|  |  |  |  |  |  |  | 
    			
    					        		|  | Év szerint | Hónap szerint | Ugrás a hónaphoz |  | 
                		
				    	| 
			
			 | 
		            
         
		        
        
            
                | Füredi Zoltán (Rényi Intézet): Induced Turán problems for hypergraphs |   | 
            
                |  | 
                                 | 
            
                | 
                        
                            | Péntek, 10. Május 2019, 10:00 - 12:00 
 |  | 
            
                | Abstract.
 Let  F  be a graph. We say that a hypergraph  H   contains an {induced Berge} F if there exists an injective mapping  f from the edges of  F to the hyperedges of  H  such that if  xy \in E(G), then f(xy) \cap V(F) = {x,y}. We show that the maximum number of edges in an $r$-uniform hypergraph with no induced Berge F is strongly related to the generalized Turán function  ex(n,K_r, F). (I.e., the maximum number of  K_r's in an  F-free graph on  n vertices).
 A joint work with Ruth Luo.
 | 
                            
                    | Hely : Bolyai Intézet, I. emelet, Riesz terem, Aradi vértanúk tere 1., Szeged | 
                                    
        
        		
			Vissza
		
				
			JEvents v3.1.8 Stable
			 
			Copyright © 2006-2013