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Abstract. Let C be a convex body in the Euclidean plane. By the relative distance of points

p and q we mean the ratio of the Euclidean distance of p and q to the half of the Euclidean

length of a longest chord of C parallel to pq. In this note we find the least upper bound of the

minimum pairwise relative distance of six points in a plane convex body.

Denote the closed segment with endpoints p and q in the Euclidean plane E2 by pq,

and denote the Euclidean length of pq by |pq|. Let C ⊂ E2 be a convex body. Take a

chord p′q′ of C parallel to pq such that there is no longer chord of C parallel to pq. The

ratio dC(p, q) of |pq| to 1
2
|p′q′| is called the C-distance of points p and q (see [5]). We also

use the term C-length of the segment pq. If there is no doubt about C, we talk about the

relative distance of points p and q, or the relative length of the segment pq. If C is centrally

symmetric, the relative distance is the Minkowski distance in the Minkowski space whose

unit ball is C.

It is shown by Doyle, Lagarias and Randall [2] that among six arbitrary points of

an arbitrary centrally symmetric plane convex body there is a pair in relative distance at

most 1. They also showed that this value is attained for every centrally symmetric convex

body. For some smaller values of k, they found a connection between the minimal pairwise

relative distance of k points in a centrally symmetric plane convex body on one hand, and

the homothety ratio of k congruent homothetical copies of the body packed into the body

on the other hand.

The paper [1] of Doliwka and Lassak implies that among five arbitrary boundary

points of an arbitrary plane convex body there exists a pair in relative distance at most√
5 − 1 ≈ 1.236. In the Appendix of our paper we show that the statement remains true

if we consider arbitrary points (not obligatorily boundary points) of a convex body. The

examples of the regular pentagon and the regular decagon show that the value
√

5 − 1

cannot be lessened.

Lángi [3] proved that among six arbitrary boundary points of an arbitrary plane

convex body there exists a pair in relative distance at most 8−4
√

3 ≈ 1.072. This value is

attained for the hexagon that is the convex hull of the regular triangle and its homothetical

copy with center at the center of gravity of the triangle and with homothety ratio 1 −
√

3

(see [1] or [3]). This hexagon is nothing else but the convex hull of the vertices and of

the midpoints of the arcs of the Reuleaux triangle. In this paper we prove the following

theorem.
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Theorem. Among six arbitrary points of an arbitrary plane convex body there exists

a pair in relative distance at most 2− 2
√

5
5 ≈ 1.106. Furthermore, if p1, . . . p6 are points in

a plane convex body C such that all their pairwise relative distances are at least 2 − 2
√

5
5 ,

then C is an affine regular pentagon and the points are its vertices and its center.

Using the idea of [1] and [5] we can immediately reformulate our Theorem in the

following form (see also Theorem of [4]).

No plane convex body can be packed by its six homothetical copies of ratio greater than
9
19 − 1

19

√
5. Moreover, if a plane convex body C can be packed by its six homothetical copies

of ratio 9
19 − 1

19

√
5, then C is an affine regular pentagon and the homothety centers are its

vertices and its center.

During the proof of our theorem, we denote points by small Latin letters. In a Carte-

sian coordinate system, the x-coordinate and the y-coordinate of a point p ∈ E2 are denoted

by px and py, respectively. We denote the straight line through the points p, q ∈ E2 by

L(p, q). The value 2 − 2
√

5
5 is denoted by λ, the value λ

2 = 1 −
√

5
5 ≈ 0.553 by τ and the

value λ
2−λ

=
√

5 − 1 by ν. By the kernel of a convex pentagon P we mean the convex

pentagon which is bounded by the diagonals of P .

The proof of our theorem is based on three lemmas.

Lemma 1. Take a convex pentagon P = a1a2a3a4a5 and take a point p in the kernel

of P . Denote min{dP (p, ai)|i = 1, . . . , 5} by λ(P, p). Then λ(P, p) ≤ λ and equality holds

if and only if P is an affine regular pentagon and p is its center.

Proof. Compactness arguments show that the maximal value of λ(P, p) is attained

on the family of convex pentagons P and points p of the kernel of P . Moreover, if P is

an affine regular pentagon and if p is its center, then λ(P, p) is equal to λ. Hence it is

enough to show that if P is not affine regular or if p is not its center, then λ(P, p) cannot

be maximal. During the proof we denote the intersection point of the line L(p, ai) and of

the opposite side of P by bi for i = 1, . . . , 5. Moreover, we denote the kernel of P by Q.

Observe that if p is a point of the boundary of Q, then λ(P, p) ≤ 1, which is less than

λ. Thus in this case λ(P, p) cannot be maximal. Therefore in the sequel we assume that

p is in the interior of Q.

Case 1, when P has a side of P -length 2. For instance, let a1a2 be such a side. Instead

of the condition that p is in the kernel of P , during the proof in this case we use only the

terms that p ∈ a1a3a5 and p ∈ a2a3a5. For i = 1, . . . , 5 let us denote a maximal chord of

P parallel to aip by uivi. As |uivi| ≥ |aibi|, we have dP (ai, p) = |aip|
1

2
|uivi| ≤

2|aip|
|aibi| .

If |a5p| > |pb5| and if |a3p| > |pb3|, then L(a1, a2) separates p and the intersection point

of L(a1, a5) and L(a2, a3). Thus dP (a1, a2) < 2, which is a contradiction. If |a3p| ≤ |pb3|,
then dP (a3, p) ≤ 1, hence λ(P, p) ≤ 1. Similarly, if |a5p| ≤ |pb5|, then λ(P, p) ≤ dP (a5, p) ≤
1.
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Case 2, when P has no side of P -length 2. In this case dP (p, ai) = 2|aip|
|aibi| for i = 1, . . . , 5.

Subcase 2.1, when P has two consecutive vertices in P -distance from p greater than

λ(P, p). Assume, for example, that dP (a4, p) > λ(P, p) and that dP (a5, p) > λ(P, p)

(see Figure 1). For i = 1, . . . , 5 let us denote by Hi the open halfplane bounded by

the line through p parallel to ai+2ai+3 such that ai /∈ Hi. Observe that if p′ is in Hi,

then dP (ai, p) < dP (ai, p
′). Let H be H1 ∩ H2 ∩ H3. Notice that H ′ = H ∩ intQ is a

nonempty open set, and that p is a boundary point of H ′. If p′ is a point of H ′, then

dP (ai, p
′) > dP (ai, p) ≥ λ(P, p) for i = 1, 2, 3. Moreover, if p′ is close enough to p,

then dP (aj, p
′) > λ(P, p) for j = 4, 5. Thus, we can choose a point p′ ∈ intQ such that

λ(P, p) < λ(P, p′). Hence λ(P, p) cannot be maximal.

Figure 1

Subcase 2.2, when P has exactly two, nonconsecutive vertices in P -distance from p

greater than λ(P, p). Without loss of generality, let dP (a1, p) = dP (a2, p) = dP (a4, p) =

λ(P, p), dP (a3, p) > λ(P, p) and dP (a5, p) > λ(P, p). Take the convex pentagon P ′ =

a1a2a3a4a
′
5, where a′

5 is an interior point of the segment a5a1. We have dP ′(a2, p) >

dP (a2, p) = λ(P, p) and dP ′(a′
5, p) < dP (a5, p). Moreover, if a′

5 is close enough to a5, then

dP ′(a′
5, p) > λ(P, p), and p is in the kernel of P ′. Hence, according to Subcase 2.1, there

exists a point p′ in the kernel of P ′ such that λ(P, p) = λ(P ′, p) < λ(P ′, p′).

Subcase 2.3, when P has exactly one vertex in P -distance from p greater than λ(P, p).

Let this vertex be a5. Take the convex pentagon P ∗ = a1a2a3a4a
∗
5, where a∗

5 is an interior

point of the segment a5a1. We have that dP ∗(a2, p) > dP (a2, p) = λ(P, p) and dP ∗(a∗
5, p) <

dP (a5, p). Moreover, if a∗
5 is close enough to a5, then dP ∗(a∗

5, p) > λ(P, p). Hence, thanks

to Subcase 2.2, there exist a convex pentagon P ′ and a point p′ in the kernel of P ′ such

that λ(P, p) = λ(P ∗, p) < λ(P ′, p′).

Subcase 2.4, when dP (ai, p) = λ(P, p) for i = 1, . . . , 5. As we are looking for the

maximal value of λ(P, p), we assume that λ(P, p) > 1. For the sake of simplicity, we

use the notation ν(P, p) = λ(P,p)
2−λ(P,p) . Thus |aip|

|pbi| = ν(P, p) for i = 1, . . . , 5. Observe that

ν(P, p) is a strictly increasing function of λ(P, p). Additionally, λ(P, p) > 1 implies that

ν(P, p) > 1. Let hp be the homothety with homothety center p and with homothety ratio
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− 1
ν(P,p) . Then hp(ai) = bi for i = 1, . . . , 5.

Consider the intersection point a of the lines L(a1, a5) and L(a2, a3). Let us take a

Cartesian coordinate system. As the relative distance of two points does not change under

affine transformations, we can assume that the points a, a1, a2 are (0, 0), (1,−1), (−1,−1),

respectively (see Figure 2).

We intend to show that if px 6= 0, then λ(P, p) is not maximal. Assume that px > 0

(in the other case the proof is analogous).

Figure 2

Take the intersection point q of the segments ap and b3b5. Denote the straight lines

y = py and y = qy by Lp and Lq, respectively. Let p′ and q′ be the points (0, py) and

(0, qy), respectively, and let hp′ be the homothety with center p′ and with homothety ratio

− 1
ν(P,p)

. Let us denote by b′3 and by b′5 the intersections of Lq and of the straight lines

L(a, a1) and L(a, a2), respectively. Let a′
3 be the intersection of L(a, a2) and L(p′, b′3).

Similarly, let a′
5 be the intersection of L(a, a1) and L(p′, b′5).

We show that b′3 = hp′(a′
3) and that b′5 = hp′(a′

5). Observe that pb3b5 = hp(pa3a5).

Thus a3a5 and b3b5 are parallel and b3b5 is the homothetic image of a3a5 of ratio 1
ν(P,p)

,

where the center of homothety is a. Since a′
3a

′
5 and b′3b

′
5 are also parallel, b′3b

′
5 is the

homothetic image of a′
3a

′
5 of ratio 1

ν(P,p)
, where the center of homothety is a. Hence

|b′
3
b′
5
|

|a′

3
a′

5
| = 1

ν(P,p) . From this we get that b′3b
′
5p

′ = hp′(a′
3a

′
5p

′). That is, b′3 = hp′(a′
3) and

b′5 = hp′(a′
5).

Denote a1 by a′
1, a2 by a′

2, hp′(a1) by b′1 and hp′(a2) by b′2. Let a′
4 be the common

point of the straight lines L(a′
3, b

′
1) and L(a′

5, b
′
2) and let b′4 denote hp′(a′

4). Using these

notations we have
2|a′

ip
′|

|a′

i
b′

i
| = λ(P, p) for i = 1, . . . , 5. We omit a consideration which shows

that P ′ = a′
1a

′
2a

′
3a

′
4a

′
5 is a convex pentagon, that p′ is in the kernel of P ′ and that P ′ has no
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side of P ′-length 2. From the above properties of P ′ and p′ we get that dP ′(p′, a′
i) = λ(P, p)

for i = 1, 2, 3, 5. We show that dP ′(p′, a′
4) > λ(P, p).

Take the points c1 = hp(b1), c2 = hp(b2), c′1 = hp′(b′1) and c′2 = hp′(b′2). As the

homothety ratios of hp and hp′ are equal, we have cy
1 = cy

2 = c′1
y

= c′2
y

and |c1c2| =

|c′1c′2|. Since b3b5 and a3a5 are parallel, the quadrangle a5b3b5a3 is a trapezoid. Thus

|b3q| = |qb5|. Consider the triangles b3b
′
3q and b5b

′
5q. We get that |b3b

′
3| = |b5b

′
5|. Let b∗3

be the intersection point of the segment b3b4 and the straight line Lq. Similarly, let b∗5 be

the intersection point of the segment b4b5 and the straight line Lq. Notice that bx
4 > 0,

b3 ∈ b′3a5 and that b5 ∈ b′5a2. These observations and the fact that |b3b
′
3| = |b5b

′
5| imply

that |b∗3b∗5| > |b′3b′5|. Consider that b4 is the intersection of L(b∗3, c1) and L(b∗5, c2) and that

b′4 is the intersection of L(b′3, c
′
1) and L(b′5, c

′
2). As |b∗3b∗5| > |b′3b′5| and |c1c2| = |c′1c′2|, we

get that by
4 < b′4

y
. Take the intersection point b∗4 of a1a2 and p′b′4. Since

|p′a′

4
|

|p′b∗
4
| > ν(P, p),

we have dP ′(p′, a′
4) > λ(P, p). Obviously, λ(P, p) = λ(P ′, p′). Thus, according to Subcase

2.3, the value λ(P, p) cannot be maximal.

Notice that our choice of the side a1a2 was arbitrary. This implies that λ(P, p) can

be maximal only if P is affine symmetric to every line containing the midpoint of a side of

P and the opposite vertex of P and if p is on every one of the above lines. But this holds

only if P is an affine regular pentagon and if p is its center.

Lemma 2. Let P = a1a2a3a4a5 be a convex pentagon and let p be a point of P

which is not in the kernel of P . Then among p, a1, . . . , a5 there exists a pair of points in

P -distance less than λ.

Proof. If P is a degenerate pentagon, then it has a chord containing at least 3 vertices

of P . Thus in this case P has a side of P -length at most 1, which is less than λ.

In the sequel we deal with the case when P is nondegenerate. Take a Cartesian

coordinate system. As the P -distance of two points is affine invariant, we assume that the

points a1, a2 and a5 are (0, 0), (1, 0) and (0, 1), respectively. Let b be the point (1, 1).

Denote the square a1a2ba5 by S. Furthermore, for every i, j ∈ {1, . . . , 5} where i 6= j, we

denote the slope of the line L(ai, aj) by mij , provided it exists.

Case 1, when P has more than one side of P -length 2. Consider the case when P

has two nonconsecutive sides of P -length 2. We assume that dP (a1, a2) = 2 and that

dP (a3, a4) = 2 (the proof of the other cases is analogous). Let the angle of P at the vertex

ai be denoted by αi for i = 1, . . . , 5. From dP (a1, a2) = 2 we get that α1 + α2 ≤ π.

Similarly, from dP (a1, a2) = 2 we have α3 + α4 ≤ π. The convexity of P implies that

α5 ≤ π. Obviously,
5∑

i=1

αi = 3π. Thus α1 + α2 = α3 + α4 = α5 = π. Therefore P is a

degenerate pentagon.

Let us assume that P has two consecutive sides of P -length 2. Without loss of gen-

erality, let these sides be a5a1 and a1a2. Hence P ⊂ S. Denote the triangle a1a2a5 by
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S1. Take the homothetical copies S2, S3, S4 of a2ba5, S, a2ba5 with ratio 1
2 and with

homothety centers a2, b, a5, respectively. As P is convex, S1 contains neither of the points

a3 and a4 in its interior. If S2 contains a3 or if S4 contains a4, then dP (a2, a3) ≤ 1 or

dP (a4, a5) ≤ 1, respectively. Finally, if S3 contains both a3 and a4, then m34 < 0 implies

that dP (a3, a4) ≤ 1. Thus we get that P has a side of P -length at most 1.

Case 2, when P has exactly one side of P -length 2. We choose the indices of the points

such that dP (a1, a2) = 2 and that ay
3 ≥ 1. The condition of this case and the convexity of

P imply that 0 < ax
4 < ax

3 ≤ 1 and that 1 ≤ ay
3 < ay

4 . Moreover, either dP (a1, a5) < λ or

ay
4 ≤ 1

τ
. In the following we assume that ay

4 ≤ 1
τ

< 2.

Observe that for arbitrary w ∈ E2, the set of points whose P -distance from w is less

than λ is the interior of the translate of τ
2
(P −P ) where the center of the body is w. From

the previous considerations concerning the properties of P we get that the sides of the

centrally symmetric convex decagon τ
2
(P −P ) are parallel to a1a5, a4a5, a1a2, a3a4, a2a3.

First we show that if every side of P has P -length greater than 1, then m45 > m13. We

show the statement indirectly. Denote the intersection point of L(a2, a3) and L(a4, a5) by

s and denote the intersection point of a1a3 and a2a5 by q. Let a′
3 and a′

4 be the homothetic

images of a3 and a4, respectively, where the center of homothety is s and its ratio is 2.

Denote the midpoint of the segment a5s by s5. Let t be the point of a2a3 such that a1t

and a4a5 are parallel. Similarly, let s′ be the point of L(a2, a3) such that a5s
′ and a1a3 are

parallel. Observe that a1t is a maximal chord of P parallel to a4a5. Thus dP (a4, a5) > 1

implies that 1
2 |a1t| < |a4a5|. Moreover, we have |a5s5| = 1

2 |a5s| ≤ 1
2 |a1t|. Therefore

|a5s5| < |a4a5|, from which a4 ∈ s5s. Since m13 ≥ 1, we get that 1 ≤ |a2q|
|qa5| = |a2a3|

|a3s′| .

Hence |a2a3|
|a3s| ≥ |a2a3|

|a3s′| ≥ 1. This and a4 ∈ s5s imply that a′
3a

′
4 is a chord of C. Thus

dP (a3, a4) ≤ 1, which is a contradiction.

Now we prove the statement under the condition that m45 > m13. If p is in both

the triangles a1a3a5 and a2a3a5, then, according to the proof of Case 1 in Lemma 1 we

have dP (a3, p) ≤ 1 or dP (a5, p) ≤ 1. We intend to examine the cases when p ∈ a3a4a5,

p ∈ a1a2a5 or p ∈ a2a3q.

Subcase 2.1, when p is in the triangle a3a4a5. Denote the midpoints of the segments

a4a5, a3a5 and a3a4 by c3, c4 and c5, respectively. Notice that the triangles a3c4c5,

a5c3c4 and the parallelogram a4c5c4c3 are contained in the homothetical copies of P with

homothety ratio 1
2

where the homothety centers are a3, a5 and a4, respectively. Thus in

this case at least one of the values dP (a3, p), dP (a4, p), dP (a5, p) is at most 1.

Subcase 2.2, when p is in the triangle a1a2a5. We show the statement indirectly,

therefore we assume that among p and the vertices of P there is no pair in P -distance less

than λ. Denote by Q1 and by Q5 the translates of τ
2 (P −P ) where the centers of the bodies

are a1 and a5, respectively. Consider the points b1 = (1− τ, 0) and b5 = (1− τ, 1− τ). As

dP (a2, p) ≥ λ, we have p ∈ a1b1b5a5. We show that a1b1b5a5 is covered by the interiors of

Q1 and Q5. For this it is enough to show that b1b5 is in the interior of Q1 ∪Q5. Denote by

d1 the intersection of b1b5 and of the boundary of Q1 such that d1 6= b1. Similarly, let d5
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be the intersection of b1b5 and of the boundary of Q5. We omit an easy calculation that if

d1 is not on the side of Q1 parallel to a2a3, or if d5 is not on the side of Q5 parallel to a4a5,

then b1b5 is in the interior of Q1 ∪Q5. In the opposite case we get that dy
1 = m23(1− 2τ),

and that dy
5 = m45(1 − 2τ) + 1 − τ . Thus dy

1 − dy
5 = (2τ − 1)(m45 − m23) + τ − 1.

Let us assume that m34 ≤ −1. Take the point u on the line L(a2, a3) such that a3

is the midpoint of the segment a2u. As dP (a3, a4) ≥ λ > 1, we have 6 ua5b < 6 a4a5b.

Thus, 0 <
2a

y

3
−1

2ax
3
−1 < m45. This implies that dy

1 − dy
5 ≥ (2τ − 1)(

2a
y

3
−1

2ax
3
−1 +

a
y

3

1−ax
3

) + τ − 1 ≥
(2τ − 1)( 1

2ax
3
−1 + 1

1−ax
3

) + τ − 1. But the last expression is always positive.

Now we discuss the case when m34 > −1. In this case from dP (a3, a4) ≥ λ we

conclude that ax
3 − ax

4 ≥ τ . Consider the point m = (0, 1
1−τ

). Take the line Lm through

m with slope −1. Since m34 > −1 and since dP (a3, a4) ≥ λ, a3 and a4 are in the open

halfplane not containing a1 bounded by Lm. As ay
4 ≤ 1

τ
, we have ax

4 > 1
1−τ

− 1
τ

and thus

ax
3 > 1

1−τ
− 1

τ
+ τ = 11

√
5−5

20 ≈ 0.980. But this contradicts that d1 is on the side of Q1

parallel to a2a3, that is, that ax
3 ≤ 1−τ

τ
=

√
5+1
4

≈ 0.809. Hence b1b5 is in the interior of

Q1 ∪ Q5. Therefore every point of a1b1b5a5 is in P -distance from a1 or from a5 less than

λ.

Subcase 2.3, when p is in the triangle a2a3q. Let Q2 and Q3 be the translates of
τ
2 (P −P ) where the centers of the bodies are a2 and a3, respectively. If py > 1, then p is in

the interior of Q3. In the following we deal with the case when py ≤ 1. From dP (a5, p) ≥ λ

we have px ≥ τ . We show that the points of a2a3q with x-coordinates at least τ are in the

interior of Q2 ∪Q3. Denote by e2 the common point of the line x = τ and of the boundary

of Q2 with greater y-coordinate. Denote by e3 the common point of the line x = τ and

of the boundary of Q3 with less y-coordinate. Let us show that ey
2 − ey

3 is positive. We

have ey
3 ≤ (1 − τ)ay

3. Moreover, ey
2 = τay

4 or ey
2 = m45(2τ − 1) + τ . If ey

2 = τay
4, then

ey
2 − ey

3 ≥ τ(ay
3 + ay

4) − ay
3 > 0. In the sequel we assume that ey

2 = m45(2τ − 1) + τ .

Observe that m45 ≥ m13 ≥ 1. Hence, if ay
3 < 3τ−1

1−τ
, then ey

2 − ey
3 ≥ 3τ − 1− (1− τ)ay

3 > 0.

Let us assume the opposite case, when ay
3 ≥ 3τ−1

1−τ
. In this case ay

4 ≤ 1
τ

< ay
3 + τ .

Thus dP (a3, a4) ≥ λ implies that ax
4 ≤ ax

3 − τ ≤ 1 − τ . Take the points m(0, 1
1−τ

)

and g( 1
τ
, 1 − τ). Denote by h the intersection point of L(m, g) and x = 1. We omit

an elementary calculation which shows that hy = 1
τ
− 2τ−1

(1−τ)2 . Since dP (a3, a4) ≥ λ,

we get that a3 is in the closed halfplane containing a1 bounded by L(a4, m). Therefore

ay
4 − ay

3 ≥ 1
τ
− hy. Thus, ay

3 ≤ ay
4 − 1

τ
+ hy ≤ hy ≈ 1.281. But this contradicts our

assumption that ay
3 ≥ 3τ−1

1−τ
≈ 1.472.

We have shown that ey
2 − ey

3 is positive. But this implies that every point of the

triangle a2a3q with x-coordinate at least τ is in the interior of Q2 ∪ Q3.

Case 3, when P has no side of P -length 2. We assume that p is in the triangle a1a2a5

and that m34 is at least −1 (the proof of the other cases is analogous). Since P has no

side of P -length 2, we have ax
3 > 1 and ay

4 > 1. Observe that the points of a1a2a5 with

x-coordinate greater than 1−τ are in P -distance from a2 less than λ. Similarly, the points
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of a1a2a5 with y-coordinate greater than 1−τ are in P -distance from a5 less than λ. Thus

it is enough to deal with the case when both coordinates of p are at most 1 − τ . Take the

point f = ( 1
τ
− 1, 1

τ
− 1). We intend to show that if P has no side of P -length less than λ,

then f is in the interior of P .

Consider the case when the maximal chord parallel to a4a5 has an endpoint at a1.

In this case the other endpoint of the above chord is on the segment a3a4. This and

dP (a4, a5) ≥ λ imply that the y-coordinate of the common point of L(a3, a4) and of the

line y = 0 is at least 1
1−τ

=
√

5. Therefore, as −1 ≤ m34, we get that f is in the open

halfplane containing a1 bounded by L(a3, a4). Thus f is in the interior of P .

Consider the case when the maximal chord of P parallel to a4a5 has an endpoint at

a3. In this case dP (a4, a5) ≥ λ implies that ax
4 ≥ τax

3 . Since dP (a3, a4) ≥ λ, we have

ax
3 −ax

4 ≥ τ . Therefore ax
4 ≥ τ2

1−τ
. From dP (a2, a3) ≥ λ we get that a3 is not in the interior

of the homothetical copy of a1a2a5 with homothety ratio τ where the image of a1 is a2.

Take the points a′
4 = ( τ2

1−τ
, 1) and a′

3 = (1, 1 − τ). We omit an elementary calculation

which shows that f is in the open halfplane containing a1 bounded by L(a′
3, a

′
4). Thus f

is in the open halfplane containing a1 bounded by L(a3, a4). Therefore f is in the interior

of P .

We have shown that if P has no side of P -length less than λ, then f is in the interior

of P . But the definition of f and our inequalities for the coordinates of p imply that in

this case dP (p, a1) < λ.

Lemma 3. Let a1, . . . , a6 be points such that their convex hull Q is a quadrangle or

a triangle. Then among those points there exists a pair in Q-distance at most 1.

Proof. We show the statement of our lemma indirectly, we assume that among the

points a1, . . . , a6 there is no pair in Q-distance at most 1. Let us take a Cartesian coordinate

system. As the Q-distance of two points does not change under affine transformation, we

assume that the points a1, a2 and a3 are (0, 1), (0, 0) and (1, 0), respectively. Take the

point b(1, 1) and the square S = a1a2a3b. We choose the indices of our points such that

Q ⊂ S. Let us denote the homothetical copies of S with homothety ratio 1
2 and with

centers a1, a2, a3, b by S1, S2, S3, S4, respectively. Consider the center c of S, the center

b1 of the segment a1a2 and the center b2 of the segment a2a3. Observe that every point of

the triangle a1b1c is in Q-distance at most 1 from a1. Similarly, every point of the triangles

a2b2b1 and b2a3c is in Q-distance at most 1 from a2 and from a3, respectively. Notice that

there are no two points in the triangle b1b2c in Q-distance from each other greater than 1.

Thus b1b2c contains at most one of the points a4, a5, a6. Hence Q is a quadrangle. Let

a4 be the fourth vertex of Q. As dQ(a1, a4) > 1 and dQ(a3, a4) > 1, we have a4 ∈ S4.

Hence every point of S1 and S3 is in Q-distance at most 1 from a1 and a3, respectively.

Furthermore, S4 ∩ Q is covered by the homothetical copy of Q with homothety center a4
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and with ratio 1
2 . Thus, every point of S4∩Q is in Q-distance at most 1 from a4. Moreover,

b2cb1 contains at most one of the points a5 and a6, which is a contradiction.

Proof of Theorem. First, observe that if C is an affine regular pentagon, and if the six

points are its vertices and its center, then the minimal pairwise C-distance of the points

is λ.

Take an arbitrary plane convex body C. Let p1, . . . , p6 be points of C. Let us denote

the convex hull of p1, . . . , p6 by C′. As C′ ⊂ C, the C′-distance of arbitrary two points is

greater than or equal to their C-distance. Theorem in [3] says that every convex hexagon

has a side of relative length at most 8−4
√

3 ≈ 1.072. Thus, if C′ is a hexagon, then among

p1, . . . , p6 there is a pair in C′-distance at most 8−4
√

3, which is less than λ. With respect

to Lemma 1 and Lemma 2, if C′ is a pentagon, then the minimal pairwise C′-distance of

the points is at most λ, with equality if and only if C′ is an affine regular pentagon and

the points are its vertices and its center. According to Lemma 3, if C′ is a quadrangle or

a triangle, then there exists a pair of points in C′-distance at most 1, which is less than λ.

We have proved the first statement of our theorem.

To prove the second statement, it remains to show that if C′ is an affine regular

pentagon, the points are its vertices and its center and if there is no pair of them in a

C-distance less than λ, then C = C′. Let us choose the indices of the points such that C′

is the pentagon p1p2p3p4p5 and that p6 is the center of C′. Assume that C 6= C′. In this

case there exists a point q ∈ C, which is not a point of C′ and the convex hull D of q and

C′ is a convex hexagon. It is enough to deal with the case when D = p1p2p3p4p5q (the

proof of the other cases is analogous). But then dC(p6, p3) ≤ dD(p6, p3) < dC′(p6, p3) = λ.

Finally, we conjecture that among seven arbitrary points of an arbitrary plane convex

body there is a pair in relative distance at most 1. The value 1 is attained, for instance, for

the parallelogram. The example of the parallelogram shows that the estimate 1 is attained

even for eight or nine points.

Corollary of [3] says that every convex heptagon has a side of relative length at most 1.

From this and from Lemma 3 we immediately get that among eight or nine arbitrary points

of an arbitrary plane convex body there is a pair in relative distance at most 1.

According to [2] or [4], we also conjecture that no plane convex body can be packed

by its seven homothetical copies of ratio greater than 1
3
. Analogously, we observe that no

plane convex body can be packed by its eight or nine homthetical copies of ratio greater

than 1
3
.

Appendix

Statement. Among five arbitrary points of an arbitrary plane convex body there exists

a pair in relative distance at most
√

5 − 1.
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Proof. Let C be a plane convex body. Let a1, . . . , a5 be points of C. Let us denote by

C′ the convex hull of a1, . . . , a5. Observe that the C′-distance of any two points is greater

than or equal to their C-distance. Thus it is enough to show that among a1, . . . , a5 there

exists a pair in C′-distance at most
√

5 − 1.

First, let us assume that C′ is a triangle. Let us take the three segments whose

endpoints are the midpoints of the sides of C′. These segments divide C′ into four homo-

thetical copies of C′, where the homothety ratio of three of them is 1
2

and the homothety

ratio of the remaining one is −1
2 . Observe that none of the above homothetical copies

contains two points in C′-distance greater than 1. Moreover, there is a copy containing at

least two of the points a1, . . . , a5. Hence, among the points a1, . . . , a5 there is a pair in

C′-distance at most 1, which is less than
√

5 − 1.

Second, let us assume that C′ is a quadrangle. Observe that there exists a parallelo-

gram P containing C′ such that two its consecutive sides are sides of C′. Without loss of

generality, let C′ = a1a2a3a4 and let a1, a2, a3 be vertices of P . Denote the fourth vertex

of P by b.

If a5 is a boundary point of C′, then the C′-distance of a5 and a vertex of C′ is at

most 1. Thus it is enough to deal with the case when a5 is in the interior of C′.

In the following, let us assume indirectly that the pairwise C′-distances of a1, a2, a3,

a4 and a5 are greater than
√

5 − 1. Let P1 and P3 be the homothetic images of P with

homothety ratio 1
2(
√

5 − 1), where the centers of homothety are a1 and a3, respectively.

Let P2 and P4 be the homothetic images of P with homothety ratio 1
2
(3−

√
5), where the

centers of homothety are a2 and b, respectively. Hence P = P1 ∪ P2 ∪ P3 ∪ P4.

Notice that the C′-distance of every point of P1 and P3 is at most
√

5 − 1 from a1

and from a3, respectively. Hence a4 and a5 are in P2 or P4. As C′ is convex, a4 /∈ P2 and

therefore it is in P4. Observe that the C′-distance of every point of P4 ∩ Q is less than√
5 − 1 from a4. Thus a5 is in P1.

Let u = P1 ∩P3 ∩P4 and let v = P1 ∩P2 ∩P3. Notice that v is the homothetic image

of u, where the center of homothety is a1 and the homothety ratio is 1
2 (
√

5−1). Therefore

P1 is contained in the homothetic image of C′, where the center of the homothety is a1

and the homothety ratio is 1
2
(
√

5 − 1). From this we have dC′(a1, a5) ≤
√

5 − 1, which

contradicts our indirect assumption.

The proof of the third case, when C′ is a convex pentagon, is given in a detailed form

in [1].
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Eötvös Loránd University, Department of Geometry
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