Remarks on axiomatizable classes closed under subdirect products

Anvar Nurakunov

Institute of Theoretical and Applied Mathematics NAS, Bishkek, Kyrgyzstan Eurasian National University, Astana, Kazakhstan

Szeged, June 21-25, 2012

イロト 不良 アイボア イボ うくの

Let \mathfrak{R} be a class of algebras and $A \in \mathfrak{R}$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let $\mathcal R$ be a class of algebras and $A \in \mathcal R$.

An algebra $A \in \mathcal{R}$ is called *finitely subdirectly* \mathcal{R} -*reducible* if A is subdirect product of some algebras $B, C \in \mathcal{R}$ ($A \leq_s B \times C$). Otherwise A is called finitely subdirectly \mathcal{R} -irreducible.

Let \mathcal{R} be a class of algebras and $A \in \mathcal{R}$.

An algebra $A \in \mathbb{R}$ is called *finitely subdirectly* \mathbb{R} -*reducible* if A is subdirect product of some algebras $B, C \in \mathbb{R}$ ($A \leq_s B \times C$). Otherwise A is called finitely subdirectly \mathbb{R} -irreducible.

A class of algebras containing all its (finite) subdirect products is called a class closed under (finite) subdirect products.

Let \mathcal{R} be a class of algebras and $A \in \mathcal{R}$. An algebra $A \in \mathcal{R}$ is called *finitely subdirectly* \mathcal{R} -*reducible* if A is subdirect product of some algebras $B, C \in \mathcal{R}$ ($A \leq_s B \times C$). Otherwise A is called finitely subdirectly \mathcal{R} -irreducible. A class of algebras containing all its (finite) subdirect products is called a class closed under (finite) subdirect products. Denote by $\mathbf{P}_s(\mathcal{R})$ the class of all subdirect products of algebras from \mathcal{R} , and by $\mathbf{P}_{fs}(\mathcal{R})$) the class of all finite subdirect products of algebras from \mathcal{R} .

Let \mathcal{R} be a class of algebras and $A \in \mathcal{R}$. An algebra $A \in \mathcal{R}$ is called *finitely subdirectly* \mathcal{R} -*reducible* if A is subdirect product of some algebras $B, C \in \mathcal{R}$ ($A \leq_s B \times C$). Otherwise A is called finitely subdirectly \mathcal{R} -irreducible. A class of algebras containing all its (finite) subdirect products is called a class closed under (finite) subdirect products. Denote by $\mathbf{P}_s(\mathcal{R})$ the class of all subdirect products of algebras from \mathcal{R} , and by $\mathbf{P}_{fs}(\mathcal{R})$) the class of all finite subdirect products of algebras from \mathcal{R} .

As ussially, $\mathbf{P}_u(\mathcal{R})$ is ultraproduct closure of class \mathcal{R} .

Let \mathcal{R} be a class of algebras. Then $\mathbf{P}_{u}\mathbf{P}_{fs}\mathbf{P}_{u}(\mathcal{R}) = \mathbf{P}_{fs}\mathbf{P}_{u}(\mathcal{R})$. In particular, if \mathcal{R} is closed under ultraproducts then $\mathbf{P}_{fs}(\mathcal{R})$ is closed under ultraproducts.

Let \mathfrak{R} be a class of algebras. Then $\mathbf{P}_{u}\mathbf{P}_{fs}\mathbf{P}_{u}(\mathfrak{R}) = \mathbf{P}_{fs}\mathbf{P}_{u}(\mathfrak{R})$. In particular, if \mathfrak{R} is closed under ultraproducts then $\mathbf{P}_{fs}(\mathfrak{R})$ is closed under ultraproducts.

うして ふぼう ふほう ふほう しょう

We say that a class ${\mathcal R}$ is infinitely axiomatizable if ${\mathcal R}$ is axiomatizable but not finitely axiomatizable.

Let \mathcal{R} be a class of algebras. Then $\mathbf{P}_{u}\mathbf{P}_{fs}\mathbf{P}_{u}(\mathcal{R}) = \mathbf{P}_{fs}\mathbf{P}_{u}(\mathcal{R})$. In particular, if \mathcal{R} is closed under ultraproducts then $\mathbf{P}_{fs}(\mathcal{R})$ is closed under ultraproducts.

We say that a class \mathcal{R} is infinitely axiomatizable if \mathcal{R} is axiomatizable but not finitely axiomatizable. Let \mathcal{R}, \mathcal{K} be two classes and $\mathcal{R} \subseteq \mathcal{K}$. We say that \mathcal{R} is (finitely) axiomatizable relative \mathcal{K} if there is a (finite) set of first-order sentences Σ such that $\mathcal{R} = \mathcal{K} \cap Mod(\Sigma)$.

Let \mathcal{R} be a class of algebras. Then $\mathbf{P}_{u}\mathbf{P}_{fs}\mathbf{P}_{u}(\mathcal{R}) = \mathbf{P}_{fs}\mathbf{P}_{u}(\mathcal{R})$. In particular, if \mathcal{R} is closed under ultraproducts then $\mathbf{P}_{fs}(\mathcal{R})$ is closed under ultraproducts.

We say that a class \mathcal{R} is infinitely axiomatizable if \mathcal{R} is axiomatizable but not finitely axiomatizable. Let \mathcal{R}, \mathcal{K} be two classes and $\mathcal{R} \subseteq \mathcal{K}$. We say that \mathcal{R} is (finitely) axiomatizable relative \mathcal{K} if there is a (finite) set of first-order sentences Σ such that $\mathcal{R} = \mathcal{K} \cap Mod(\Sigma)$.

Denote by \mathcal{R}_{FSR} and \mathcal{R}_{FSI} the classes of finitely subdirectly \mathcal{R} -reducible and finitely subdirectly \mathcal{R} -irreducible algebras of class \mathcal{R} , respectively.

Corollary

Let \mathcal{R} be axiomatizable class of algebras closed under subdirect products. If \mathcal{R}_{FSI} is closed under ultraproducts then \mathcal{R}_{FSI} and \mathcal{R}_{FSR} are finitely axiomatizable relative \mathcal{R} .

イロト 不得 トイヨト イヨト 一日 うらつ

Theorem (B. Jonsson 1979)

Let \mathcal{V} be a variety of finite signature. If \mathcal{V} is congruence distributive and \mathcal{V}_{FSI} is finitely axiomatizable then \mathcal{V} is finitely based.

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ ● のくぐ

Theorem (B. Jonsson 1979)

Let \mathcal{V} be a variety of finite signature. If \mathcal{V} is congruence distributive and \mathcal{V}_{FSI} is finitely axiomatizable then \mathcal{V} is finitely based.

Theorem

Let \mathcal{R} be axiomatizable class closed under subdirect products. If \mathcal{R}_{FSI} is infinite axiomatizable then \mathcal{R} is.

イロト 不得 トイヨト イヨト 一日 うらつ

Theorem (B. Jonsson 1979)

Let \mathcal{V} be a variety of finite signature. If \mathcal{V} is congruence distributive and \mathcal{V}_{FSI} is finitely axiomatizable then \mathcal{V} is finitely based.

Theorem

Let \mathcal{R} be axiomatizable class closed under subdirect products. If \mathcal{R}_{FSI} is infinite axiomatizable then \mathcal{R} is.

In particular,

Corollary

Let \mathcal{V} be a variety of finite signature. If \mathcal{V} is congruence distributive and \mathcal{V}_{FSI} is infinitely axiomatizable then \mathcal{V} is not finitely based.

What is about \mathcal{R}_{FSI} is not axiomatizable?

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

What is about \mathcal{R}_{FSI} is not axiomatizable?

1. Variety of all lattices is finitely axiomatizable and has no axiomatizable $\mathcal{R}_{\textit{FSI}}.$

2. K. Baker have found residually small infinitely axiomatizable variety of lattices.

イロト 不良 アイボア イボ うくの

Thank you very much for your attention.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?