points chosen randomly and independently from K according to the probability distribution determined by \varrho.

For the case when \varrho\equiv 1/V(K) and \partial K is C^2_+, Reitzner (2004) proved an asymptotic formula for the expectation of the difference of the j-th intrinsic volumes of K and K_{(n)}, as n\to\infty. Böröczky, Hoffmann, and Hug (2008) extended this result to the case when \varrho\equiv 1/V(K)  and the only condition on K is that a ball rolls freely in K. 
Böröczky, Fodor, Reitzner, and Vígh (2009) also showed that in general, the  assumption of the existence of a rolling ball inside K, for the mean width, cannot be dropped.

Böröczky, Fodor, and Hug (2010) proved an asymptotic formula for the weighted volume approximation of K under no smoothness assumptions on \partial K. 
We study the expectation of weighted intrinsic volumes for random polytopes generated by non-uniform probability distributions in convex bodies with very mild smoothness conditions.

Vissza

JEvents v3.1.8 Stable   Copyright © 2006-2013