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Abstract. Let C be a convex body. By the relative distance of points p and q we

mean the ratio of the Euclidean distance of p and q to the half of the Euclidean

length of a longest chord of C parallel to pq. The aim of the paper is to find upper

bounds for the minimum of the relative lengths of the sides of convex hexagons and

heptagons.

1. Introduction

Let pq be the closed segment with endpoints p and q in the Euclidean plane E2.
Denote by |pq| the Euclidean length of pq. Take a convex body C ⊂ E2. Consider
a chord p′q′ of C such that there is no longer chord in C parallel to pq. The ratio
of |pq| to 1

2
|p′q′| is called the C-distance of p and q and it is denoted by dC(p, q).

By the C-length of a closed segment we mean the C-distance of its endpoints. If it
is obvious which convex body we refer to, we may use the names relative distance
or relative length. We call a side of a convex n-gon relatively short (respectively,
relatively long) if its relative length is not greater (not smaller) than the relative
length of a side of the regular n-gon.

Doliwka and Lassak [2] proved that every convex pentagon has a relatively short
and a relatively long side. As the relative length of the sides of a regular hexagon
is 1, the analogous qustion about hexagons is whether every convex hexagon has a
side of relative length at least 1, and a side of relative length at most 1. Doliwka and
Lassak [2] presented the following examples that the answer for the above question
is negative.

Consider the hexagon H0 which is the convex hull of a regular triangle and its
homothetic copy with the homothety centre in the centre of gravity of the triangle
with the homothety ratio 1−

√
3. The relative length of the sides of this hexagon is

8−4
√

3 ≈ 1.071 > 1. The mentioned authors conjecture that every convex hexagon
has a relatively long side and a side of relative length at most 8 − 4

√
3. The first

part of this conjecture follows from the paper [1] of Chakerian and Talley. The aim
of the present paper is to prove the second part of this conjecture. We also show
that every convex heptagon has a side of unit relative length.

2. Hexagons

Theorem 1. Every convex hexagon has a side of relative length at most 8 − 4
√

3.

Our proof of this theorem is based on two lemmas.
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Lemma 1. Let G be a convex n-gon, where n ≥ 6. Assume that a triangle of the
largest possible area inscribed in G has a side which coincides with a side of G.
Then G has a side of G-length at most 1.

Proof. Let T = abc be a triangle mentioned in the formulation of our lemma.
Observe that we can assume that ab is a side of G, and c is a vertex of G. At least
one of the two pieces of the boundary of G between a and c contains at least two
additional vertices e and f of G. For instance, let e be between c and f on this
piece.

Since the ratio of the areas of two figures does not change under affine transfor-
mations, we may assume in our proof that abc is an isosceles triangle with right
angle at b. Take the point d such that S = abcd is a square. Since abc is a triangle
of maximal area, we conclude that e and f belong to S.

Consider the convex pentagon P = abcef . First, we intend to show that at least
one of the relative distances dP (c, e), dP (e, f), dP (f, a) is at most 1. We dissect S
into four equal squares Sa, Sb, Sc, Sd containing a, b, c, d, respectively. Since G is
convex, e and f are not in the interior of T . If dP (c, e) > 1 and dP (f, a) > 1, then
e /∈ Sc, and f /∈ Sa and thus e ∈ Sd and f ∈ Sd. Hence dP (e, f) ≤ 1. We see that
at least one of the numbers dP (c, e), dP (e, f), dP (f, a) is at most 1.

Figure 1

Finally, we intend to show that if one of the mentioned P -distances is at most 1,
then G has a side of G-length at most 1. We assume that dP (e, f) ≤ 1 (analogical
consideration can be applied for the remaining two cases). Examine the case when
e and f are consecutive vertices of G. Since P is a subset of G, we have dG(p, q) ≤
dP (p, q) for arbitrary points p, q. Thus, in this case the thesis of our lemma holds
true. Take into account the opposite case, when e and f are not consecutive vertices,
and take a vertex v of G between them. Let V be a side of G with endpoint v.
Consider the chords Ca and Cc of G with endpoints a and c, respectively, which
are parallel to V . Observe that Ca or Cc is at least twice as long as V . Hence, the
G-length of V is at most 1.

�

Lemma 2. Consider a convex hexagon H = abcdef such that the triangle ace is
regular. Let us take the lines through a, c, e parallel to the segments ce, ea, ac,
respectively. The intersections of these lines are denoted by a0, c0, e0 (they are
opposite to a, c, e, respectively). Assume that b, d, f are in the triangle a0c0e0

and that the angles cab∠, acb∠, aef∠, eaf∠ are equal α. Denote the angle ecd∠ by
β, and denote the angle ced∠ by γ. If 0 < α < π

6
, 0 < min(β, γ) < π

6
, dH(c, d) ≥

8 − 4
√

3, and dH(d, e) ≥ 8 − 4
√

3, then min(β, γ) ≥ α with equality if and only if
α = β = γ = π .
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Proof. We choose a Cartesian coordinate system such that a, c, e are (0, 0), (1,
√

3)

and (−1,
√

3), respectively. Since dH(d, e) ≥ 8−4
√

3, then d is not in the interior of

the homothetic copy C1 of the quadrangle cefa with the homothety ratio −(4−2
√

3)
such that the image of c is e. Moreover, also d is not in the interior of the homothetic
copy C2 of the quadrangle eabc with the homothety ratio −(4−2

√
3) such that the

image of e is c. The boundaries of C1 and C2 inside of the triangle ca0e intersect
each other at one point. Denote it by d0.

Figure 2

Case 1, when d0 is on the images of the sides ef and bc.
The minimum of β and γ is attained for d = d0. The ordinate of d0 is

tan(α +
π

3
)(7 − 4

√
3) +

√
3.

This implies the inequality

tan(min(β, γ)) ≥ tan(α +
π

3
)(7 − 4

√
3).

But it can be easily verified that if 0 < α < π

6
, then tan(α) ≤ tan(α+ π

3
)(7−4

√
3)

with equality if and only if α = π

12
. Hence, the equality can hold if and only if

α = min(β, γ) = π

12
. But when β or γ is equal to π

12
, d0 is the only point on the

segment in the triangle eca0 determined by the angle π

12
which is not in the interiors

of C1 and C2. That is, we have β = γ = π

12
.

Case 2: when d0 is on the images of the sides fa and ab.
We get the minimum of β when d is d0 or when d is the homothetic image of a

in the homothetic copy of the quadrangle cefa. Hence β ≥ π

6
. A similar inequality

holds for γ. Therefore min(β, γ) ≥ π

6
, contrary to the hypothesis.

�

Proof of Theorem. Consider a convex hexagon H = abcdef . If a triangle of the
largest possible area inscribed in H has a side which coincides with a side of H,
then we apply Lemma 1.

Let us look to the opposite case when every triangle of the maximum area in-
scribed in H does not contain a side of H. Observe that then ace or bdf is a
triangle of maximal area. Consider the first possibility (in the other one, further
consideration is analogical). Since the relative distance is affine invariant, we can

assume that ace is a regular triangle with vertices a(0, 0), c(1,
√

3), e(−1,
√

3) in a
rectangular coordinate system. We provide straight lines La, Lc, Le through a, c,
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e parallel to the segments ce, ea, ac, respectively. Denote the point of intersection
of Lc and Le by a0. Similarly, let c0 be the intersection of La and Le. Moreover,
let e0 be the intersection of La and Lc. Since ace is a triangle of maximum area
inscribed in H, the points b, d and f belong to the triangle a0c0e0. Denote the
angles cab∠, acb∠, ecd∠, . . . , eaf∠ by α1, α2, . . . α6, respectively.

In order to prove our theorem we intend to show that if the relative lengths of
the sides of H are at least 8 − 4

√
3, then αi = π

12
for i = 1, . . . , 6.

In further consideration we exclude the case when αi = 0 for a certain i because
in this special situation the hexagon contains a closed segment containing three
consecutive vertices which means that it has a side of relative length at most 1.

Assume that α4 = min{α1, . . . , α6}.
Case 1, when α4 < π

6
.

Consider first an auxiliary hexagon H ′ in which we have α4 in the place of
α1, α2, α5, α6 . Then, from H ′ ⊂ H we get that dH(c, d) ≤ dH′(c, d) and dH(d, e) ≤
dH′(d, e).

Now we apply Lemma 2 for H ′ putting α3 in the part of β, and α4 in the part of
α and γ. We get that α4 ≤ α4 with equality if and only if α3 = α4 = π

12
. Since α4

is the minimal angle from among α1, . . . , α6, all those angles are at least π

12
. Let us

take the homothetic copies of the quadrangles cefa and eabc with homothetic ratio
−(4 − 2

√
3) such that the images of c and e are e and c, respectively. Since d is in

the interior of neither of the two copies, we get that min(α1, α2) and min(α5, α6) are
at most π

12
. Consequently they are equal to π

12
. Now we take an auxiliary hexagon

H ′′ in which α5 and α6 are replaced by α4 = π

12
. We apply Lemma 2 for H ′′ and

we get that π

12
≤ π

12
with equality if and only if α1 = α2 = π

12
. Thus, we can apply

Lemma 2 for H, and as a result we get that αi = π

12
for every i ∈ {i = 1, 2, . . . , 6}.

It can be easily verified that this hexagon is nothing else but the hexagon H0

mentioned in Introduction.
Case 2, when α4 ≥ π

6
.

According to our previous assumption about α4, all the angles are at least π

6
.

Notice that in this case the area of the triangle bdf is not less than the area of the
triangle ace, with equality if and only if all the six angles are π

6
. Hence this case

concerns only the regular hexagon, the relative length of the sides of which is equal
to 1.

�

The proof of Theorem also shows that the only hexagons such that the relative
lengths of its sides are at least 8 − 4

√
3 are the affine images of the hexagon H0

constructed by Doliwka and Lassak.

3. Heptagons

Corollary. Every convex heptagon has a side of relative length at most 1.

Proof. Let H = abcdefg be a convex heptagon, such that all the relative lengths
of its sides are greater than 1. According to Lemma 1 we can assume that acf is
a triangle of maximal area inscribed in H. As relative distance is affine invariant,
we can assume that the triangle acf is regular. Let us take a Cartesian coordinate
system such that a, c, and f are (0, 0), (1,

√
3), (−1,

√
3), respectively. We define

the points a0, c0, f0 similarly like in the proof of Theorem. Since acf is a triangle
of maximal area, b, d, e, g are in the triangle a0c0f0. Let a′, c′, f ′ be the midpoints



ON THE RELATIVE LENGTHS OF SIDES OF CONVEX POLYGONS 5

of the segments cf , a0f and a0c, respectively. As dH(c, d) and dH(e, f) are greater
than 1, the points d and e belong to the rhombus a′f ′a0c

′. The convexity of H
implies that the slope of the segment de is between −

√
3 and

√
3. Hence dH(d, e) ≤

1. But this contradicts the assumption that the relative lengths of all the sides of
H are greater than 1.

Figure 3

�

The example of the degenerated heptagon with four vertices in the vertices of a
square and with three remaining vertices in the midpoints of the sides of the square
shows that this result is the best possible.
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