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Abstract

The discrete isoperimetric problem is to determine the maximal area
polygon with at most k vertices and of a given perimeter. It is a classical fact
that the unique optimal polygon on the Euclidean plane is the regular one.
The same statement for the hyperbolic plane was proved by Károly Bezdek [1]
and on the sphere by László Fejes Tóth [3]. In the present paper we extend
the discrete isoperimetric inequality for “polygons” on the three planes of
constant curvature bounded by arcs of a given constant geodesic curvature.

1. Introduction

Throughout this paper, M denotes any of the three geometries of constant
sectional curvature K ∈ {0,−1, 1}: the Euclidean plane, (K = 0), denoted by E2,
the hyperbolic plane, (K = −1), denoted by H2, or the sphere, (K = 1), denoted
by S2. If a and b are two points of M, which are not antipodal if M = S2, then ab
denotes the shortest geodesic segment connecting them.

The discrete isoperimetric problem is to determine the maximal area polygon
with at most k vertices and of a given perimeter. It is a classical fact that the unique
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optimal polygon for M = E2 is the regular one. The same statement for M = H2

was proved by Károly Bezdek [1] and for M = S2 by László Fejes Tóth [3]. We refer
to these results as the (Euclidean, hyperbolic or spherical) discrete isoperimetric
inequality. On discrete isoperimetric problems see also [4], [6] and [7]. The following
question was asked by Károly Bezdek in personal communication.

Can one extend these results to circle-polygons i.e. “polygons” bounded by
circular arcs of a given radius (instead of line segments)?

Convex circle-polygons arise naturally as intersections of finitely many disks
of the same radius. This paper answers the question for a slightly more general
class of planar figures defined as follows.

Definition. Let Γ ⊂ M be a simple closed polygon in M and let kg ≥ 0 be
fixed. If M = S2, we assume that Γ is contained in an open hemisphere. We define
the interior and exterior of Γ in the usual way for M = E2 and H2. For M = S2,
the interior of Γ is the connected component of S2 \ Γ having the smaller area.
Take the closed curve P obtained by joining consecutive vertices of Γ by curves of
geodesic curvature kg facing outward (resp. inward), i.e., each curve lies in the half
plane bounded by the geodesic connecting the two vertices of Γ on the side of the
direction of the outer (resp. inner) normal vector of the corresponding side of Γ. If
kg is the geodesic curvature of a circle of radius r, then there is an ambiguity in
the above definition of P which is fixed by the following two extra conditions: Γ is
assumed to have sides of length at most 2r and the smooth arcs of P connecting two
consecutive vertices are assumed to be shorter than or equal to a semicircle. We call
P an outer (resp. inner) kg-polygon with the same set of vertices as that of Γ with
the same cyclic order. We call the arc of P connecting two consecutive vertices a
and b a side of P and denote it by âb. An ear of P is the region bounded by a side
of Γ (i.e. ab) and the corresponding side of P (i.e. âb). We call Γ the underlying
polygon of P . If Γ is a regular polygon, then we say that P is regular. The area
of an outer kg-polygon P is the sum of the area of the interior of the underlying
polygon Γ and the areas of the ears. This means that if a region is covered more
than once by the polygonal domain bounded by Γ and the ears, its area is counted
with multiplicity. Similarly, the area of an inner kg-polygon P is the difference of
the area of the interior of Γ and the total area of the ears. The perimeter of P is
the total length of the sides of P . Observe that the perimeter is not necessarily the
arc length of the piecewise smooth curve bounding the union (resp. difference) of
the interior of Γ and the union of the ears. A (kg, �)-polygon is a kg-polygon with
perimeter �.

Observe that the discrete isoperimetric problem for the family of (kg, �)-
polygons with n vertices makes sense only if the parameters kg, � and n satisfy
the following restrictions, which will be assumed throughout this paper. First, if kg

is the geodesic curvature of a circle of radius r, then � must be less than or equal to n
times the length of a semicircle of radius r. Second, in the spherical case, if rn ≤ π,
then we require also that � is less than the perimeter of the kg-polygon built around
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the regular n-gon inscribed in a great circle. Since the length of a chord of a circle
is a concave function of the length of the corresponding arc, the latter assumption
implies by Jensen’s inequality that the perimeter of the underlying polygon of a
(kg, �)-polygon cannot exceed the length of a great circle.

Definition. An outer (resp. inner) (kg, �)-polygon is optimal if its area is
maximal among the areas of outer (resp. inner) (kg, �)-polygons having the same
number of vertices.

Remark 1.1. In M = E2, curves of constant geodesic curvature kg are
straight lines when kg = 0 and circles of radius r = 1

kg
when kg �= 0. In M = S2,

these curves are circles of radius r with kg = cot r. In M = H2, they are hyper-
bolic straight lines for kg = 0, hypercycles with distance r from a line such that
kg = tanh r for 0 < kg < 1, horocycles for kg = 1 and circles of radius r with
kg = coth r for 1 < kg.

Proposition 1.1. Let M be S2, E2 or H2. Let � > 0 and kg ≥ 0 be given.
Then the only optimal inner (kg, �)-polygons in M are the regular ones.

The main result of the paper is the following theorem.

Theorem 1.2. Let M be S2, E2 or H2. Let kg ≥ 0, � > 0 and n be given
with the above restrictions. If � is not equal to the perimeter of the circle of geodesic
curvature kg, then the only optimal outer (kg, �)-polygons in M are the regular ones.
If � is equal to the perimeter of the circle of geodesic curvature kg, then a (kg, �)-
polygon is optimal if and only if its underlying polygon Γ is inscribed in a circle of
geodesic curvature kg.

We will prove this theorem for M = E2 in Section 4 by an elementary com-
putational method. The general case will be treated using differential geometric
techniques in Section 5.

If kg is the geodesic curvature of a circle of perimeter �, then according to
the classical isoperimetric inequality, a (kg, �)-polygon is optimal if and only if its
vertices are on a circle of geodesic curvature kg. Therefore, in what follows, we
assume that � is not the perimeter of a circle of geodesic curvature kg.

The total area of the ears does not change if the shape of the underlying
polygon Γ is changed without changing the lengths of the sides. In E2 and H2, a
polygon with given side lengths has maximal area if and only if its vertices lie on a
curve of constant geodesic curvature. In particular, such a polygon with maximal
area must be strictly convex. The same is true on the sphere provided that the
perimeter of the polygon is less than that of a great circle. Thus we may and we
will assume without loss of generality that Γ is strictly convex. Recall that a subset
of the sphere is convex if it is the intersection of the sphere and a convex cone with
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vertex at the center of the sphere. A polygonal domain is strictly convex if it is
convex and the inner angles of the polygon are all strictly less than π.

For an overview of results on isoperimetric problems the reader is refered to [2].

2. Proof of Proposition 1.1

Proof. Recall that the area of P is the difference of the area of the interior
of Γ and the total area of the ears of P . Using the discrete isoperimetric inequality
for polygons in M it is sufficient to show that if we vary one single vertex remaining
in the class of inner (kg, �)-polygons, then the total area of the two consecutive ears
meeting at that vertex attains its minimum when the ears are congruent. Take a
curve c :

[
0, �̂
] −→ M of constant geodesic curvature kg with endpoints x0 = c(0)

and x2 = c
(
�̂
)

and select a third point x1 on the trace of c. We show that the total
area of the two ears each bounded by a geodesic segment of the form xixi+1 and the
corresponding arc x̂ixi+1 of c is minimal, when x1 is the midpoint of the curve. The
area of the domain bounded by x0x2 and c is fixed, so we want to maximize the area
of the triangle x0x1x2. In the Euclidean plane it is clearly maximal when x1 is in the
middle. In H2 and S2, consider the set of points L(a) := {p ∈ M : area(x0px2) = a}
for every a > 0. This is called the Lexell figure. It is shown in [3] p. 91 that for a
given a, this set is a pair of equidistant curves (circular arcs on S2, and a pair of
hypercycles in H2). The Lexell figure is symmetric both about the geodesic segment
x0x2 and its perpendicular bisector. If the area of the triangle x0x1x2 is maximal
with the constraint x1 is on c, then the Lexell figure corresponding to that area is
tangent to c at x1. Since a circle can touch another circle or a hypercycle at most
at one point, x1 must be in the middle of c in this case by the above symmetry. �

This proof also shows that the description of optimal outer kg-polygons is not
a straightforward corollary of the classical discrete isoperimetric inequality, since as
equal sides of Γ maximize the area of the region bounded by Γ, they also minimize
the total area of the ears.

3. Preliminaries

A standard compactness argument for outer (kg, �)-polygons with convex un-
derlying n-gons shows the existence of an optimal polygon in this family. We show
that if � is different from the perimeter of a circle of geodesic curvature kg, then an
outer kg-polygon in M that is not regular can not be optimal. The main goal of the
proof is to show that an optimal outer kg-polygon is equilateral, i.e., it has sides
of equal length. Once we prove this, the discrete isoperimetric inequality for the
underlying polygon shows that the optimal outer kg-polygon is also equiangular,
i.e., its angles are equal.
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A vertex of a kg-polygon P is either a fake vertex or a real one depending
on whether the sides of P meeting at that vertex belong to the same smooth curve
of constant curvature or not. A fake vertex can freely move along the union of the
two sides meeting there without changing the perimeter and the area of P . For
this reason, if there were an optimal polygon with unequal sides, then moving the
fake vertices around we could construct an optimal polygon with two unequal sides
meeting at a real vertex. Thus, it is enough to prove that if P is an outer kg-polygon
with two unequal sides âp and p̂b meeting at a real vertex p, then P is not optimal.

Assume that the side âp is shorter than the side b̂p. If P is optimal, then p
must maximize the area A(p) of the figure F (p) bounded by the geodesic segment
ab and the two sides âp and b̂p under the constraint that the total length L(p) of
âp and b̂p is fixed. The constraint lets p move along a curve τ , which may have
endpoints or may degenerate to a single point. The latter case happens only when
both âp and b̂p are semicircles, but this contradicts the unequality of these sides. p
is an endpoint of this curve if and only if the larger side b̂p is a semicircle as if b̂p
is a semicircle, then p can not move further away from b. Even if p is an endpoint
of τ , p can be moved along τ toward the symmetric position, where the sides âp
and b̂p are equal. To prove that P is not optimal, it suffices to show that the area
A increases during this motion. We do this in the next two sections separately for
E2 and then for the general case. For an introduction on the differential geometric
methods used to prove the general case see, for example, [5].

We assume that kg > 0, as the case kg = 0 is the discrete isoperimetric
inequality for polygons.

Definition. Let q ∈ M be an arbitrary point and kg ≥ 0 be given. We define
the kg-arc-length function fq for points of M that can be connected to q by a curve
of constant geodesic curvature kg as the arc-length of a shortest such curve.

4. Proof of Theorem 1.2 in the Euclidean plane

Proof of Theorem 1.2 for M = E2
. In the Euclidean plane all curves of

non-zero constant geodesic curvature are circular arcs. Without loss of generality
we assume that kg = 1, i. e. the radius of the circles is 1. Introduce the notations
α := fa(p), β := fb(p), and d := dist(a,b)

2 . As it was assumed in Section 3, we have
α < β. Let ρ := α + β be fixed, then β = ρ − α becomes a function of α.

We consider the area A of the figure F (p) as a function of α with parameters
d and ρ. We show that the derivative of A with respect to α is positive.

Using Heron’s formula for the area of the triangle we have

A(α) =
α − sin α

2
+

β − sin β

2
+ T

=
α + β

2
− sin α + sinβ

2
+

√
2d2 − d4 − (cosα − cosβ)2

4
− (cosα + cosβ)d2,
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where T denotes the area of the Euclidean triangle apb. The derivative of A is

A′(α) = −cosα − cosβ

2
+

1
2T

[
(cosα − cosβ)(sin α + sinβ)

2
+ (sin α − sin β)d2

]
.

By trigonometric identities we get that

A′(α) = −cosα − cosβ

2T

[
T − sin α + sin β

2
+ d2 cot

ρ

2

]
.

Set B := sin α+sin β
2 − d2 cot ρ

2 . As cosα > cosβ and T > 0, in order to show that
A′(α) > 0 we need to show that T − B < 0. Observe that

T 2 − B2 =
−2
(
d2 − sin2 ρ

2

)2
1 − cos ρ

.

This expression is nonpositive, and it is zero only when d = sin ρ
2 , i.e. when the

points a, p and b are on a unit circular arc, which contradicts our assumptions.
As T is clearly positive, to prove our statement it is enough to show that

B > 0. We regard B as a function of d with parameters α and β. Obviously, B(d)
is continuous on R, and B(0) > 0. As T is positive, and B2 ≥ T 2, B does not
change sign on the interval where T is defined, i.e. on the interval (0, dmax), where
dmax = sin α

2 + sin β
2 . As a result, we have B(d) > 0 for any d ∈ (0, dmax). This

finishes the proof of Theorem 1.2 for the Euclidean plane. �

5. Proof of Theorem 1.2 in the general case

The following arguments hold in all the three geometries.

Notation. Let ta, tb ∈ TpM be the unit tangent vectors of the oriented sides
p̂a and p̂b (directed from p to a and from p to b, respectively). Let te := tb−ta

‖tb−ta‖ be
a unit vector in TpM in the direction of the external angular bisector of ta and tb.

If F is locally convex at p, then let ti := ta+tb

‖ta+tb‖ . If F is not locally convex

at p, then let ti := − ta+tb

‖ta+tb‖ . I.e., ti is a unit vector in TpM in the direction of the
internal angular bisector of ta and tb.

Let 0 < γ < π be the angle between ta and ti. Since the two sides âp and b̂p
are not parts of the same curve of constant geodesic curvature kg, we have γ �= π

2 .
Let 0 < σa ≤ π

2 (and 0 < σb ≤ π
2 ) denote the angle between the geodesic

segment pa (resp. pb) and the curve p̂a (resp. p̂b). (See Figure 1.)

Claim 5.1. Let M be E2, H2 or S2. Using the above notations suppose that
the arc p̂a is not a semicircle. Let t ∈ TpM be a unit vector such that the oriented
angle between ta and t is φ, where the orientation is given by the ordered basis
(ta, ti). Then the derivative of the kg-arc-length function fa in the direction of t is

t(fa) = − cosφ − sin φ tan σa.



discrete isoperimetric inequality 127

Proof. Let u,v ∈ TpM be an orthonormal basis in TpM such that v is
tangent to the geodesic pa and points toward a.

Set da : M −→ R : x �→ dist(a, x). Clearly, u(da) = 0, hence u(fa) = 0. On
the other hand, let c : (−ε, ε) −→ M be the arc length parametrization of the curve
of constant geodesic curvature kg such that c(0) = p and c([0, ε]) ⊂ p̂a. The vector
ta can be represented as the differentiation along the curve c at 0, thus

ta(fa) =
d
dt

fa(c(t))|t=0 = −1 and u(fa) = 0. (1)

Since p̂a is not a semicircle, u and ta are not parallel and we can decompose t as
a linear combination t = µta + λu of them. Equation (1) and this decomposition
yields

t(fa) = µta(fa) = −µ = − 〈t,v〉
〈ta,v〉 = −cos(φ − σa)

cosσa
.

By the addition formula for the cosine function we finish the proof of the claim. �

Lemma 5.1. We use the above notations. Suppose that the inner angle of Γ
at p is strictly convex and that neither p̂a nor p̂b is a semicircle i.e. σa �= π

2 and
σb �= π

2 . Then

Le := te(L) = cos γ
(
tan σb − tan σa

)
. (2)

Li := ti(L) = −2 cosγ − sin γ
(
tanσa + tan σb

)
. (3)

Moreover, if we set x := −Lite + Leti, then

x(L) = 0 and x(fa) > 0. (4)

Proof. Equations (2) and (3) follow from Claim 5.1 using that the oriented
angle between ta and ti is γ as well as between tb and ti, while the oriented angle
between ta and te is γ + π

2 and between tb and ti is γ − π
2 . The first formula in (4)

is obvious.
By substituting Equations (2) and (3) in the definition of x and usingClaim 5.1,

after simplifications we have

x(fa) =
sin
(
2γ − σa − σb

)
cosσa cosσb

> 0.

The inequality holds, since 2γ − σa − σb is the angle of the triangle apb at p so,
0 < 2γ − σa − σb < π and 0 < σa, σb < π

2 . �

Recall from Section 3 that we prove Theorem 1.2 by a local argument. We
are going to show that moving p along a level curve τ of fa + fb in the direction
in which the difference |fb − fa| decreases the area A is increasing. Because of
continuity of A, it is enough to prove monotonicity of A on the relative interior of
the curve τ . According to Lemma 5.1, if p is not an endpoint of τ , then the vector
x = −Lite + Leti is tangent to τ and points toward the symmetric position, so to
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Figure 1 Figure 2

finish the proof, all we have to check is that x(A) > 0. For this purpose, we shall
compute the differential of A explicitly.

The following claim collects some relations between the geometric data of
an ear. The proof of these relations is straightforward from known identities of
hyperbolic, Euclidean and spherical trigonometry, so we omit it.

In the following claim we collect three formulae and omit the proof.

Claim 5.2. Let τ ⊂ M be a curve of constant geodesic curvature kg of arc
length s with endpoints q and r, K the sectional curvature of M. Suppose that
if k2

g + K > 0, then τ is shorter than a semicircle, i.e., s < π√
k2

g+K
. Let σ(s)

denote the angle between τ and the geodesic segment qr and let d(s) := dist(q, r),
see Figure 2. Then,

tanσ(s) =
kg√

k2
g + K

tan
s
√

k2
g + K

2
, sin

√
Kd(s)

2
=

√
K

k2
g + K

sin
s
√

k2
g + K

2
,

sin
(√

Kd(s)
)

√
K

cosσ(s) =
sin
(
s
√

k2
g + K

)
√

k2
g + K

.

These formulae make sense as the functions sin and z �→ sin z
z are regarded as

complex holomorphic functions defined on the whole complex plane. Similarly, tan
and z �→ tan z

z are regarded as meromorphic functions having poles only at odd
multiples of π/2.

Lemma 5.2. With the above notations, the derivatives of the area A(p) (de-
fined in Section 3) in the directions te and ti, respectively, are

Ae := te(A) =
cos γ√
k2

g + K

tan
fb(p)

√
k2

g + K

2
− tan

fa(p)
√

k2
g + K

2

 ,
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Ai := ti(A) = − sinγ√
k2

g + K

tan
fb(p)

√
k2

g + K

2
+ tan

fa(p)
√

k2
g + K

2

 .

Proof. For w ∈ TpM, we compute the derivative w(A) as follows.
Choose a curve η : (−ε, ε) → M describing a motion of η(0) = p with initial

speed η′(0) = w. Let ∗ stand for a or b. Take the unit speed parametrization
ζ∗ : R → M of the curve of constant geodesic curvature kg containing the arc ∗̂p
such that ζ(0) = ∗ and ζ(f∗(p)) = p. Denote by R∗(q, θ) the rotation of q ∈ M
about ∗ with angle θ with respect to a fixed orientation of M. Rotations about ∗
form a one parameter group of isometries generated by the Killing field r∗, where
r∗(q) = ∂θR∗(q, 0) (see Figure 1). There is a smooth function θ∗ : (−ε, ε) → R such
that the map [0, 1] → M, u �→ R∗(ζ∗(uf∗(η(t))), θ∗(t)) is a parametrization of the
side ∗̂η(t) of the domain F (η(t)). The initial speed vector field of this variation of
the side ∗̂p is the vector field v∗ along the curve ∗̂p the value of which at the point
q = ζ∗(uf∗(p)) is computed by the formula

v∗(q) =
∂

∂t
R∗(ζ∗(uf∗(η(t))), θ∗(t))

∣∣∣∣
t=0

= uw(f∗)ζ′∗(uf∗(p)) + θ′∗(0)r∗(q).

The speed vector v∗(p) coincides with the speed vector w of p, i.e.,

w = −w(f∗)t∗ + θ′∗(0)r∗(p), (5)

Let n∗ be the outer unit vector field along and orthogonal to the side ∗̂p. The
derivative of the function A with respect to w can be expressed as

w(A) =
∫

âp

〈na,va〉ds +
∫

b̂p

〈nb,vb〉ds =
∑

∗∈{a,b}
θ′∗(0)

∫
∗̂p

〈n∗, r∗〉ds. (6)

Since r∗ is a Killing field and therefore it is divergence free, denoting by m∗ the
outer unit normal of the polygon Γ along the side ∗p, we have∫

∗̂p

〈n∗, r∗〉ds =
∫
∗p

〈m∗, r∗〉ds.

The latter integral can be computed easily using the explicit form r∗=± sin(
√

Kd∗)√
K

m∗
of the vector field r∗ along the segment ∗p, where d∗(q) is the geodesic distance of
q ∈ M from the point ∗:
∫
∗p

〈m∗, r∗〉ds = ±
1 − cos

(√
Kd∗(p)

)
K

= 〈r∗(p),m∗(p)〉
1 − cos

(√
Kd∗(p)

)
√

K sin
(√

Kd∗(p)
)

=
〈r∗(p),m∗(p)〉√

K
tan

(√
Kd∗(p)

2

)
.

(7)
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From (5), (6) and (7) we obtain the following general formula for the derivative
of A

w(A) =
∑

∗∈{a,b}
θ′∗(0)

〈r∗(p),m∗(p)〉√
K

tan

(√
Kd∗(p)

2

)

=
∑

∗∈{a,b}

(〈w,m∗(p)〉 + w(f∗)〈t∗,m∗(p)〉)√
K

tan

(√
Kd∗(p)

2

)
.

(8)

In the special cases, when w = ti or w = te, the angles between the unit vectors
w, m∗(p) and t∗ are known explicitly and an explicit expression for w(f∗) is also
given in Claim 5.1. Substituting these explicit values into (8) we obtain

ti(A) =
∑

∗∈{a,b}

(
cos
(π

2
+ γ − σ∗

)
− cos(γ − σ∗)

cosσ∗
cos
(π

2
− σ∗

)) tan
(√

Kd∗(p)
2

)
√

K

= −
∑

∗∈{a,b}

sinγ√
K cosσ∗

tan

(√
Kd∗(p)

2

)

and similarly,

te(A) = − cos γ√
K cosσa

tan

(√
Kda(p)

2

)
+

cos γ√
K cosσb

tan

(√
Kdb(p)

2

)
.

The equivalence of the last two equations and the equations we wanted to show
follows easily from the formulae of Claim 5.2. �

Proof of Theorem 1.2. We have already explained that all we have to
show is that for x = −Lite + Leti, we have x(A) = −LiAe + LeAi > 0 provided
that fb(p) > fa(p). Computing x(A) explicitly using Lemmas 5.1 and 5.2, then
simplifying the result with the help of the first equation of Claim 5.2 we end up
with

x(A) =
2 cos2 γ√
k2

g + K

tan
fb(p)

√
k2

g + K

2
− tan

fa(p)
√

k2
g + K

2

 .

As the right hand side is obviously positive when fb(p) > fa(p), this finishes the
proof of the theorem. �
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6. Concluding Remarks

When kg is the geodesic curvature of a circle, then we can consider the discrete
isoperimetric problem for outer kg-polygons for which all the sides are circular arcs
longer than a semicircle. Obviously, the problem for “big eared” outer kg-polygons
can be reduced to Proposition 1.1 since a big eared kg-polygon is optimal if and
only if the small eared inner kg-polygon built around the same underlying polygon
is optimal.

The authors are grateful for Prof. Károly Bezdek for raising the question and
for his continuous support in the research.
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