ALMOST EQUIDISTANT POINTS ON S^{D-1}

KÁROLY BEZDEK¹ (Budapest) and ZSOLT LÁNGI (Dunaújváros)

Abstract

Let S^{d-1} denote the (d-1)-dimensional unit sphere centered at the origin of the d-dimensional Euclidean space. Let $0 < \alpha < \pi$. A set \mathcal{P} of points in S^{d-1} is called almost α -equidistant if among any three points of \mathcal{P} there is at least one pair lying at spherical distance α . In this note we prove upper bounds on the cardinality of \mathcal{P} depending only on d.

1. Introduction

Let S^{d-1} denote the (d-1)-dimensional unit sphere centered at the origin \mathbf{o} of the d-dimensional Euclidean space $\mathbf{E^d}$ that is let $S^{d-1} = \{\mathbf{x} \in \mathbf{E^d} | \langle \mathbf{x}, \mathbf{x} \rangle = 1\}$, where $\langle ., . \rangle$ stands for the standard inner product of $\mathbf{E^d}$. Let $0 < \alpha < \pi$. It is an elementary exercise to show that the number of points in S^{d-1} having pairwise distances equal to α is at most d+1. This motivates the following notion. A set $\mathcal P$ of points in S^{d-1} is called almost α -equidistant if among any three points of $\mathcal P$ there is at least one pair lying at spherical distance α . (As usual we measure the spherical distance between any two points of S^{d-1} by the length of the shortest geodesic arc connecting the two points.) It is proved in [1] in a very elegant way that the number of almost $\frac{\pi}{2}$ -equidistant points in S^{d-1} is at most 2d. In this paper we prove the following extensions of this result.

Theorem 1. For any $\frac{\pi}{2} \leq \alpha < \pi$ the number of almost α -equidistant points in S^{d-1} is at most 2d+2, where $d \geq 2$.

REMARK 1. The spherical distance between any two vertices of a regular d-dimensional simplex inscribed S^{d-1} is equal to $\alpha_d = 2 \cdot \arcsin \sqrt{(d+1)/(2d)}$. (Notice

 $Mathematics\ subject\ classification\ numbers,\ 51F99,\ 51K99,\ 52C99,\ 05A99.$

Key words and phrases. Almost equidistant points, spherical geometry.

 $^{^1}$ The author was partially supported by the Hung. Nat. Sci. Found. (OTKA), grant no. T029786 and by the Combinatorial Geometry Project of the Research Found. FKFP0151/1999.

that $\frac{\pi}{2} < \alpha_d < \pi$ moreover, $\lim_{d \to +\infty} \alpha_d = \frac{\pi}{2}$.) Thus, if one takes the 2(d+1) vertices \mathcal{V} of two regular d-dimensional simplices inscribed S^{d-1} , then among any three vertices of \mathcal{V} there is a pair lying at spherical distance α_d . This shows that the upper bound 2(d+1) in Theorem 1 is sharp.

THEOREM 2. For any positive integer $d \geq 2$ there exists a positive real number $\epsilon(d)$ such that the maximum number of almost α -equidistant points in S^{d-1} with $|\alpha - \frac{\pi}{2}| \leq \epsilon(d)$ is equal to 2d.

REMARK 2. Recall that for the angle α_d introduced in Remark 1 we have that $\lim_{d\to +\infty}\alpha_d=\frac{\pi}{2}$. As a result the construction of Remark 1 shows that $\lim_{d\to +\infty}\epsilon(d)=0$. Finally, if one takes two congruent copies of a regular spherical (d-1)-dimensional simplex of spherical edge length $\alpha,0<\alpha\leq\alpha_{d-1}$, then the 2d vertices of the two spherical simplices form an almost α -equidistant pointset in S^{d-1} . This shows that the upper bound 2d in Theorem 2 cannot be improved.

THEOREM 3. For any $0 < \alpha < \frac{\pi}{2}$ the number of almost α -equidistant points in S^{d-1} is at most $d^2 + d - 2$, where $d \geq 2$.

REMARK 3. Most likely the upper bound d^2+d-2 in Theorem 3 can be improved for all $d \geq 2$. Moreover, for any "small" $\alpha > 0$ we have the following construction. Take a regular spherical (d-1)-dimensional simplex of spherical edge length α with vertices say, $\mathbf{v}_1, \ldots, \mathbf{v}_{d-1}, \mathbf{v}_d$ in S^{d-1} . Then reflect \mathbf{v}_d about the (d-2)-dimensional great-sphere of S^{d-1} passing through the vertices $\mathbf{v}_1, \ldots, \mathbf{v}_{d-1}$ and denote by \mathbf{c} the point obtained. Finally, let \mathbf{v}_i^* be the rotated copy of the point \mathbf{v}_i about the point \mathbf{c} through the same angle for all $1 \leq i \leq d$ in S^{d-1} such that the spherical distance between \mathbf{v}_d and \mathbf{v}_d^* is equal to α . It is easy to check that the points $\mathbf{c}, \mathbf{v}_1, \ldots, \mathbf{v}_{d-1}, \mathbf{v}_d, \mathbf{v}_1^*, \ldots, \mathbf{v}_{d-1}^*, \mathbf{v}_d^*$ form an almost α -equidistant pointset of cardinality 2d+1 in S^{d-1} .

2. Proof of Theorem 1

The proof presented here follows the ideas of [1] with some proper modifications. Let $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a maximal system of unit vectors in $\mathbf{E}^{\mathbf{d}}$ with the property that among any three vectors $\{\mathbf{u}_i, \mathbf{u}_j, \mathbf{u}_k\} \in \mathcal{U}$ there are two say, $\mathbf{u}_i, \mathbf{u}_j$ with $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \cos\alpha$. We now consider the matrix $A = (\langle \mathbf{u}_i, \mathbf{u}_j \rangle - \cos\alpha)_{n \times n}$. Notice that $A = U - \cos\alpha E$, where $U = (\langle \mathbf{u}_i, \mathbf{u}_j \rangle)_{n \times n}$ is the Grammian matrix assigned to the vectors of \mathcal{U} and E the matrix with entries being equal to 1 that is $E = (1)_{n \times n}$. Clearly, the matrices U and E are positive semidefinite matrices. As $\cos\alpha \leq 0$ the matrix E is positive semidefinite as well. Since the rank of E is at most E, it is easy to check that the rank of E is at most E is positive semidefinite all other eigenvalues of E are positive. Moreover, as the points (i.e. vectors) of E is at most E form an almost

 α -equidistant pointset, for all triples $i \neq j \neq k \neq i$ we have that $a_{ij}a_{jk}a_{ki} = 0$, where $a_{ij} = \langle \mathbf{u}_i, \mathbf{u}_j \rangle - \cos \alpha$. Finally, notice that the main diagonal entries of A are all $1 - \cos \alpha$. Thus, if I denotes the $n \times n$ identity matrix, then the matrix $B = A - (1 - \cos \alpha)I$ with the ij-entry b_{ij} , $1 \leq i, j \leq n$ has the following properties:

- (1) $b_{ii} = 0$ for all $i = 1, \ldots, n$;
- (2) $-(1-\cos\alpha)$ is the smallest eigenvalue of B with multiplicity at least n-(d+1);
- (3) $b_{ij}b_{jk}b_{ki} = 0$ for all triples $1 \le i, j, k \le n$.

Let $\lambda_1, \ldots, \lambda_n$ denote the eigenvalues of B. (2) implies that without loss of generality we may assume that $\lambda_{d+2} = \cdots = \lambda_n = -(1 - \cos\alpha)$ and $\lambda_1 \ge -(1 - \cos\alpha), \ldots, \lambda_{d+1} \ge -(1 - \cos\alpha)$. (1) clearly implies that

$$\sum_{i=1}^{n} \lambda_i = \text{tr } B = 0,$$

where $\operatorname{tr} B$ denotes the trace of B. As an immediate result we get that

$$\sum_{i=1}^{d+1} \lambda_i = (n-d-1)(1-\cos\alpha). \tag{4}$$

Since, tr $B^3 = \sum_{1 \leq i,j,k \leq n} b_{ij} b_{jk} b_{ki}$, (3) yields that tr $B^3 = 0$. Notice that the eigenvalues of B^3 are $\lambda_1^3, \ldots, \lambda_n^3$ consequently, $\sum_{i=1}^n \lambda_i^3 = \operatorname{tr} B^3 = 0$ that is

$$\sum_{i=1}^{d+1} \lambda_i^3 = (n-d-1)(1-\cos\alpha)^3. \tag{5}$$

In order to finish the proof of Theorem 1 we need the following lemma which is a somewhat stronger version of the lemma in [1].

LEMMA 1. Let $\{x_1, \ldots, x_m\}$ be m real numbers with the property that there exists y > 0 such that $x_i \ge -y, i = 1, \ldots, m$ and $\sum_{i=1}^m x_i = (m+k)y, k \ge 0$. Then

$$\sum_{i=1}^{m} x_i^3 \ge (m+3k)y^3.$$

PROOF. If $x_i \geq 0$ for all $1 \leq i \leq m$, then the following is a well-known inequality:

(6)
$$\sqrt[3]{\frac{\sum_{i=1}^{m} x_i^3}{m}} \ge \frac{\sum_{i=1}^{m} x_i}{m}.$$

From (6) it follows in a straightforward way that

$$\sum_{i=1}^{m} x_i^3 \ge \frac{\left(\sum_{i=1}^{m} x_i\right)^3}{m^2} = \frac{(m+k)^3 y^3}{m^2} \ge (m+3k)y^3.$$

Now, we proceed by induction on the number t of indices i for which $x_i < 0$. If t = 0, then we are done. If t > 0, then without loss of generality we may assume that $x_1 = -ly < 0$ with some $0 < l \le 1$. Then we replace x_1 by 0 to obtain m real

numbers $\{0, x_2, \ldots, x_m\}$ the sum of which is equal to (m + k + l)y. The induction hypothesis implies that

$$\sum_{i=2}^{m} x_i^3 \ge [m+3(k+l)]y^3.$$

Thus, we get that

$$\sum_{i=1}^m x_i^3 = (\sum_{i=2}^m x_i^3) - l^3 y^3 \ge [m+3(k+l)-l^3] y^3 \ge [m+3k] y^3.$$

This completes the proof of Lemma 1.

Returning to the proof of Theorem 1 assume that n>2(d+1). Introducing the notations $k=n-2(d+1)\geq 1$ and $y=1-\cos\alpha>0$ we can rewrite (4) as follows:

$$\sum_{i=1}^{d+1} \lambda_i = (d+1+k)y.$$

Thus, Lemma 1 implies that

$$\sum_{i=1}^{d+1} \lambda_i^3 \ge (d+1+3k)y^3.$$

Finally, according to (5)

$$\sum_{i=1}^{d+1} \lambda_i^3 = (d+1+k)y^3,$$

a contradiction. This completes the proof of Theorem 1.

3. Proof of Theorem 2

As the proof presented in this section is a properly modified version of the proof of Theorem 1 given in $\S 2$ we describe the major steps only without going into details.

Let $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a maximal system of unit vectors in $\mathbf{E^d}$ with the property that among any three vectors $\{\mathbf{u}_i, \mathbf{u}_j, \mathbf{u}_k\} \in \mathcal{U}$ there are two say, $\mathbf{u}_i, \mathbf{u}_j$ with $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \cos\alpha$, where $|\alpha - \frac{\pi}{2}| \leq \epsilon(d)$ with some sufficiently small $\epsilon(d) > 0$ that will be chosen later. (Notice that as $\epsilon(d) > 0$ is small the angle α is close to $\frac{\pi}{2}$ and so $\cos\alpha$ is close to 0.)

Assume that n>2d. Then let $A=(\langle \mathbf{u}_i,\mathbf{u}_j\rangle)_{(2d+1)\times(2d+1)}$ be the Grammian matrix assigned to the vectors $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_{2d+1}\}$. Clearly, the matrix A is positive semidefinite of rank at most d and so 0 is an eigenvalue of A with multiplicity at least (2d+1)-d=d+1 and all other eigenvalues of A are positive. Finally, if I is the $(2d+1)\times(2d+1)$ identity matrix, then the matrix B=A-I with the ij-entry $b_{ij},1\leq i,j\leq 2d+1$ has the following properties:

- (7) $b_{ii} = 0$ for all i = 1, ..., 2d + 1;
- (8) -1 is the smallest eigenvalue of B with multiplicity at least d+1;
- (9) $b_{ij}b_{jk}b_{ki}$ is close to 0 for all $1 \le i, j, k \le 2d+1$ if $\epsilon(d) > 0$ is sufficiently small. Let $\lambda_1, \ldots, \lambda_{2d+1}$ denote the eigenvalues of B. (8) implies that without loss of generality we may assume that $\lambda_{d+1} = \cdots = \lambda_{2d+1} = -1$ and $\lambda_1 \ge -1, \ldots, \lambda_d \ge -1$.

(7) clearly implies that

$$\sum_{i=1}^{d} \lambda_i = d+1. \tag{10}$$

Since, tr $B^3 = \sum_{1 \le i,j,k \le 2d+1} b_{ij} b_{jk} b_{ki}$, (9) yields that tr B^3 is close to 0 if $\epsilon(d)$ is sufficiently small that is

$$\sum_{i=1}^{d} \lambda_i^3 \text{ is close to } d+1. \tag{11}$$

Finally, based on (10) Lemma 1 implies that

$$\sum_{i=1}^{d} \lambda_i^3 \ge d+3. \tag{12}$$

As (12) clearly contradicts (11) for any sufficiently small $\epsilon(d)$ the proof of Theorem 2 is complete.

4. Proof of Theorem 3

Let $\mathcal{U} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an almost α -equidistant pointset on S^{d-1} , with some $0 < \alpha < \frac{\pi}{2}$. Let G be the graph defined on the points of \mathcal{U} as vertices such that two points of \mathcal{U} are connected by an edge if the spherical distance between them is equal to α . Finally, let f(d-1) denote the maximum cardinality of almost α -equidistant pointsets of S^{d-1} .

If the spherical distance between any two points of \mathcal{U} is equal to α , then it is easy to see that $n \leq d$ and so we are done. Thus, we are left with the case that there are two points of \mathcal{U} say, \mathbf{u}_1 and \mathbf{u}_2 lying at spherical distance different from α . This means that there is no edge of G between the vertices \mathbf{u}_1 and \mathbf{u}_2 . Now, let \mathcal{U}_1 (resp., \mathcal{U}_2) denote the set of the vertices of G that are not connected by an edge to the vertex \mathbf{u}_1 (resp., \mathbf{u}_2). Moreover, let $\mathcal{U}_3 = \mathcal{U} \setminus (\mathcal{U}_1 \cup \mathcal{U}_2)$. As \mathcal{U} is an almost α -equidistant pointset the graph G restricted to \mathcal{U}_1 (resp., \mathcal{U}_2) is a complete graph. Thus,

$$\operatorname{card}(\mathcal{U}_1) \le d \quad \text{and} \quad \operatorname{card}(\mathcal{U}_2) \le d.$$
 (13)

Finally, notice that the vertices of \mathcal{U}_3 are connected by an edge to \mathbf{u}_1 as well as to \mathbf{u}_2 . As a result \mathcal{U}_3 lies on a (d-2)-dimensional great-sphere of S^{d-1} . Hence,

$$\operatorname{card}(\mathcal{U}_3) \le f(d-2). \tag{14}$$

Thus, (13) and (14) imply that

$$n = \operatorname{card}(\mathcal{U}) < 2d + f(d-2). \tag{15}$$

(15) immediate yields that

$$f(d-1) \le 2d + f(d-2). \tag{16}$$

Finally, (16) with f(1) = 4 completes the proof of Theorem 3.

 $\mathbf{A}_{\mathsf{CKNOWLEDGEMENTS}}.$ We are indebted to B. Csikós and Gy. Kiss for helpful comments.

REFERENCE

 M. ROSENFELD, Almost orthogonal lines in E^d, in the The Victor Klee Festschrift, DIMACS Ser. in Disc. Math. and Th. Comp. Sci., Vol. 4, 1991.

KÁROLY BEZDEK EÖTVÖS UNIVERSITY DEPARTMENT OF GEOMETRY H-1053 BUDAPEST KECSKEMÉTI U. 10-12 HUNGARY E-MAIL: kbezdek@ludens.elte.hu

ZSOLT LÁNGI POLYTECHNIC DUNAÚJVÁROS INSTITUTE OF NATURAL SCIENCES H-2401 DUNAÚJVÁROS TÁNCSICS M. ÚT 1/A, HUNGARY E-MAII.: zslangi@kac.poliod.hu