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ALMOST EQUIDISTANT POINTS ON S§P-1

KARoOLY BEZDEK! (Budapest) and ZsoLT LANGI {Dunadjvéros)

Abstract

Let $47! denote the (d — 1)-dimensional unit sphere centered at the origin of
the d-dimensional Euclidean space. Let 0 < o < w. A set 7 of points in 591 5
called almost a-equidistant if among any three points of P there is at least one pair
lying at spherical distance o. In this note we prove upper bounds on the cardinality
of P depending only on d.

1. Introduction

Let 5971 denote the {d — 1)-dimensional unit sphere centered at the origin o
of the d-dimensional Euclidean space EY that is let S9! = {x € Ed|{x,x} = 1},
where {.,.} stands for the standard inner product of E4. Let 0 < o < 7. Tt is
an elementary exercise to show that the number of points in 54=1 having pairwise
distances equal to o is at most d+ 1. This motivates the following notion. A set P
of points in 8271 is called almost a-equidistant if among any three points of P there
is at least one pair lying at spherical distance a. (As usual we measure the spherical
distance between any two points of $94=1 by the length of the shortest geodesic arc
connecting the two points.) It is proved in (1} in a very elegant way that the number
of almost I-equidistant points in 54-1 is at most 2d. In this paper we prove the
following extensions of this result.

THEOREM 1. For any § < & < 7 the number of almost a-equidistant points
in 591 s at most 2d + 2, where d > 2.

REMARK 1. The spherical distance between any two vertices of a regular d-di-
mensional simplex inscribed $97! is equal to ag = 2- arcsing/{d + 1)/(2d). (Notice
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that § < aq < 7 moreover, limg . oo g = §.) Thus, if one takes the 2(d + 1)
vertices V of two regular d-dimensional simplices inscribed $971, then among any
three vertices of V' there is a pair lying at spherical distance cg. This shows that
the upper bound 2(d + 1) in Theorem 1 is sharp.

THEOREM 2. For any positive integer d > 2 there exists a positive real number
eld) such that the mazimum number of almost a-equidistant points in S71 with
la — 5| < eld) s equal to 2d.

REMARK 2. Recall that for the angle ay introduced in Remark 1 we have
that limg—joca = 5. As a result the construction of Remark 1 shows that
limy_, o €(d) = 0. Finally, if one takes two congruent copies of a regular spherical
{d — 1)-dimensional simplex of spherical edge length ,0 < o < ag_1, then the
2d vertices of the two spherical simplices form an almost a-equidistant pointset in

5§91, This shows that the upper bound 2d in Theorem 2 cannot be improved.

THEOREM 3. For any 0 < & < § the number of almost a-equidistant points
in 9% s at most d® +d — 2, where d > 2.

REMARK 3. Most likely the upper bound d? + d — 2 in Theorem 3 can be
improved for all d > 2. Moreover, for any “small” o« > 0 we have the following
construction. Take a regular spherical {d - 1)-dimensional simplex of spherical edge
length o with vertices say, vi,...,Vq_1,vq in 594, Then reflect vy about the
(d — 2)-dimensional great-sphere of $9~! passing through the vertices v1,...,ve—1
and denote by ¢ the point obtained. Finally, let v be the rotated copy of the point
v; about the point ¢ through the same angle for all 1 < ¢ < d in $%~! such that
the spherical distance between v and v} is equal to . It is easy to check that the
points ¢, v1,...,V4-1,Vq, V],..., Vv _1, vy form an almost a-equidistant pointset of
cardinality 2d + 1 in §9°1,

2. Proof of Theorem 1

The proof presented here follows the ideas of [1] with some proper modifica-
tions. Let & = {u, us, ..., 1, } be a maximal system of unit vectors in E¢ with the
property that among any three vectors {u;, u;, us} € U there are two say, u;, u;
with (u;, u;) = cosce. We now consider the matrix A = ({(1;,1;) — cos®), . Notice
that A = U —cosaE, where U = ({W;, 4;) )nxn is the Grammian matrix assigned to
the vectors of If and F the matrix with entries being equal to 1 that is £ = (1),xn.
Clearly, the matrices U and E are positive semidefinite matrices. As cosa < 0 the
matrix A is positive semidefinite as well. Since the rank of U is at most d, it is easy
to check that the rank of A is at most d + 1 and so 0 is an eigenvalue of A with
multiplicity at least n — (d+ 1). As A is positive semidefinite all other eigenvalues
of A are positive. Moreover, as the points (i.e. vectors) of &4 C 8%~ form an almost
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a-equidistant pointset, for all triples ¢ # j # k # ¢ we have that aj;arar; = 0,
where a;; = {u;,1;) — coser. Finally, notice that the main diagonal entries of A
are all 1 — cosa. Thus, if 7 denotes the » x n identity matrix, then the matrix
B = A~ (1 —cosa) with the ¢j-entry b;;, 1 < 4, j < n has the following properties:
(1) by =0foralli=1,...,n
(2) —(1—cose) is the smallest eigenvalue of B with multiplicity at least n—{d+1);
(3) by;bjibe = 0 for all triples 1 <4,k < n.

Let Ai,..., A, denote the eigenvalues of B. (2) implies that without loss
of generality we may assume that Agya = -+ = Ay = —(1 — cosa) and Ay =
—(1 — cosa)..., Aay1 = —(1 — cosa). (1) clearly implies that

n
d h=trB=0,
i=1

where tr B denotes the trace of B. As an immediate result we get that

dt1

Z)‘i = (n—d— 1}{1 — cosa). (4)
i=t

Since, tr B% = Zlgi,g‘,kgn biibikbii, (3) yields that tr B?® = 0. Notice that the

eigenvalues of B% are X3,..., A consequently, 37 | A} = tr B* =0 that is
dF1
SN =(n—d—1)(1 - cosa)®. (5)
i=1

In order to finish the proof of Theorem 1 we need the following lemma which
is a somewhat stronger version of the lemma in [1].

LEmMA 1. Let {z1,...,&m} be m real numbers with the property that there
erists y > 0 such that x; > —y,i=1,...,m and Z:ll 2y = (m+kyy,k > 0. Then

m
Z &} > (m+ 3k)y°.

i=1
ProOOF. If o; > O for all 1 < ¢ < m, then the following is a well-known
inequality:
3 Z:}_-l ) - Dt T
m  — om

(6)

From (6) it follows in a straightforward way that

> (m+ 3k)y°.

L (TR a) B
Z T = z 3
e m
i=1
Now, we proceed by induction on the number t of indices ¢ for which »; < 0. If

t = 0, then we are done. If ¢ > 0, then without loss of generality we may assume
that #1 = —Iy < 0 with some 0 <! < 1. Then we replace z1 by 0 to obtain m real
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numbers {0, z2,...,%m} the sum of which is equal to (m + & -+ I}y. The induction
hypothesis implies that

S ad = [t 30k + Dl
i=2
Thus, we get that

S =0 ad) - By = [m+ 3+ 1) — Py > [m o+ Bkl

=1 i=2
This completes the proof of Lemma 1. O

Returning to the proof of Theorem 1 assume that » > 2(d+ 1). Introducing
the notations k = n—2(d+ 1) > 1 and y = 1 — cosa > 0 we can rewrite (4) as
follows:

d+1

S h=(d+1+ky.
i=1
Thus, Lemma 1 implies that
d+1
SN = (d+ 1+ 3k
=1
Finally, according to (5)
d+1

SN =(d+ 14k,
=1

a contradiction. This completes the proof of Theorem 1.

3. Proof of Theorem 2

As the proof presented in this section is a properly modified version of the
proof of Theorem 1 given in §2 we describe the major steps only without going into
details.

Let ¢4 = {u;,us,...,u,} be a maximal system of unit vectors in E? with the
property that among any three vectors {u;,u;,ux} € U there are two say, u;, uy
with (u;,u;} = cosa, where |a — Z| < e(d) with some sufficiently small ¢(d) > 0
that will be chosen later. (Notice that as e{d) > 0 is small the angle o is close to T
and so cosa is close to 0.)

Assume that n > 2d. Then let 4 = ({u;, 1;))(2a+1)x(24+1) be the Grammian
matrix assigned to the vectors {1, ua,..., us941}. Clearly, the matrix A is positive
semidefinite of rank at most d and so 0 is an eigenvalue of A with multiplicity at
least {(2d+ 1) —d = d+ 1 and all other eigenvalues of A are positive. Finally, if I is
the (2d+1) x (2d + 1) identity matrix, then the matrix B = A — [ with the {j-entry
bi;,1 < 1,7 < 2d+ 1 has the following properties:
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(7) by=0foralli=1,...,2d+1;
(8) ~1 is the smallest eigenvalue of B with multiplicity at least d + 1;
(9) bi;b;1bei is close to Ofor all 1 < ¢, 4,k < 2d+1if e(d) > 0 is sufficiently small.
Let A1, ..., A2qr1 denote the eigenvalues of B. {8) implies that without loss of
generality we may assime that Agy1 =+ = Aggr = ~land Ay = —1,..., Ay = —L.
(T) clearly implies that
d
STa=d+l (10)
=1
Since, tr B* = D 1cigmezdi bigbirbais (9) yields that tr B? is close to 0 if €(d) is
sufficiently small that is
d
Z A is close to d + 1. (1D
i=1
Finally, based on (10) Lemma 1 implies that

d
SN zd+3 (12)
i=1
As (12) clearly contradicts (11) for any sufficiently small ¢(d) the proof of Theorem
2 is complete.

4. Proof of Theorem 3

Let I = {uy,...,u,} be an almost a-equidistant pointset on S4=!, with some
0 < a < Z. Let G be the graph defined on the points of If as vertices such that two
points of Z{ are connected by an edge if the spherical distance between them is equal
to o. Finally, let f(d — 1) denote the maximum cardinality of almost a-equidistant
pointsets of §9-1.

If the spherical distance between any two points of U is equal to «, then it
is easy to see that n < d and so we are done. Thus, we are left with the case that
there are two points of If say, u; and uy lying at spherical distance different from
a. This means that there is no edge of G between the vertices u; and uz. Now, let
U, (resp., Uz) denote the set of the vertices of G that are not connected by an edge
to the vertex u; (resp., uz). Moreover, let Uy = U \ (U4 Uldz). As U is an almost
a-equidistant pointset the graph G restricted to I (resp., L) is a complete graph.
Thus,

card{U)) < d and card(ifp) < d. (13)

Finally, notice that the vertices of Iy are connected by an edge to u; as well as to
uy. As a result U3 lies on a (d — 2)-dimensional great-sphere of S9!, Hence,

card(i3) < f{d — 2). (14)
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Thus, (13) and (14) imply that
n = card(if) < 2d + f(d — 2). (15)
(15) immediate yields that
fid=1) <2d+ f(d—2). (16)
Finally, (16) with f(1) = 4 completes the proof of Theorem 3.
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