Év szerint Hónap szerint Ugrás a hónaphoz

Guzsvány Szandra: Saddle-Node-Like Bifurcation of Periodic Orbits for a Delay Differential Equation

iCal fájl letöltése
Csütörtök, 7. December 2017, 10:00 - 12:00
Abstract. We consider the scalar delay differential equation
x'(t) = -x(t) + f(x(t-1))
with a nondecreasing feedback function f depending on a parameter K, and we verify that a saddle-node-like bifurcation of periodic orbits takes place as K varies.
The nonlinearity f is chosen so that it has two unstable fixed points (hence the dynamical system has two unstable equilibria), and these fixed points remain bounded away from each other as K changes. The generated periodic orbits are of large amplitude in the sense that they oscillate about both unstable fixed points of f.
Hely : Bolyai Intézet, I. emelet, Riesz terem, Aradi Vértanúk tere 1., Szeged


JEvents v3.1.8 Stable   Copyright © 2006-2013