Tárgy neve: Matematika gy. (gyógyszerész 2022)

Tanszék: Analízis Tanszék

Tematika:
Százalékszámítás, keverési feladatok. Függvények alapvető tulajdonságai, elemi függvények. Kétszereződés, feleződés. Lineáris függvénytranszformációk, logaritmikus koordináta-rendszerek. Függvények határértéke, az "e" szám. Függvények folytonossága. A differenciálhányados fogalma, jelentése. Differenciálási szabályok. A differenciálhányados alkalmazásai. Függvények vizsgálata: monotonitás, konvexitás, szélsőérték, inflexiós pont. L’Hospital-szabály. Függvények közelítése: lineáris közelítés, közelítés Taylor polinomokkal. Többváltozós függvények. Parciális deriváltak, szélsőérték keresés. Határozatlan integrál, elemi integrálok, integrálási módszerek. A határozott integrál alapfogalmai, geometriai jelentése. Newton-Leibniz formula, Improprius integrálok. Az integrálszámítás alkalmazásai. Közönséges differenciálegyenletek. Szétválasztható változójú egyenletek megoldása.


Gyakorlat kódja: GYTK22M-204, óraszám: 2, kredit: 2