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As ussially, P,(R) is ultraproduct closure of class R.
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Let R be a class of algebras. Then P,PgP,(R) = PxP,(R).
In particular, if R is closed under ultraproducts then Pg(R) is
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We say that a class R is infinitely axiomatizable if R is
axiomatizable but not finitely axiomatizable.

Let R, X be two classes and R C K. We say that R is
(finitely) axiomatizable relative K if there is a (finite) set of
first-order sentences ¥ such that R = KX N Mod(X).

Denote by Rrsg and Rfs; the classes of finitely subdirectly
R-reducible and finitely subdirectly R-irreducible algebras of
class R, respectively.



Corollary

Let R be axiomatizable class of algebras closed under
subdirect products. If Res; is closed under ultraproducts then
Res) and Resg are finitely axiomatizable relative R.
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Theorem
Let R be axiomatizable class closed under subdirect products.
If Res is infinite axiomatizable then R is.

In particular,

Corollary

Let V be a variety of finite signature. If V is congruence
distributive and Vs, is infinitely axiomatizable then V is not
finitely based.
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What is about Rrg; is not axiomatizable?

1. Variety of all lattices is finitely axiomatizable and has no
axiomatizable Rrg;.

2. K. Baker have found residually small infinitely axiomatizable
variety of lattices.



Thank you very much for your attention.



