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Abstract

Let C be a convex body in the Euclidean plane. The relative distance

of points p and q is twice the Euclidean distance of p and q divided by the

Euclidean length of a longest chord in C with the direction, say, from p to

q. We prove that, among any seven points of a plane convex body, there are

two points at relative distance at most one, and one cannot be replaced by a

smaller value. We apply our result to determine the diameter of point sets in

normed planes.
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1 Introduction

The focus of the paper is systems of ”far” points in normed spaces in general, and
normed planes in particular. Given k ≥ 3, we look for sets of k points in a convex
body C with minimum pairwise distance as large as possible. This is equivalent to
packing C by congruent homothetic copies of C.

Let p and q be points in n-dimensional Euclidean space E
n. Let [p, q], (p, q), |pq| and−→pq denote, respectively, the closed and the open segment, the distance and the vec-

tor with initial point p and terminal point q. Furthermore, if P is a simple polygon
with edges [a1, a2], [a2, a3], . . ., [an, a1], we use the notations P = [a1, a2, . . . , an]
and int P = (a1, a2, . . . , an). We use the usual notations card A, conv A, int A, bd A
for the cardinality, the convex hull, the interior and the boundary of a set A, respec-
tively. We denote the family of plane convex bodies by C and the family of centrally
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symmetric plane convex bodies by M. For simplicity, we call a plane convex body
an oval, and identify a point and its position vector.

Let C ⊂ E
n be a convex body, and denote by r and s points in C such that

−→rs||−→pq and |rs| ≥ |r′s′| where {r′, s′} ⊂ C and
−→
r′s′||−→pq. The C-length of [p, q], or

equivalently, the C-distance of p and q is 2|pq|/|rs|, and we denote it by dC(p, q)
(see also [11]). If the convex body C is obvious, we may use the terms relative
distance of p and q or relative length of [p, q]. Observe that for any convex bodies
D ⊂ C and points p, q we have dC(p, q) ≤ dD(p, q). It is a well-known fact that
the unit ball of the normed space with norm dC(0, x) is 1

2 (C − C).

Let C ∈ C and k ≥ 2. Then compactness arguments yield that there is a greatest
value fk(C) such that C contains k points in pairwise C-distances at least fk(C).
Let fk = min

C∈C
{fk(C)} and Fk = max

C∈C
{fk(C)}. By Blaschke’s Selection Theorem

these values exist.

Numerous results appeared about the values fk(C), fk and Fk. Here we list a few.
Doliwka and Lassak [4] proved that, among any five boundary points of an oval,
there is two at relative distance at most

√
5− 1 ≈ 1.236 and that the value

√
5− 1

cannot be replaced by a smaller one. Böröczky and Lángi [2] showed that the result
of Doliwka and Lassak remains true if we consider arbitrary points of the oval. In

other words, F5 =
√

5 − 1. They also proved that F6 = 2 − 2
√

5
5 ≈ 1.106, and

conjectured that F7 = 1. We verify their conjecture.

Theorem 1 Let C ∈ C and let a1, . . ., a7 be points in C. Then dC(ai, aj) ≤ 1 for
some i 6= j.

Figure 1

Let us call an oval C optimal if it contains seven
points at the minimum pairwise relative distance
equal to one. In this case we say that the points fit
C. The problem arises naturally to determine the
optimal ovals and the set of points fitting them. We
present the following three examples.

A result of Go la̧b [6] states that there is an affine
regular hexagon H inscribed in C for every C ∈ M.
The vertices and the centre of H fit C, and hence,
C is optimal. Another example: any parallelogram
P contains many sets of seven points at pairwise
P -distances at least 1. Any oval C ⊂ P containing
such a set is optimal.

The third example is the following. Let H =
[a1, a2, . . . , a6] be a regular hexagon and S = [b1, b2, b3, b4] be a rectangle circum-
scribed about H such that [a1, a2] ⊂ [b1, b2] and a1 ∈ [b1, a2]. Let c be the centre of
H and m = (b3 +b4)/2. Let a′

4 ∈ (b3, a4) and a′
5 ∈ (a5, b4) such that |a4a

′
4| = |a5a

′
5|



Relative Distances of Seven Points in an Oval 3

and let p ∈ (c, m); cf. Figure 1. Finally, let C = [a1, a2, a3, a
′
4, a

′
5, a6]. If p is close

enough to c, all the pairwise C-distances of the vertices of C and p are at least one.

We collect our results about optimal ovals and fitting sets of points in Theorem 2.

Theorem 2 Let C ∈ C such that Q = conv{a1, a2, . . . , a7} ⊂ C and dC(ai, aj) ≥ 1
for all i 6= j.
2.1 If C is strictly convex then Q is an affine regular hexagon with some ai as
centre.
2.2 If card (bd Q ∩ {a1, a2, . . . , a7}) 6= 6 then there is a parallelogram P such that
C ⊂ P and dP (ai, aj) ≥ 1 for all i 6= j.

Using the idea of [5] (see also [11] and Theorem of [10]), we reformulate our theo-
rems.

Corollary 3 No oval is packed by seven homothetic copies of ratio greater than
1/3.

Corollary 4 Let C ∈ C be packed by seven homothetic copies of ratio 1/3 with
points a1, a2, . . . , a7 as centres. Let Q = conv{a1, a2, . . . , a7}.
4.1 If C is strictly convex then Q is an affine regular hexagon with some ai as
centre.
4.2 If card (bd Q ∩ {a1, a2, . . . , a7}) 6= 6 then there is a parallelogram P containing
C such that P is packed by seven homothetic copies of ratio 1/3 with a1, a2, . . . , a7

as centres.

The following lemma is applied in the proof of Theorems 1 and 2 in Sections 2 and
3. We present applications of our theorems in Section 4. We note that analogous
form of 5.1 has been verified in [9]. Theorem 1 when Q = conv{a1, a2 . . . , a7} is
not a hexagon is a consequence of [9] and Lemma 3 of [2]. In that case we prove
Theorem 1 for the sake of Theorem 2.

Lemma 5 Let C ∈ C, n ≥ 6, D = [a1, a2, . . . , an] ⊂ C be a (possibly degenerate)
convex n-gon and T ⊂ D be an inscribed triangle of largest area with a side coin-
ciding with a side of D.
5.1 D has a side of C-length at most one.
5.2 If the C-lengths of the sides of D are at least one then C is not strictly convex,
and there is a parallelogram P such that C ⊂ P and the sides of D are of P -length
at least one.

Proof. Without loss of generality, we assume that T = [a1, a2, ai] for a suitable
i. Observe that D \ T has a component W with at least three edges. We assume
that {a2, ai} ⊂ bd W ; that is, i ≥ 5. As relative distance and area ratio do not
change under an affine transformation, we assume that T is an isosceles triangle
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and with right angle at a1. Let b be the point such that S = [a1, a2, b, ai] is a
square. Since T is a triangle of maximal area inscribed in D, we have aj ∈ [a2, b, ai]
for j = 3, . . . , i − 1.

Let m1 = (a2 + b)/2, m2 = (b + ai)/2 and m = (ai + a2)/2. If a3 ∈ [a2, m1, m] \
[m, m1] then dC(a2, a3) ≤ dT (a2, a3) < 1 and we are done. If ai−1 ∈ [ai, m, m2] \
[m, m2] then dC(ai−1, ai) < 1. We are left with the case aj ∈ S0 = [m, m2, b, m3]
for 3 ≤ j ≤ i − 1.

In this case dC(aj , aj+1) ≤ dT (aj , aj+1) ≤ 1 for 3 ≤ j ≤ i − 1. This proves 5.1.
Moreover, if, for some 3 ≤ j ≤ i − 2, the points aj and aj+1 are not on parallel
sides of S0 then dC(aj , aj+1) ≤ dT (aj , aj+1) < 1. Let us examine the opposite case.
Then i = 5 or i = 6, and, in the latter case, a3 = m1, a4 = b and a5 = m2, which
implies that S ⊂ C. If S 6= C then among the points there is two at C-distance less
than one. If S = C then the pairwise S-distances of the points are at least one.

Figure 2

Let us assume that i = 5 and that,
say, a3 ∈ [m1, m] and a4 ∈ [m2, b].
Let M denote the closed infinite strip
containing S and bounded by the
line through a1 and a2 and the line
through b and a5; cf. Figure 2. From
dC(a2, a3) ≥ 1, we obtain that C ⊂
M . Let u, v be the endpoints of a
maximal chord of C parallel to −−→a3a4,
and N be the closed strip bounded by
parallel supporting lines of C through
u and v.

Then C ⊂ P = M ∩ N , and the P -
lengths of the sides of D are at least
one. We observe also that C is not
strictly convex.

2 Proof of Theorems 1 and 2

when Q = conv{a1, a2, . . . , a7} is a hexagon

Let us assume that Q = [a1, a2, . . . , a6] and a7 ∈ int Q. Let ai = qi for i =
1, 2, . . . , 6, q7 = q1 and q0 = q6.

We use the following terms and notations. For any i, j, k, l, where 1 ≤ i, j, k, l ≤ 6
and {i, j} 6= {k, l}, αi denotes the angle of Q at qi, qij denotes the midpoint of the
segment [qi, qj ], and Lij,kl denotes the straight line containing qij and qkl. We note
that qi = qii and set Li,kl = Lii,kl and Li,k = Lii,kk. In addition, Si = [qi, qi+1] for



Relative Distances of Seven Points in an Oval 5

i = 1, 2, . . . , 6 and Mi denotes the maximal chord of Q parallel to Si with minimal
Euclidean distance from Si.

If αi−1 + αi + αi+1 is greater than 2π, equal to 2π or less than 2π, where i =
1, 2, . . . , 6, we say that qi is a large, normal or small vertex of Q, respectively.
Observe that qi and qi+3 are either both normal, or one of them is large and the
other one is small.

Note that αi + αi+1 ≤ π implies that Q is contained in a parallelogram with Si

as side. From this it readily follows that there is a triangle Ti inscribed in Q with
the following property: Si is a side of Ti and Ti has maximum area of all triangles
inscribed in Q. In this case the theorems follow from Lemma 3, and so we assume
that the sum of every two consecutive angles of Q is greater than π.

Next, it is a simple matter to check that:
Case 1, every second vertex of Q is large, or
Case 2, Q has three consecutive vertices such that the second one is large and the
two other ones are not small, or
Case 3, Q has three consecutive vertices such that the second one is normal and
the two other ones are not small.

Case 1. Let the large vertices be q1, q3 and q5, and bi = q1+q3+q5−2qi for i = 1, 3, 5;
cf. Figure 3. Then Q ⊂ [b1, b3, b5] and every maximal chord of Q passes through
q1, q3 or q5. Let Qi denote the homothetic copy of int Q with ratio 1/2 and with qi

as centre. Let Pi = [qi, q(i−1)i, q(i−1)(i+1), q(i+1)i] for i = 2, 4, 6, T2 = [q13, q14, q36],
T4 = [q35, q36, q25], T6 = [q15, q25, q14] and T = (q14, q25, q36).

We assume that d(qi, qi+1) ≥ 1 for each i. Then we need only to show that for any
p ∈ int Q,

(∗)i dQ(p, qi) < 1

for some i. Let p ∈ int Q. We consider the position of p with respect to certain
polygons. By symmetry, we assume that p ∈ Q1 ∪ P2 ∪ T2 ∪ T .

We have:
(1) (∗)1 for p ∈ Q1;
(2) (∗)2 for p ∈ P2;
(3) (∗)2 or (∗)4 or (∗)6 for p ∈ T2;
(4) (∗)2 or (∗)4 or (∗)6 for p ∈ T .

The statements in (1) and (2) are easy to show, and also (3) with the condition
that dQ(q2, q14) < 1 and dQ(q2, q36) < 1. We show (3) for dQ(q2, q14) ≥ 1 and
dQ(q2, q36) ≥ 1. When exactly one of dQ(q2, q14) and dQ(q2, q36) is at least one, the
proof is similar.

Let {s1} = L35,25 ∩ [q13, q15] and {s2} = L15,25 ∩ [q13, q35]. From dQ(q1, q2) ≥ 1
and dQ(q2, q3) ≥ 1, we have that q2 is in the parallelogram with vertices q13,
(q1 +b5)/2, b5 and (q3 +b5)/2. Thus the set of points in [q13, q35, q15], at Q-distance
less than one from q2, is [q13, s1, q25, s2] \ ([s1, q25] ∪ [q25, s2]). Similar statements
are obtained for q4 and q6. Let {w1} = L35,36 ∩ [q13, q14], {w2} = L15,14 ∩ [q13, q36]
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Figure 3 Figure 4

and {w} = [q14, w2] ∩ [q36, w1]. As dQ(q2, q14) ≥ 1 and dQ(q2, q36) ≥ 1, it follows
that w1, w2 and w exist. Note that p ∈ [q13, w2, w, w1], p ∈ [q14, w2, q36] \ [w2, q14]
and p ∈ [q14, w1, q36] \ [w1, q36] imply (∗)2, (∗)4 and (∗)6, respectively.

Next, we show (4). If T ∩ (T2 ∪ T4 ∪ T6) 6= ∅ then T ⊂ T2 ∪ T4 ∪ T6, and our
theorems follow from (3), and so we suppose that T ∩ (T2 ∪ T4 ∪ T6) = ∅; cf.
Figures 3 and 4. We need to distinguish between positions of lines that contain a
vertex of T and a side of some Ti. If L15,25 ∩ T = L35,25 ∩ T = ∅, we have (∗)2. If
L15,25 ∩ T 6= ∅ 6= L35,25 ∩ T then L13,14 ∩ T = L15,14 ∩ T = ∅ and so we have (∗)4.
Finally, we show that our hypotheses allow only these two possibilities.

Assume that L15,25∩T 6= ∅ and L35,25∩T = ∅. Let us take v = 1
2 (−−→q1q6+−−→q3q2+−−→q5q4).

As αi +αi+1 > π for i = 1, 2, . . . , 6, Q has a vertex u such that the half line V with
endpoint u and with tangential vector v intersects int Q.

Assume that u is a large vertex, say, u = q1. Observe that −−−→q53q52 = 1
2
−−→q3q2 =

v− 1
2 (−−→q1q6+−−→q5q4) = v−−−−→q15q46. Let n = q15+v+−−−→q52q36. Then −−→q46n = −−−→q35q36 = −−−→q5q56,

which implies −−→q45n = −−→q5q6. For i = 1, 2, . . . , 6, let Hi denote the open half plane
bounded by Li5,(i+1)5 and containing Q5. As −−→q45n = −−→q5q6, n ∈ H3 ∩ H4 ∩ H5.
From V ∩ int Q 6= ∅, we have q15 + v ∈ H6 ∩ H1. From L15,25 ∩ T 6= ∅, we obtain
q36 ∈ H6 ∩ H1. This implies n ∈ H6 ∩ H1. Let D = cl(H3 ∩ H4 ∩ H5 ∩ H6 ∩ H1).
Then n ∈ D, and we have dD(q5, q6) < 1. As the maximal chords of Q and D in
the direction of −−→q5q6 coincide, we have also dQ(q5, q6) < 1.

If u is a small vertex, a similar consideration yields the contradiction.

Case 2. Let q2 be large and q1 and q3 be not small. We show that dC(qi, qj) ≤ 1,
and if C is strictly convex then dC(qi, qj) < 1 for some i 6= j.

Recall that Si = [qi, qi+1] and Mi is the maximal chord of Q parallel to Si with the
minimal Euclidean distance from Si. Note that, as the sum of any two consecutive
angles of Q is greater than π, every maximal chord of Q intersects Sj and Sj+3



Relative Distances of Seven Points in an Oval 7

for some j ∈ {1, 2, 3}. If Mi intersects Sj and Sj+3, we say that Mi is a j-type
maximal chord. Observe that Mj is not j-type and M6 is not 3-type. If M6 and M3

are 1-type and 2-type, respectively, then we observe that q2 is not a small vertex;
a contradiction. Hence, we have twelve possibilities depending on the types of M1,
M2, M3 and M6. Let {d1} = L5,6∩L1,2, {d2} = L6,1∩L2,3, {d3} = L1,2∩L3,4 and
{d4} = L2,3 ∩ L4,5.

i) M3 and M6 are 1-type, M1 is 2-type and M2 is 3-type.

If |q1d2| < |q1q6| then it follows from the type of M1 that dQ(q1, q2) < 1. Similarly,
|q2d3| < |q1q2| implies dQ(q2, q3) < 1, and |q3d4| < |q2q3| implies dQ(q3, q4) < 1.
Assume that |q1d2| ≥ |q1q6|, |q2d3| ≥ |q1q2| and |q3d4| ≥ |q2q3|. Let f1 be the
intersection of L1,2 and the line through q6 parallel to L3,4, f2 be the intersection
of L2,3 and the line through q1 parallel to L3,4, and g be the intersection of L1,2

and the line through q4 parallel to L1,6; cf. Figure 5. Since q3 is not small and
|q3d4| ≥ |q2q3|, we have |q3q4| ≥ |q3d3|. From |q2d3| ≥ |q1q2|, we obtain that
|q3d3| ≥ |q1f2|. As |q1d2| ≥ |q1q6| and Q is nondegenerate, we have also |q1f2| >
|q6f1|, and so 2|q6f1| < |q4d3|. Since 2|q6q1| < |q4g| and M6 is 1-type, we obtain
that dQ(q1, q6) < 1.

If M3 and M6 are 2-type, M1 is 3-type and M2 is 1-type then a similar argument
yields dQ(qi−1, qi) < 1 for some i ∈ {1, 2, 3, 4}.

Figure 5 Figure 6

ii) M6 and M1 are 2-type.

Let e1 denote the intersection of S5 and the line through q2 parallel to S6, and e2

denote the intersection of S2 and the line through q6 parallel to S1; cf. Figure 6.
Since M6 and M1 are 2-type, e1 and e2 exist. Observe that |d1q1| ≤ |q1q2| or |d2q1| ≤
|q1q6|. If |d1q1| ≤ |q1q2|, we have 2|q1q6| ≤ |q2e1| and thus dC(q1, q6) ≤ dQ(q1, q6) ≤
1. Similarly, from |d2q1| ≤ |q1q6|, we have dC(q1, q2) ≤ 1. A detailed analysis shows
that, under the assumption that C is strictly convex and dC(qi, qj) ≥ 1 for every
i 6= j, Q is an affine regular hexagon. Note that in this case all the vertices of Q
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are normal (αi−1 + αi + αi+1 = 2π for i = 1, 2, . . . , 6), but we assumed that Q has
a small vertex, a contradiction.

If M1 and M2 are 3-type, or M2 and M3 are 1-type then a similar argument shows
our theorems. Hence, we have examined all the possibilities for the types of M1,
M2, M3 and M6.

Case 3. Let q2 be normal and q1, q3 be not small. As α1+α2+α3 = 2π, L6,1 and L3,4

are parallel. Since relative distance is affine invariant, we assume that the triangle
[q1, q3, q5] is regular and also that ∠q6q1q3 ≤ 90◦. Let bi = q1 + q3 + q5 − 2qi for
i = 1, 3, 5. Since Q is convex and q1 and q5 are not small, {q2, q4, q6} ⊂ [b1, b3, b5].
Let f = (q3 + b1)/2 and L be the line containing q13 and parallel to L1,6.

Figure 7

Subcase 3.1, q2 /∈ L. Let d =
(q3 + b5)/2. We show that if
dQ(qi, qi+1) ≥ 1 for every i
then q2 ∈ [q1, b5, d]\[q1, d], q4 ∈
[q5, f, b1] and q6 ∈ [q15, q5, b3].
This yields π

6 < ∠q3q1q2, π
6 ≤

∠q3q5q4 and that q3 is a large
vertex, a contradiction. In the
case |q1q6| ≤ |q3q4|, our argu-
ments are deduced from Fig-
ure 7 with k = q13 + 1

2
−−→q6q1;

r = q1 + 1
2
−−−→q5q13; s = r + 1

2

−−→
q13k;

c = (q1 +q5 +b3)/3 and t being
the intersection of the line con-
taining [q15, s] and the line con-
taining [q1, c]. We argue simi-
larly if |q1q6| ≥ |q3q4|.
Subcase 3.2, q2 ∈ L. Observe that q3 ∈ M1 and M1 ∩ ((q1, q6) ∪ S5) 6= ∅. If M1 ∩
(q1, q6) 6= ∅ then dC(q1, q2) ≤ dQ(q1, q2) = 1. Moreover, if dC(q1, q2) = 1 then
M1 is maximal also in C, which implies that C is not strictly convex. Similarly, if
M2∩(q3, q4) 6= ∅ then dC(q2, q3) ≤ 1, and dC(q2, q3) < 1 or C is not strictly convex.

Assume that M1 ∩ S5 6= ∅ 6= M2 ∩ S3. Let w be the intersection of L1,6 and
the line containing M1. Observe that [q1, q3, w] is a homothetic copy of [q1, q2, q13]
of ratio −2, and 2|q13q2| ≥ |q1q6|. Similarly, we obtain that 2|q13q2| ≥ |q3q4|.
As above, this and dQ(q1, q6) ≥ 1 imply that q6 ∈ [q15, q5, b3], q4 ∈ [q5, f, b1] and
π
6 ≤ ∠q2q1q3. Since q1 is not a small vertex, it follows that ∠q2q1q3 = π

6 , q4 ∈ [q5, f ],
q6 ∈ [b3, q15] and M1 = [q3, q6]. Let {x} = L1,3 ∩ L4,5. Notice that [q3, q4, x] is a
homothetic copy of [q1, q2, q13] of ratio −2, |q3q4| = 2|q2q13| and |q1q6| = 2|q2q13|.
Observe that q1 ∈ M5, dQ(q5, q6) = 1 and M5 ∩ S4 6= ∅. Let {y} = M5 ∩ S4. As
dC(q5, q6) ≤ dQ(q5, q6), we may assume that dC(q5, q6) = 1. In this case, [q1, y] is
a maximal chord of C. If y 6= q4 then y ∈ (q4, q5) and C is not strictly convex.
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If y = q4, Q is a regular hexagon. Let c be the centre of Q. If p 6= c is a point
of [qi, qi+1, c] then dQ(qi, p) < 1 or dQ(qi+1, p) < 1. Hence, the only point of Q at
Q-distance at least one from every vertex of Q is the centre of Q.

The last case is a7 ∈ bd Q. We regard Q as a degenerate heptagon and prove
Theorems 1 and 2 in Section 3.

3 Proof of Theorems 1 and 2

when Q = conv{a1, a2, . . . , a7} is not a hexagon

We assume that no triangle, of the largest possible area inscribed in Q, has a side
that coincides with a side of Q; otherwise, Theorems 1 and 2 follow from Lemma 5.

Case 1, Q = [a1, a2, . . . , a7].

Let T be a triangle of the largest possible area inscribed in Q such that the vertices
of T are also vertices of Q. Assume that T = [a1, a3, a6]. Since relative distance is
affine invariant, we assume that T is a regular triangle. Let bi = a1 + a3 + a6 − 2ai

for i = 1, 3, 6. As T is a triangle of the largest area and Q is convex, we have
a2 ∈ [a1, b6, a3], {a4, a5} ⊂ [a3, b1, a6] and a7 ∈ [a6, b3, a1].

Figure 8

Let s1 = (a3 + a6)/2, s2 = (a3 + b1)/2, s3 =
(b1 + a6)/2, t1 = (a6 + a1)/2, t2 = (a6 + b3)/2
and t3 = (b3 + a1)/2. If dQ(a3, a4) < 1 or
dQ(a5, a6) < 1, we are done, and so, we have
that {a4, a5} ⊂ [s1, s2, b1, s3]. Note that the
convexity of Q implies dQ(a4, a5) ≤ 1 and thus,
Theorem 1; cf. Figure 8. To prove Theorem 2,
we assume that dQ(ai, ai+1) ≥ dC(ai, ai+1) ≥ 1
for every i. Then dC(a4, a5) = 1 and a4, a5 are
on parallel sides of the rhombus [s1, s2, b1, s3].
We assume that a4 ∈ [s1, s2] and a5 ∈ [b1, s3].

Let L1 be the line through a1 and a3, and L2

be the line through b1 and b3. Let H1 and H2

be the open half planes containing (a2, a6) and
bounded by the lines L1 and L2, respectively.
Observe that there are points u ∈ (a5, a6) and v ∈ (a1, a3) such that −→uv||−−−→a3, a4. As
dC(a3, a4) ≥ 1, [u, v] is a maximal chord of C, and so, C ⊂ H1 ∩ H2.

Since C ⊂ H1, a2 ∈ [a1, a3]. Thus a2 = (a1+a3)/2 and dC(a1, a2) = dC(a2, a3) = 1.
Due to dC(a1, a3) = 2, there are parallel supporting lines L3 and L4 of C through
a1 and a3. Let a1 ∈ L3 and a3 ∈ L4. Let P be the parallelogram bounded by L1,
L2, L3, L4. Clearly, C ⊂ P .

We show that the P -length of every side of Q is at least one. We verify that
dP (a7, a1) ≥ 1 and dP (a6, a7) ≥ 1, as the other inequalities are trivial.
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From dQ(a6, a7) ≥ 1 and dQ(a7, a1) ≥ 1 we have a7 ∈ [t1, t2, b3, t3]. This implies
dP (a7, a1) ≥ 1. Let x be the vertex of P on [a6, b3]. As s3 ∈ Q ⊂ P and [a1, a3] is a
side of P , we have x ∈ [a6, t2]. Let {t} = [a1, t2]∩[t1, t3]. Observe that a7 ∈ [t1, t, t2].
If a7 /∈ [t1, t]∪ [t, t2] then dQ(a6, a7) < 1; a contradiction. If a7 ∈ [t1, t]∪ [t, t2] then
dP (a6, a7) = 1.

Case 2, Q is a triangle or Q contains a quadrangle R such that, with a suitable
labelling of the ai’s, R = [a1, a2, a3, a4] and card (int R ∩ {a5, a6, a7}) ≥ 2.

The proof in Case 2 is a refined version of the proof of Lemma 3 in [2], hence we
omit it.

4 Applications

Bateman and Erdős [1] asked what is the smallest diameter of a set of k points in
E

n with pairwise distances at least one. In their paper they showed that, for seven
points in the plane, the smallest diameter is two. The extension of this result for
normed planes was, to our knowledge, first proposed by K. Bezdek (Problem Ses-
sion, Workshop on Discrete Geometry and Convexity, Auburn University, Auburn,
Alabama, USA, April, 2000). In 2005, Brass and Swanepoel conjectured that, in
every normed plane, if S is a set of seven points with pairwise distances at least
one, then the diameter of S is at least two (cf. Problem 10 on p. 71, [3]). In this
section, we consider the question of Bateman and Erdős, and extend their result
to normed planes. We prove also the conjecture of Brass and Swanepoel.

Let C ∈ M and k ≥ 2. Compactness arguments show the existence of the smallest
diameter gk(C) of a set of k points in the normed plane for a unit disk C such that
the pairwise distances of the points are at least one. Let gk = min

C∈M
{gk(C)} and

Gk = max
C∈M

{gk(C)}. By a Blaschke type theorem these values exist.

To formulate our next theorem, we introduce for any C ∈ M and k ≥ 2, fk(C) =
max{fk(D)|D ∈ C and 1

2 (D−D) = C}. In other words, we consider the maximum
over the ovals ’generating’ the normed plane with unit disk C.

Theorem 6 Let k ≥ 2 and C ∈ M. Then gk(C) · fk(C) = 2.

Proof. We show only that fk(C) ≥ 2/gk(C), since the opposite direction is simple.
Let a1, a2, . . . , ak be points in the normed plane with unit disk C at pairwise
distances at least one such that diam({a1, a2, . . . , ak}) = gk(C). Let bi = 2

gk(C)ai

for i = 1, 2, . . . , k. The pairwise distances of the points bi are at least 2/gk(C) and
diam({b1, b2, . . . , bk}) = 2. According to [8], there is a plane convex body D of
constant width two containing bi for i = 1, 2, . . . , k. As D is of constant width two,
we have 1

2 (D − D) = C. Hence, D contains k points at pairwise D-distances at
least 2/gk(C).
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Using Theorem 6, we determine gk and Gk for small values of k.

Theorem 7 Let C ∈ M and gk(C) be defined as above, gk = min
C∈M

{gk(C)} and

Gk = max
C∈M

{gk(C)}.
7.1 If k ≤ 4 then gk = 1.

7.2 g5 =
√

5+1
2 .

7.3 g6 = 5+
√

5
4 , and g6(C) = 5+

√
5

4 if, and only if, C is an affine regular ten-gon.
7.4 g7 = g8 = g9 = 2, and g9(C) = 2 if, and only if, C is a parallelogram.
7.5 G2 = G3 = 1.
7.6 G4 =

√
2.

7.7 G5 = G6 = G7 = 2 and g7(C) = 2.

Proof. The statements in 7.1 to 7.6 follow from Theorem 6 and from results in [1],
[2], [5], [7] and [10]. We prove only 7.7.

First, we show that f5(P ) = 1 for any parallelogram P . Observe that f5(P ) = 1.
Hence, it is enough to show that if C is an oval of constant width two in the normed
plane with unit disk P then C is a translate of P . Let P = [a1, a2, a3, a4]. Let L1

and L2 be the supporting lines of C parallel to −−→a1a2 such that the translate of L1

by −−→a1a4 is L2. Let [b1, b2] = C ∩ L1 and [b3, b4] = C ∩ L2 such that
−−→
b1b2 and

−−→
b4b3

are positive multiples of −−→a1a2. Let c3 = b1 + −−→a1a3 and c4 = b2 + −−→a2a4. Since C is of
constant width two, we have [c3, c4] ⊂ [b3, b4]. Observe that |c3c4| = 2|a1a2|−|b1b2|.
As |b3b4| ≤ |a1a2|, this implies that |b1b2| = |b3b4| = |a1a2|, c3 = b3 and c4 = b4.
Hence, D = [b1, b2, b3, b4] is a translate of P . As D ⊂ C and C is an oval of constant
width two, we have C = D.

Due to [11], every oval contains five points at pairwise relative distances at least one.
Hence, g5(C) = 2/f5(C) ≤ 2 for any C ∈ M. We have shown that g5(P ) = 2 for
any parallelogram P . Consequently, we have G5 = 2. In [5], the authors show that
every centrally symmetric oval contains seven points at pairwise relative distances
at least one. Thus f7(C) ≥ 1 for any C ∈ M. This implies that G7 ≤ 2. Now
G5 ≤ G6 ≤ G7 yields that G5 = G6 = G7 = 2. Since G7 = g7 = 2, we obtain that
g7(C) = 2 for every C ∈ M.

The next theorem is based on Theorem 2. As its proof is similar to that of Theo-
rem 7, we omit it.

Theorem 8 Let a1, a2, . . . , a7 be points, at pairwise distances at least one and with
diameter two, in the normed plane with unit disk C. Let Q = conv{a1, a2, . . . , a7}.
8.1 If C is strictly convex then a1, a2, . . . , a7 are the vertices and the centre of an
affine regular hexagon.
8.2 If card (bd Q ∩ {a1, a2, . . . , a7}) 6= 6 then there is a parallelogram P such that
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C ⊂ P and the pairwise distances of a1, a2, . . . , a7 are at least one in the normed
plane with unit disk P .
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[1] P. Bateman and P. Erdős, Geometrical extrema suggested by a lemma of
Besicovitch, Amer. Math. Monthly 58 (1951) 306-314.
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