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We say that a set C' in Euclidean n-space E™ is packed with sets
Cq,...,Cy if they are subsets of C and if they have pairwise
disjoint interiors. There are many questions about packing
convex bodies. For instance, a long-standing problem about
packing a disk with k equal, as large as possible, disks. The
best possible configurations are found for all £k < 12. The
proofs are given in papers of Fodor [3], Graham [5], Kravitz
[6], Pirl [11], and also in the dissertation of Mellisen [10]. For
k > 12 there is a number of conjectures.

We consider a more general problem about packing a pla-
nar convex body C' with a number of homothetical copies. In
particular cases, this question was considered also earlier; in
[8], where a convex body is packed by five homothetical copies,
and by Doyle, Lagarias and Randall [2], where a centrally-
symmetric body is packed with a few homothetical copies.
Our problem can be also considered in an equivalent form as
a question about a distribution of £ points in C in possibly
large relative distance. In first section we recall the notion of
relative distance and we discuss this equivalence. Next two
sections are devoted finding configurations of points of C in
possibly large C-distance. The last section presents corollaries
about efficient packing of C' by smaller homothetical copies.



1. Selfpacking a convex body and relative distance

Whenever we say distance, we mean the Euclidean distance.
The distance of points = and y is denoted by |zy|. Let C C E™
be a convex body. By the C-distance distc(z,y) of z and y
we understand the ratio of |zy| to the half of the maximum
distance of points a and b in C such that the segments xy and
ab are parallel (see [8]). When there is no doubt about the
body C, we also use the term relative distance.

THEOREM. Let C be a convex body in E™ and let k > 2
be an integer. If C' contains k points in relative distances at
least d, then we can pack C with its k homothetical copies of
ratio 2%1' Vice-versa; if we can pack C by its k homothetical
copies of a positive ratio r < 1, then we can find k points in C

in relative distances at least 12_7,.

Figure 1

The above Fig. 1 illustrates our Theorem. The idea of
this theorem appears yet in other papers. For instance, in
[8] when Corollary is deduced from Theorem, in [2] in Theo-
rem 3.1 in the case of centrally-symmetric bodies, and in [10]
for packing a disk with disks. In order to prove Theorem we



show Lemma 1, which implies Lemma 2. Our theorem is an
immediate consequence of Lemma 2.

Simple compactness arguments show that for every con-
vex body C' in E™ and for every integer £ > 2, the below
defined numbers di(C) and ri(C) exist. We define di(C) as
the greatest possible value d for which there are k points in
C' such that the relative distance of every pair of them is at
least d. By 7 (C) we mean the greatest possible positive ratio
of k homothetical copies of C' that can be packed into C.

We can rewrite Theorem in the following form. For every
convex body C C E™ and for every integer k > 2 we have

di.(C)
2 +di(C)

2rk (C)

re(C) = and di(C) = T=(0)

LEMMA 1. Let xy and ab be two parallel segments in E™.
Put d = 2(|zy|/|abl). The two segments being homothetical
copies of the segment ab thh homothety centers x and y, and

with the homothety ratio 2+d’ have exactly one common point.

Proof. Denote by w the point of intersection of the straight
lines containing segments xb and ya (see Fig. 2). We tacitly
assume that the notation for a and b is taken such that the
segments intersect. Through w we provide the straight line
parallel to the segment xy. The intersections of this line with
the segment xa is denoted by g, and with the segment yb is

lgw| _ |we| _ _|wa] [beo| 1
dTrz(l)ted bylh Thus 25 = 50 = pomrtesr = (ua) +1) =
(lfcyl + 1) :
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Analogically, % = (% 1)_1. Consequently, for the ho-
1

mothety ratio (% + 1)_1 = (% + 1)_ = 2%1’ the common
part of the images of the segments ab under homotheties with

centers x and y is just the point w. ]

LEMMA 2. Let C C E™ be a convex body and let xz, y be
boundary points of C'. For every positive constant d < 2 the
following conditions are equivalent.

(1) diStC(xa y) = d7

(ii) homothetical copies of C' with homothety centers x and
y, and with ratio 2%1 have at least one common boundary point
and they do not have common interior points.

Lemma 2 follows from Lemma 1 when in the part of ab
we take a longest segment contained in C' which is parallel to
xy (see Fig. 3). Observe that this way of proving permits to
avoid using arguments of separation of the two copies of C' by
a straight line.

Figure 3

From the proof of Lemma 1 we see that in Lemma 2 only
for the ratio 2%1 we get exactly one point of the intersection
of the two segments which are homothetical copies of ab. If
the ratio is smaller, then the intersection is empty. If it is
greater, then the intersection contains more than one point.

So analogical equivalence like in Lemma 2 holds true if we



have the inequality distc(z,y) < d in (i) and the condition
about non-empty intersection of the interiors of copies in (ii).

2. Configurations of points in large relative distance

Denote by di the infimum of di(C) over all convex bodies
C C E?. Compactness arguments show that this infimum is
attained. Natural questions appear about the values of dj for
E = 2,3,..., and also for which convex bodies C C E? they
are attained. We know only that d, = 2, and that ds = 1 see
[8]. Of course, the value do = 2 is attained for every convex
body C. The value d5 = 1 is attained for triangles, parallelo-
grams and for some other polygons (e.q. for a pentagon which
is obtained from a square by cutting off a triangle at a vertex).

A conjecture says that ds = (1 + v/5) ~ 1.618 (see [8]).
The example of a regular pentagon P in the part of C' shows
that this value cannot be replaced by a larger one.

Figure 4

In Fig. 4 we see three homothetical copies Py, P, P3 of P
and corresponding centers py, p2, ps of homotheties. Observe
that they can be moved step by step around P so that the
relative distance between pairs of them is always (1 + V/5).
Having in mind Theorem, instead of this we can say that Py,



P,, P; may be moved around such that they touch themselves
and the boundary of P all the time. In Fig. 4 we first move
p1 up to the lower end of the corresponding side of P. This
means that P; moves and makes some space which permits
to move Ps. Simultaneously, po moves on the boundary of P.
Then we can move P; and so on. We conclude that for the
regular pentagon the ratio % cannot be lessened.

In general case we know only some estimates. Namely,
from [1] we see that ds > 3.

We conjecture that dy = V5 — 1. The estimate dy >
2(v/5 + 1) has been proved in [7]. Moreover, we conjecture
that dg = 1. This value is attained for all centrally symmetric
convex bodies (see [2]) and also for triangles. We also conjec-
ture that d7 = £, which is attained for triangles (see Fig. 5).

Figure 5

The following Proposition and its proof present a method
of distribution of points in a planar convex body C' in possibly
large C-distances.

PROPOSITION. Let C be a planar convex body and let
t > 2 be an integer. In C' we can find at least §(t* + 4t + q)
points in pairwise relative distances at least %, where q = 3 for
t odd, where q = 4 for every even t which is not a multiple of
4, and where q = 8 if t is a multiple of 4.

Proof. By Lemma 1 from [8] there is a parallelogram P cir-



cumscribed about C' such that the midpoints of two its parallel
sides belong to C' (see Fig. 6). Denote them by a and c. Let b
and d be points of C' in two remaining sides of P. Denote by
D the quadrangle abcd.

Figure 6

Put w = t/2 for ¢t even, and w = (¢t — 1)/2 for ¢ odd. We
provide segments Sg,...,.S, with endpoints in the boundary
of the quadrangle D which are 5
parallel to the segment ac; the g¢=3
line containing S; should be =6
in the C-distance 4i/t from d,
where 1 = 0,...,w. So the C-
distances of those lines are at
least 4/t.
=6

q=4
=8

Figure 7

Figure 8 Figure 9

In Figures 7-9 we see the cases when ¢t = 5, ¢ = 6 and ¢t = 8.
They illustrate the three cases in Proposition 1. If 4i/t < 1,
then S; contains k = 2¢+1 points in pairwise relative distances
at least 4/t. If 4i/t > 1, then S; contains k = 2(w — i) + 1
points in pairwise relative distances at least 4/t when ¢ is even
(see Fig. 8 and 9), and S; contains k = 2(w — i) + 2 points
in pairwise relative distances at least 4/t when ¢ is odd (see



Fig. 7). An easy calculation shows that the total number of
those points in all the segments Sy, ...,S, is exactly like in
the formulation of Proposition 1. ]

From Proposition we obtain a number of reasonable esti-
mates for dr when k is not very large: ds > %, dy > ds > 1,
de > 2, dr >ds > 2, dg >dyo > 2, dyy > dia > diz > 5. Pay
attention that for £ = 3 we get nothing else but the estimate
from [1] and that for £ = 5 we get again the estimate from
[8]. Observe that the above estimate dy > 1 is weaker than
the estimate ds > 1(v/5+41) = 1.079... from [7], which is still

far from the conjectured value V5 — 1~ 1.236. The estimate
dg > % together with inequality dg < % resulting from the

example of a square in part of C' leads to the equality dg = %

3. The case of centrally-symmetric bodies

If our body is centrally-symmetric, the problem of finding sys-
tems of far points can be regarded as looking for configurations
of points in the unit disk M of a Minkowski space in possibly
large Minkowski-distances. Such a problem is considered in
[2]. The authors pay special attention to the case when all the
points are required to be on the boundary of the unit disk.

A conjecture says that d3(M) < 1+ %\/5 ~ 1.707 for
every centrally-symmetric convex body M and that this value
cannot be lessened (see [8] and [2]). The example of a regular
octagon () in the part of C' shows that this value cannot be
replaced by a larger one. In Fig. 10 we see three homothetical
copies (Y1, Q2, Q3 of () and corresponding centers q1, g2, g3 of
homotheties.

Similarly like for the pentagon in Fig. 4, the three points
can be moved step by step around () so that the relative dis-
tance between pairs of them is always # Thus the copies
@1, Q2, @3 move around such that they touch themselves and
the boundary of ) all the time. We see that for ) the ratio
% cannot be lessened. The paper [1] shows that ds(M) >



1.546 for every centrally-symmetric convex body M. This re-
cently has been improved up to ds(M) > 1+ /3 ~ 1.577
(see [9]).

Figure 10

In [8] (see p. 247) and in [2] it is shown that d4(M) >
V2 for every centrally-symmetric convex body M. This value
cannot be improved because of the example of the usual disk.

We have d5 (M) > 1 for every centrally symmetric convex
body M, and this estimate cannot be improved in general.
This immediately follows from ds = 1 and since ds(P) = 1 for
each parallelogram P.

From [8] (see p. 246) and from [2] we know that dg(M) >
1, that d7(M) > 1, and that both the estimates are the best
possible.

CLAIM. Let M be a planar centrally-symmetric convex
body and let s be a positive integer. In M we can find at least
3s%2 + 3s + 1 points in pairwise relative distances at least %

Proof. 1t is well known that we can inscribe in M an affine-
regular hexagon H (under the assumption of the centrall-
symmetry this was proved in many papers; the earliest of them
seems to be [4]).



The central symmetry and convexity of M implies that for
every diagonal of H there is no longer parallel segment in M.
Take a hexagonal configuration of points in H like in Fig. 11.

Figure 11

Considering s hexagons containing them on the boundaries we
easily evaluate the number of those points: 14+ 6+ ...+ 6s =
1462 — 342 4 351 1. n

Observe that the thesis of Claim does not depend on
the area of C like the estimates in the last section of [2].
From Claim, in particular, we obtain that for every centrally-
symmetric body M we have d7(M) > 1 (which has been ob-
served in [8] and [2]), d;(M) > 2 for i < 13, and d;(M) > 1
for 1 < 19.

4. Corollaries about efficient selfpacking

Thanks to Theorem, we can reformulate the estimates about
the values of di in terms of homothety ratios under which a
number of homothetical copies of C' may be packed in C. In
particular, we can reformulate our Proposition and Claim in
those terms. Of course, in every situation, the distribution of
relatively far points shows the positions of the packed homo-
thetical copies in C.

In particular, we have ro = %,
T7>Ts=1%,19 >110> 2,711 > T12 > T13 >

2 _ 1
rs > £, T4 =2 T5 = 3,

[



For every centrally-symmetric convex body M we have
ro(M) = L, ry(M) > 453 ~ 0,441, ro(M) > V2 — 1 ~ 0.414
(it cannot be improved for a disk), r5(M) > 1 (it cannot be
improved for a parallelogram), re(M) = r7(M) = + , rs(M) >
Z 7“13(M) Z %, 7“14(M) Z Z Tlg(M) Z %

Also a few conjectures about the values of dj (mentioned
in preceding sections) can be reformulated in terms of the ho-
mothety ratios under which a number of homothetical copies
of C' can be packed in C. Below they are collected in one
Conjecture.

CONJECTURE. Every planar convex body can be packed

with three homothetical copies of ratio %\/5, with four copies

of ratio % — % 5, with six copies of ratio %, and with seven

copies of ratio % Every centrally-symmetric convex body can
be packed with three copies of ratio % + 15—7 2.
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