|  |  |  |  |  |  |  | 
    			
    					        		|  | Év szerint | Hónap szerint | Ugrás a hónaphoz |  | 
                		
				    	| 
			
			 | 
		            
         
		        
        
            
                | T. Szabó Tamás (Morgan Stanley): Varianciacsökkentés Monte-Carlo szimulációkban és az EM módszer |   | 
            
                |  | 
                                 | 
            
                | 
                        
                            | Kedd, 19. November 2019, 12:00 - 14:00 
 |  | 
            
                | Absztrakt: Az előadás első részében Monte-Carlo szimulációk varianciacsökkentő módszereiről fogok beszélni. A Monte-Carlo szimulációk fontos szerepet töltenek be a pénzügyi alkalmazásokban, ahol az eloszlások (és a belőlük származó momentumok) ritkán számolhatók analitikusan. A konvergencia sebessége azonban problémákat okozhat, és jelentős hardverköltségekhez vezethet annak érdekében, hogy a számolások üzleti szempontból is elfogadható idő alatt lefussanak. A varianciacsökkentésre, vagyis végső soron a konvergenciasebesség növelésére alkalmazott módszerek közül mutatok be néhányat, amelyek részben aszimuláció alapját adó véletlen számok célzott generálását írják elő, részben pedig a szimulációk közül választják ki dinamikusan a végeredmény szempontjából lényegeseket, megtakarítva ezzel a lényegtelen alternatívák számításigényét. 
 A második részben az expectation-maximization (EM) módszerről fogok beszélni, amely fontos szerepet játszik mind lineáris állapottér-modellek becslésében, mind pedig bizonyos gépi tanulási módszerekben. A lineáris állapottér-modell terminológiáját használva a módszer lényegében a Kálmán-szűrés kiterjesztése arra az esetre, amikor a folyamat paraméterei (részben) ismeretlenek, és egy iteratív algoritmust ad, amellyel bizonyos feltételek mellett megtalálható a likelihood-függvény egy lokális maximuma.
 | 
                            
                    | Hely : Szeged, Aradi vértanúk tere 1., Riesz terem | 
                                    
        
        		
			Vissza
		
				
			JEvents v3.1.8 Stable
			 
			Copyright © 2006-2013