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INTRODUCTION

Finding sets of points on the sphere or in the ball of a Euclidean n-space E™ such that
the pairwise distances of the points are as large as possible is a long-standing question
of geometry. In particular, problems of this kind are stated by Coxeter, Greening and
Graham [5]. The best possible configurations of k£ points in the disc are found for k£ < 12
and for k£ = 19. The proofs are given in papers of Fodor [10] and [11], Graham [14], Kravitz
[17] and Pirl [31], and also in the dissertation of Mellisen [28].

A generalization of this problem is presented by Lassak [24], and by Doyle, Lagarias
and Randall [8]. The authors of [8] consider points on the boundary of the unit ball C' of
a Minkowski space, and the distance of the points is measured by the Minkowski distance.
In [24] we see a more general approach. Here C is allowed to be an arbitary convex body.
The question is finding configurations of points in C', or on the boundary of C, whose
pairwise distances are large in the sense of the following notion of C-distance of points.

For arbitrary points p,q € E™ let |pgq| denote the Euclidean length of the segment pgq.
Let p'q’ be a chord of C parallel to pg such that there is no longer chord of C' parallel
to pq. The C-distance dc(p,q) of points p and q is defined by the ratio of |pg| to %\p’q’\.
We also use the term C'-length of the segment pq. If there is no doubt about C, we may
use the terms relative distance of p and q, or relative length of pg. Observe that for every
p,q € E™ the C-distance of p and ¢ is equal to their [%(C’ — (C)]-distance. Thus the metric
dc(p, q) is the metric of the Minkowski space whose unit ball is (C — O).

Let di(C) denote the greatest possible number d such that C' contains k£ points in
pairwise C-distances at least d. Similarly, let bx(C') be the greatest possible number d
such that the boundary of C' contains k points in pairwise C-distances at least d. We are
looking for the infima and the suprema of the numbers di(C) and bi(C), where C runs
over the family of n-dimensional convex bodies. Compactness arguments show that the
above numbers are attained. We also provide an analogous investigation for C' restricted
to be a centrally symmetric convex body.

In Chapter 1 we find systems of boundary points of an arbitrary convex body in
large pairwise relative distances. In Chapter 2 we find points in large pairwise relative

distances which are allowed to be also in the interior of the body. In other words, in these
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two chapters we look for the infima of b, (C) and di(C) for some values of k. The aim of
Chapters 3 and 4 is to find upper bounds of the minimum of the pairwise relative distances
of k points on the boundary of a convex body, and in the body, respectively. Hence in
these two chapters we look for the suprema of b, (C') and di(C). In the first four chapters
only plane convex bodies are considered. Chapter 5 deals with the connection between the
existence of points of a convex body in possibly large pairwise relative distances, and the
existence of large homothetical copies of a convex body packed into, or touching the body.

In Chapter 6 we examine another question. It is a well-known fact that if P is a
set of points on the sphere "1 of E™ such that the Euclidean distances of all pairs of
points of P are equal, then the cardinality of P is at most n + 1. From the paper [12]
of Fiiredi, Lagarias and Morgan we see that the number of points on the boundary of an
n-dimensional convex body C' having equal pairwise C-distances is at most 2. A set P of
points is called almost d-equidistant, if among every three points of P there exists a pair
in the distance d. Rosenfeld [32] proved that if P is a set of almost v/2-equidistant points
on S™~1, then the cardinality of P is at most 2n. In this chapter we prove that if P is a
set of almost d-equidistant points of S”~1, where v/2 < d < 2, then the cardinality of P is
at most 2n + 2. We also show estimates about the cardinality of almost d-equidistant sets
of points of S"~! for some other values of d.

In this treatise we use the standard notation C for the family of plane convex bodies,

and M for the family of centrally symmetric plane convex bodies.



CHAPTER 1

Boundary Points of a Convex Body
in Large Relative Distances

Let £ > 2 be an integer. In this chapter we are looking for the greatest possible
number d such that every plane convex body contains k£ boundary points in pairwise
relative distances at least d. Remember that by (C) denotes the greatest possible number
d such that C' contains k& boundary points in pairwise relative distances at least d. In this
chapter we are looking for the infimum of b;(C'), where C runs over the family of plane
convex bodies. We also consider an analogous question about centrally symmetric plane
convex bodies.

Observe that two points of support in any two parallel opposite supporting lines of a
convex body C' are of C-distance 2. Apparently, no convex body contains two points of
relative distance greater than 2. Thus we immediately see that for two points the infimum
that we are looking for is 2.

Bezdek, Fodor and Talata [1] proved that in the boundary of every plane convex body
there exist three points in pairwise relative distances at least %. A conjecture says that
in the boundary of every plane convex body there exist three points in pairwise relative
distances at least 4 (v/5+ 1) (see, for example, [23] or [24]). This value is attained for the
regular pentagon (we examine this example in Chapter 5 in detail). Doliwka [6] proved
that the boundary of every plane convex body contains five points in pairwise relative
distances at least 1. Observe that no triangle contains four boundary points in pairwise
relative distances greater than 1. Hence we see that the estimate 1 cannot be improved
even for four points.

Let us denote by bi(C) the infimum of b (C'), where C runs over the family of plane
convex bodies. Simple compactness arguments show that this infimum is attained. Using
our notation we can reformulate the above results in a shorter form. We have b3(C) = 2,
and 3 < b3(C) < (V5 + 1). Moreover, by(C) = b5(C) = 1.

Now let us comment the case of centrally symmetric bodies. It is proved in [1] that in
the boundary of every centrally symmetric plane convex body there exist three points in

pairwise relative distances at least 2. Lassak [26] improved it up to 1+ ? In [8] and in
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[24] it is conjectured that the best possible estimate is 1 + @ This value is attained for
the regular octagon. Lassak [24] and Doyle, Lagarias and Randall [8] showed that every
centrally symmetric plane convex body contains four boundary points in pairwise relative
distances at least v/2. As it follows from the example of the circle, this estimate cannot
be improved. From [8] and from [24] we see that every centrally symmetric plane convex
body contains six boundary points in pairwise relative distances at least 1. Obviously, the
boundary of the square does not contain five points in pairwise relative distances greater
than 1. Hence the estimate 1 is the best possible one for five points and for six points in
the boundary of an arbitrary centrally symmetric plane convex body.

Let us denote by bi(M) the infimum of bx(C'), where C runs over the family of
centrally symmetric plane convex bodies. Again, compactness arguments show that the
above infimum is attained. Now we have ba(M) = by(C) = 2, and 1—|—§ < bg(M) < 1+§.
Furthermore, by(M) = v/2, and b5(M) = bg(M) = 1.

In this chapter first we prove the following result about the relative distances of seven

points in the boundary of a plane convex body.

Theorem 1. The boundary of an arbitrary plane convex body contains seven points in
pairwise relative distances at least % such that the relative distances of all pairs of successive

points are equal.

2

3 in our theorem cannot be increased.

The example of a triangle shows that the value
As it is explained after Lemma 6 of [27], Lemma 3 of [27] implies that if z is a boundary
point of a plane convex body C', and if y moves counterclockwise in the boundary of C
from z, then dc(z,y) does not decrease until it reaches 2, and it accepts all values from
the interval [0, 2]. Hence, for every positive integer r our theorem implies the existence of
7r points on the boundary of an arbitrary plane convex body in pairwise relative distances

%. As mentioned earlier, Theorem of [6] says that every plane convex body

at least % .
contains five boundary points in pairwise relative distances at least 1. Thus, by Lemma 3
of [27] this theorem implies that for every positive integer r on the boundary of every plane
convex body there exist 5r points in pairwise relative distances at least % The example
of a triangle shows that this estimate is the best possible one not only for » = 1 as proved

in [6], but also for r = 2.



In the second half of this chapter we improve the estimate % from [1] about three far

boundary points.

Proposition 1. In the boundary of every plane convex body there exist three points in

equal pairwise relative distances at least %(2 +2v/6) ~ 1.3798.
The above results are presented in [20].
Now we prove Theorem 1. The proof is based on the following lemma.

Lemma 1. Let F = fifs...fr be a convexr heptagon. Then every convex heptagon
D = dydy...d7 inscribed in F' such that d; € f;fiy1 fori=1,2,...,7, where fs = f1, has
a side of F-length at least %

Proof. Let «; denote the angle Zf;_1fifix1 (i = 1,...,7), where fy = f7. Since every
heptagon is the limit of a sequence of nondegenerate heptagons, it is sufficient to prove
our lemma under the assumptions that a; <, ..., a7 < .

First, we wish to show that if the sum of two consecutive angles of F' is at most T,

then D has a side of F-length at least 1 (see Figure 1).

F
d, dz
/i d, Iz

Figure 1

Assume, for example, that a; + ae < 7. Observe that in this case dp(f1, f2) = 2. As
mentioned earlier, Lemma 3 of [27] implies that if x is a boundary point of a plane convex
body C, and if y moves counterclockwise in the boundary of C' from z, then d¢(x,y) does
not decrease until it reaches 2, and it accepts all values from the interval [0,2]. Thus we
get that dp(d7,dy) + dp(dy,d2) > dp(f1,d1) + dr(dy, f2) = dp(f1, f2) = 2, and therefore
dp(d7,dy) > 1 or dp(dy,ds) > 1.



Next we show that if the sum of every pair of consecutive angles of D is greater
than 7w and if D has three consecutive angles such that their sum is at most 27, then
D has a side of F-length at least % Let us assume that oy + as + ag < 27. In this
case dp(f1, f3) = 2. According to Lemma 3 of [27], we get that dp(d7,d1) + dp(dy,ds) +
dr(dz,d3) > dp(f1,d1) +dp(dy,d2) +dp(da, f3) > difi, f2) = 2, where the last inequality
is a consequence of the triangle inequality. Similarly to the previous consideration, we
conclude that at least one of the numbers dg(d7,dy), dp(dy,ds), dp(ds,ds) is at least %

Now consider the case when the sum of every three consecutive vertices of D is greater
than 27w. Denote the intersection of the lines containing the segments fsf3 and f4f5 by

as. Similarly, let a5 be the intersection point of the lines containing the segments f5 fg and

f7/1 (see Figure 2).

Figure 2

Consider the convex pentagon D’ = didadsdsdy; inscribed in the convex pentagon
F' = f1fsasfsas. The angles of F’ are 5, = a1, 2 = ao, B3 = a3+ a4 — 7, B4 = as,
Bs5 = ag+ a7 —m. This implies that the sum of every two consecutive angles of F’ is greater
than 7. For the sake of simplicity we use the following notation in the sequel: ay = f1,
az = f2, ay = f5, by = d1, by = da, by = dy, by = d5, b5 = d7.

We intend to show that the F’-length of babs or bybs is at least %, or that the F'-length
of another side of D’ is at least % We will show this indirectly. Hence let us assume that
dp/(ba,b3) < 3, dps(ba,bs) < %, and that the remaining sides of D’ are of F’-length less
than % Let ¢; and ¢} denote the trisection points of ajas such that ¢; is closer to a; (see
Figure 3). Moreover, let ca, c3, c4, ¢5 be the trisection points of asas, aszas, agas, asa;

closer to the points as, a4, a4, aq, respectively.



by

'
a, bc, ¢ ay

Figure 3

Observe that dp/(c},c2) = dp:(cs,ca) = dpi(cs,c1) = 2, and that dpi(cz,c3) =

dp:(cq,c5) = %. Thus, thanks to Lemma 3 of [27], if by € a1} and by € coas3, then
dpi(by,be) > % Similarly, from b; € a;c; and b;41 € ciy1ai42, Where ag = a1, a7 = asg,
bg = by and ¢g = c1, we get that dp/(b;,biyr1) > % if i = 3 orif i = 5, and that
dp:(bi,bit1) > % if i = 2 or if ¢ = 4. Therefore, with respect to our assumption, b;
cannot be an inner point of the segment c;cj. Without loss of generality, we can assume
that by € ajc; (in the opposite case the proof is analogous). In this case b; € a;c; for
1=2,3,4,5.

Take the common point p of the straight line containing the segment asa, and of the
straight line through ag parallel to bibs. Notice that dp/ (b1, be) > 2|b1b2|/|asp|. Let x be
the intersection point of the line through b; parallel to asas and of the line through ¢}
parallel to asa;. Let Ly be the line containing ayas. Consider the lines Ly, Lo, L3 and Ly
parallel to ajas, through by, ¢}, ba and co, respectively. The relative distance dg(co,c})
is equal to the ratio of the width of the strip between the lines Ly and L4 to the half
of the width of the strip between the lines Ly and Ly. From dp/(b1,b2) > 2|b1ba|/|asp
we have that dp/(by,bs) is at least the ratio of the width of the strip between the lines
Li and L3 to the half of the width of the strip between the lines Ly and L3. Hence
dp(by,be) < % implies that |xb1| < |baca|. Now consider the triangle bycjz. We have

|brcy |/ sin(By + B2 — w) = |zby|/sin(m — (). Thus,
sin(7r — ﬂ1)|b1C1| < sin(7r — ﬂ1)|b1C/1| < sin(ﬁl -+ ﬁg — 7T)|b202|.

We omit an analogous calculation that sin(m — 3;)|bic;| < sin(8; + Bi11 — 7)|bit1¢i+1]| for
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1=2,3,4,5, where 5 = 1. Hence
5 5
H sin 3; < H sin(ﬁi + Bit1 — ﬂ‘).
i=1 i=1

This contradicts Lemma 2 of [18], which says that for every f1,..., 05 € (0,7) such that

5
> Bi =3m and (; + (41 > 7 for every i € {1,...,5}, where Bg = (31, we have
i=1

5 5
H sin 3; > H sin(ﬁi + ﬁi—l—l — ﬂ‘).
=1 =1

We have shown that bobs or bybs has F’-length at least %, or that another side of D’
is of F’-length at least 2. As F' C F', we get that dp(s,t) > dp/(s,t) for every s,t € E2.
Thus, if at least one of the numbers dg (b1, b2), dp/ (b3, bs) or dp/(bs, by) is at least %, then
we are done. If dps (b2, bs) or dp:(bs,by) is at least 3, then the statement of our lemma is

a consequence of the triangle inequality.

Proof of Theorem 1. Let C' be an arbitrary plane convex body. Theorem 1 from [27]
implies that for every k£ > 3 there exists a k-gon inscribed in C' whose sides are of equal
C-length. Thus, it is sufficient to show that every convex heptagon inscribed in C' has
a side of C-length at least % Consider an arbitrary convex heptagon D inscribed in C.
At every vertex of D take a supporting line of C. Let F' denote the intersection of the
closed halfplanes containing C' and bounded by the above supporting lines. Obviously, F’
is a convex heptagon circumscribed about D such that D C C' C F. Observe that the
C-length of every side of D is at least its F-length. Therefore our lemma implies that D

has a side of C-length at least %

Proof of Proposition 1. Let C be a plane convex body. For the simplicity of considerations,
during the proof we denote the value %(1 +/6) by 7. First we wish to show the existence
of three points of C' in pairwise C-distances at least 27.

According to Lemma 1 from [24] we circumscribe a parallelogram P about C' such that

the midpoints of two its parallel sides belong to C. As the C-distance of two points does
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not change under affine transformations, we can assume that P is a rectangle such that
the length of the sides containing the mentioned midpoints is 2, and that the length of the
other sides is 1. Consider the Cartesian coordinate system such that the above midpoints
are o = (0,0) and ¢ = (0,1). Since C is inscribed in P, it contains a point a = (—1, x) and

a point b = (1,v), where 0 <y <land 0 <v <1.

Case l,whenu+l/§@oru+yz2—§. Weassumethat,u-i—vﬁ@ (in the

other case the proof is analogous). Observe that @ = 217__71. We intend to prove that the

quadrangle obca contains points r» and s with y-coordinates at most 1 — 7 and with the
difference of their x-coordinates at least 27. As obca C C, the points r, s and ¢ are three
points that we are looking for.

Subcase 1.1, when ;4 > 1 — 7 and v > 1 — 7. Since the harmonic mean is not greater

4
ptv

than the arithmetic mean, our assumptions imply that % + % > > 12_—TT Furthermore,
a calculation shows that the intersection of the quadrangle obca with the straight line
y =1 — 7 is a segment of Euclidean length (1 — 7')(% + %) Thus this length is at least 27.
In the part of » and s we take the endpoints of this segment.

Subcase 1.2, when y < 1—7orv < 1—7. Let u < 1—7 (if v < 1—7, our consideration

1—7
2r—1"

is analogous). By the assumption of Case 1 we have v < Thus the quadrangle obca

contains the point (27 — 1,1 — 7). We take it in the part of . As s we take a.

Case 2, when @ <pu+v<2-— @. We intend to show that C' contains points w and
z with the difference of their y-coordinates at least 7, and with their C-distances at least
27 either from a or from b. Then w, z, and a or b are three promised points.

Let p and g denote the intersections of the straight line x = —1 + 7 with the segments

ao and ac, respectively.

Subcase 2.1, when d¢(p,b) > 27 and do(q,b) > 27. It is clear that de(p,q) = 27.
Thus we take p and ¢ in the part of w and z.

Subcase 2.2, when d¢(p,b) < 27 or de(q,b) < 27. We can assume that do(p,b) < 27
(in the other case our consideration is analogous). This assumption implies that there
exists a point t € C whose translation u by v = %]% is also a point of C. We intend to
show that g = (= (27 —1),(2r—1)u+2—37) or h = (27 — 1, (27 — 1)v + 7) belongs to C
(see Figure 4). Suppose instead that g ¢ C and h ¢ C.

10



Figure 4

Let Ly be the line through o and g. Its equation is y = —(p — S:j)x Denote the

right-hand side of this equation by g(x). Let Ly, be the line through ¢ and h. Its equation

1—71
27—1

isy=(v— )z + 1. Denote its right-hand side by h(x). Take the common point e of

3r—2
27—1

the lines L, and x = —1. We have e = (-1, u —

line x =1is f = (1,v+ 3I=2).

). The common point of L;, and the

Let us denote the x-coordinate of a point m or a vector m by m®, and its y-coordinate
by m¥. Notice that v* > 1+ h* = 1+ |¢®|. This, and the assumption that g ¢ C and
h ¢ C imply that the points ¢ and u belong to the domain bounded by the sides of P and
by the lines L, and Lj;. Hence we can take either e in the part of ¢, or f in the part of u.
This depends on the directions of L, and Lj,. Then either of the following holds true.

(i) The translate of e by ¢ is in the open half plane containing e bounded by the line

L;,. In this case
0> e+ oY —h(e” +av°) = (u+v)(3—V6) — (V6 —2).

Hence from p+v > @ we obtain 0 > 0, which is a contradiction.
(ii) The translate of f by —4 is in the open half plane containing f bounded by the
line L,. We get

0< f¥—v¥—g(f*—0v") =7—-3V6— (V6 —2)(u+v).

From p+v > @ we conclude that the right-hand side of this inequality is negative, which
is also impossible.

Thus g € C or h € C. An easy calculation shows that the intersection of the pentagon
agobc and the line z = —(27 — 1) is a segment of length 7. Therefore, if g € C, then the
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intersection of the line x = —(27 — 1) and C' is a segment of length at least 7. We take the
endpoints of this segment as w and z. Since the distance of the lines x = —(27 — 1) and
x =11is 27, and since C' C P, we conclude that do (b, w) > 27 and de(b, z) > 27.
Similarly, the intersection of the pentagon aobhc and the line x = 27 — 1 is a segment
of length 7. Hence, if h € C, then the intersection of C' and the line z = 27 —1 is a segment
of length at least 7. Now we use the endpoints of this segment in the part of w and z.
We have shown that there exists a triangle in C' whose all sides have relative lengths at
least (24 2v/6). This permits to apply Theorem 2 of [27], which says that if an arbitrary
convex body C' contains a k-gon whose all sides are of relative lengths at least d, then

there exists a k-gon inscribed in C' whose sides are of equal relative length at least d.
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CHAPTER 2

Points of a Convex Body
in Large Relative Distances

Let £ > 2 be an integer. In this chapter we are looking for the greatest possible
number d such that every plane convex body contains k points in pairwise relative distances
at least d. Remember that di(C') denotes the greatest possible d such that the convex body
C contains k points in pairwise relative distances at least d. In this chapter we are looking
for the infimum of d(C'), where C' runs over the family of plane convex bodies. We also
consider an analogous question about centrally symmetric plane convex bodies.

Apparently, if the boundary of a convex body contains k points in pairwise relative
distances at least d, then also the body contains k points in pairwise relative distances
at least d. Putting it in another form, for every k£ > 2 and for every convex body C' we
have di(C) > by (C). Using this and the fact that no convex body contains two points in a
relative distance greater than 2 we get that for every convex body C we have dy(C) = 2.

In fact, apart from this trivial observation, the infimum of d(C) over the family of
plane convex bodies is known only for kK = 5 and for k = 8. For other values of k£ we know
only some estimates. In particular, the problem seems to be very difficult for three and
for four points. The discrepancy between the simplicity of the formulation of those two
questions and the trouble in finding a solution is especially striking.

To comment the case of three points we use Theorem 2 of [27], which says that if
a convex body contains a k-gon whose all sides are of relative lengths at least d, then
it permits to inscribe a k-gon whose sides are of equal relative length at least d. Thus
d3(C) = b3(C) for every plane convex body C. Therefore d3(C) > 1(2 + 2v/6) for every
C €C, and d3(P) = 3(v/5+ 1), where P denotes the regular pentagon.

Now we examine the pairwise relative distances of four points in a plane convex body.
We conjecture that every plane convex body contains four points in relative distances at
least v/5 — 1 ~ 1.236. This value is attained for C being the pentagon a)ajasabas such
that the triangle ajazas is isosceles with Zasaza; = 7, and the quadrangle ajaiasaly is a

rectangle with |ajas| = (v/5 + 1)|aia}| (see Figure 5).
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Figure 5

There are two configurations of four points in pairwise relative distances at least
V5 — 1 here. The first configuration consists of three points a;, as, as on the boundary of
the body and one point a inside of the triangle ajacas. Here the point a is the midpoint
of the segment a)a). The second configuration consists of four points by, by, bg, by on the

boundary of the pentagon.

Lassak proved [24] that every plane convex body contains five points in pairwise
relative distances at least 1 (this fact also follows from [6]). From the example of the
square we see that the estimate 1 is the best possible one. We conjecture that every plane
convex body contains also six points in pairwise relative distances at least 1. This value is
attained, for example, for triangles and for parallelograms. Moreover, we conjecture that
every plane convex body contains seven points in pairwise relative distances at least %.

This value is attained for triangles.

Let us denote by di(C) the infimum of di(C'), where C runs over the family of plane
convex bodies. According to the mentioned results and examples we have do(C) = 2 and
$(242v6) < d3(C) < (V5 + 1). Moreover, dy(C) < V5 —1, dg(C) < d5(C) = 1 and
d7(C) < 2.

Now we summarize the known results about centrally symmetric plane convex bodies.
We have mentioned in Chapter 1 that every centrally symmetric plane convex body con-
tains three boundary points in pairwise relative distances at least 1 + @ (see [26]). Thus
ds(C) > 1+ @ for every C' € M. Moreover, d3(Q) = 1+ g, where () denotes the regular

octagon.

In Chapter 1 we have written about the estimates by(C) > /2, b5(C) > bs(C) > 1
for every C € M (see [8] and [24]). Thus we also have d4(C) > /2, d5(C) > dg(C) > 1

for every C' € M. Moreover, from the examples of the circle and the square we see that
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these estimates cannot be improved. It is observed in [24] and it also follows from [8] that
d7(C) > 1 for every C € M.

Denote by di(M) the infimum of di(C'), where C runs over the family of centrally
symmetric plane convex bodies. Using this notation we can put the above results in the
following form. We have dy(M) = d2(C) = 2, and 1+ @ < d3z(M) < 1—|—§. Furthermore,
dy(M) = V2 and d5(M) = dg(M) = dz(M) = 1.

In this chapter first we prove the following estimate about the relative distances of

four points in an arbitrary plane convex body.

Theorem 2. FEvery plane convex body C' contains four points in pairwise C-distances at

least %(\/3-1- 1) =~ 1.079.
This result appeared in the joint paper [22] with M. Lassak.

In the next part we show the following general estimate about the relative distances

of k points in an arbitrary plane convex body for certain values of k.

Proposition 2. Let C be a plane convex body and let t > 2 be an integer. In C' we can

4

+» where ¢ =3 for

find at least %(t2 + 4t + q) points in pairwise relative distances at least
t odd, where q = 4 for every even t which is not a multiple of 4, and where ¢ =8 if t is a

multiple of 4.

From Proposition 2 we obtain a number of reasonable estimates for the relative dis-

tances of k£ points in a plane convex body when £ is not very large, as follows. We have

d3(C) > %, da(C) > d5(C) > 1, ds(C) > 2, d7(C) > ds(C) > 2, do(C) > d19(C) > 2, and

d11(C) > d12(C) > di5(C) > 3. Pay attention that for d3(C) we get nothing else but the
estimate from [1] and that for d5(C) we get again the estimate from [24]. Observe that the
above estimate 1 for ds(C) is weaker than the estimate #(v/5-+1) ~ 1.079 from Theorem 2,

which is still far from the conjectured value v/5 — 1 ~ 1.236. The example of any triangle

shows that dg(C) = 2.

Let us show a system of eight points in pairwise relative distances at least %, which

is different from that presented in Proposition 2. For this purpose we apply a result of

Neumann [30], who proved that every plane convex body C' contains a translate of —%C’.
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Thus, 3C contains a translate of 2(C' — C). Hence, C contains a translate of +(C — C).
In other words, C' contains a point in the relative distance at least % from every boundary
point of C. Theorem 1 in Chapter 1 shows the existence of seven boundary points of C
in pairwise relative distances at least % Thus C contains eight points in pairwise relative
distances at least % such that seven of them are boundary points of C. The construction
presented in Proposition 2 guarantees that at least two of those points are in the interior
of C. We see that (though the estimate % cannot be improved) every plane convex body
contains at least two different configurations of eight points in pairwise relative distances

2
at least 3

Finally we examine the case of centrally symmetric plane convex bodies. We show the

following estimate.

Claim. Let C be a centrally symmetric plane convex body and let s be a positive integer.

In C we can find at least 35> + 3s + 1 points in pairwise relative distances at least %

Observe that the thesis of Claim does not depend on the area of C' like the estimates
in the last section of [8]. From Claim, in particular, we obtain that d7(M) > 1. It also
gives the estimates dg(M) > ... > dig(M) > 1.

Proposition 2 and Claim appear in the common paper [23] with M. Lassak.

First we prove Theorem 2. During the proof, by the C'-distance of two parallel lines
we mean the minimum C-distance of two points from those lines, respectively. It is easy
to see that the C-distance of two parallel lines is nothing else but the ratio of the width of
the strip between those lines to the half of the width of C' in the perpendicular direction.

Proof of Theorem 2. In our proof we are looking for four points positioned analogously to
those in the pentagon shown in Figure 5. If the shape of the body is somehow ”similar”
to a triangle, the first kind of configuration gives larger relative distances of points, and if
not, then the second kind of configuration.

Consider a triangle T' = ajasag of the largest possible area inscribed in C'. Since the
C-distance of points does not change under affine transformations, we may assume that T

is a regular triangle of sides of length 2 (see Figure 6).
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During the proof it is convenient to imagine the direction of the side asas as horizontal.

¢ S

Figure 6

From the maximality of the area we conclude that the straight lines through the
vertices parallel to the opposite sides of T' are supporting lines of C. By T” we denote
the triangle bounded by the above supporting lines. Consider the smallest positive ho-
mothetic image Ty of T which contains C'. Here A denotes the ratio of the homothety
which transforms T into T). The intersection of the triangles T\ and T” is a hexagon
H = hihshghyhshg. The notation is chosen such that a; € hihs, as € hzhy, az € hshg.
We denote the common value of |azhy| and |hsasz| by 21, the common value of |aghg| and

|hia1] by x2, and the common value of |aiha| and |hsas| by z3. Clearly, we have
1
A= §(w1+x2+x3)+1.

Since C' C H, in order to find four points of C' in pairwise C-distances at least %(\/54_ 1)
it is sufficient to find four points of C' in pairwise H-distances at least %(\/5 +1).

We intend to show that the pairwise H-distances of aq, as, ag are over %(\/5 +1).
Consider the three triangles Ty, T, T3 which are copies of T’ under homotheties with
centers at the vertices of 77 and with ratio %. The sides of T” are of length 4, and since
A< % (see [25]), the sides of T} are of length at most 5. As H is contained in T, we
conclude that among 77, T5 and T35 there exists at most one such a triangle that H has

a point in its interior. Thus, the maximal chords of H parallel to the sides of T are of

lengths at most % Since the sides of T are of length 2, we see that the H-distances of the
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vertices of T" are at least %, and thus they are greater than %(\/5 +1).

Case 1, when A < 3v/5 — 5. Let S be the triangle bounded by segments connecting
the centers of sides of T). As S is a homothetic image of T} of ratio —%, it is a homothetic
image of T of ratio —%)\. Denote by a the center of the homothety that transforms 7" into
S. Denote the images of the points a1, as, ag by s1, s2, S3, respectively. The segments
a181, A28, asss intersect at a. We show that a € C. If SNT = (), then T\ has a side which
does not intersect 7", which means that C' does not intersect this side of T}, contrary to
the definition of T\. So the intersection of T" and S is not empty. This and the description
of a give a € TNS. Since T' C C, we get a € C.

Of course, ||Zzl|| = 4 for i = 1,2,3. This implies that

laa;|  2|aa;] 4 4

slaisi| — laail +lasi| 2 4 2||a81|| T2+

for i = 1,2,3. Thus the H-distances of a from the points aq, as, as are at least s~

24X
2+3f 5 (\f +1).

The pairs of points a1, as, az are also in C-distances at least %(f + 1) as explained

Hence, those H-distances, and thus also C-distances are at least

earlier. So the points a1, as, as, a of C are in pairwise C-distances at least %(\/E_) +1).

Case 2, when A > 3v5 — 5. As A = 1(z; + 22 + 23) + 1, in this case we have
x1+x2 4+ x5 > 6v/5—12. We do not make our proof narrower assuming that z; < zo < x3.

Denote by ¢ a point of the body C' on the side hyhs of the hexagon H, by cy the
common point of segments azh; and ajhg, by c3 the common point of segments a;h3 and
ashs. From the convexity of C' we conclude that the hexagon G = ajc3zasciascs is a subset
of C.

Before Case 1 we have explained that the H-distance of as and ag is greater than
%(\/3 + 1). Thus there is a horizontal segment S; whose endpoints are on the segments
asc; and aszc; in the H-distance %(\/3 +1).

Denote by e the intersection point of ajcs and the horizontal line containing c;. We
show that under the assumption of Case 2 there is also a horizontal segment Ss whose
endpoints are on the segments aico and aic3 in the H-distance %(\/3 + 1). For this it is
sufficient to show that dg(co,e) > (V5 +1).

Denote by ps and by ps the points of intersection of the line through as and a3 with

o _ 2—$2

lazps|—x2 T2

the lines through aq, h3, and through a, hg, respectively. Observe that
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Thus

fL’Q 2:1':2 4
= = = — 2'
|a3p3| 2—$2+x2 2—.’132 2—.’132

We get analogously that |asps| = ﬁ — 2. Hence

4 4

‘p2p3| - \p2a2| + |a2a3| + |a3p3| = + — 9.
2—xy 2-—ux3

Let f be the common point of ajaz and cge. As the triangles ajasce and hycohg

.. . h
are similar, we have 1%l — lwasl — 2 Byom this we get that [wfl = el
|h162| |h1h6| 2—.’E2 |a1a3| |h1a3|
1 _ 1 22—, . laa f| __ |ceel
THasca /el = 173/ (0=2) — i—zs Notice that araa]l = Tpaps]” Therefore

loe] 2 —x9 4 n 4 5
Ca€e| = — .
2 4—1’2 2—332 2—1’3

Since the opposite sides of H are parallel, we conclude that the longest horizontal segment

in H is of length 2 + z5. Thanks to this a simple calculation gives

B 4 2(2 — x9)
dule2:€) = G T2 (xﬁ 2—7;532)

As z9 < x3, we have dg(co,€) > 4_4362. Hence, if 2o > 7 — 3+/5, then dy(cy,e) >

4_(74_\/5) > %(\/3 +1). If 2y < 7—3V5 < 1, then (24 22)(4 — x5) is maximal for

9 = 7 — 3v/5. Thus (2+m2f‘(4_m2) > (9_3\/3;‘(3\/5_1) = \/59+2. Moreover, 1 < xo implies
. 2—(7—3V5
that 3 > 6v/5 — 12 — 2(7 — 3v/5) = 12/5 — 26. Therefore 3=22 > 2_(52\/5\_/;6) _ 5435

From these calculations we conclude that also in the case when 2z, < 7 — 3\/5, we have
dp(c2,€) > @ : &4\/5 > $(vb+1).

We have shown that under the assumption of Case 2 there is a horizontal segment So
whose endpoints are on the segments ajcs and a;cs in the H-distance %(\/3 +1).

We see that the four endpoints of the segments S; and S5 belong to G and thus to
C. We intend to show that they are in pairwise H-distances at least %(\/3 +1). Thus it
remains to show that the H-distance [ of the lines L; and Ly containing the segments S
and Ss is at least (v/5 +1).

We wish to check the behavior of the H-distance [ in dependence on x5 and x3, but
under the condition that 1 and x5 + z3 are fixed.

As x5 + x3 is fixed, the value 2 4+ x5 is maximal for x5 = x3. From this and from the

fact that the H-distance of the endpoints of S; is fixed for ¢ = 1 and ¢+ = 2 we get that
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|S1| = | 92| is maximal for x5 = x3. So the distance d; of the line L; and the line through

as and as is minimal for zo = x3.

We have shown that |paps| = 2_4302 + 2_4303 — 2. When x5 + x3 is fixed, this expression
is minimal for xo = x3. Consider the distance ds of the line Ly and the line through as
and a3. As |S2| is maximal and |pops| is minimal for x9 = x3, from the triangle ajpops
we see that dy is minimal for x5 = x3. Remember that also d; is minimal for x, = z3.
Therefore the distance between the straight lines L; and Ly is minimal for x5 = x3. Since
the distance of the horizontal lines through a; and ¢; does not change, we conclude that [
is minimal for x9 = x3.

It remains to consider the special case when x5 = x3. We intend to show that [ >
%(\/3 + 1). We have seen that the length of the maximal chord of H in the horizontal
direction is 2 + zo. Thus |S;| = |S2| = 3(v/5 4+ 1)2£22. Since |asas| = 2, the ratio of the
homothety wich maps asas into S7 is %(\/3 + 1)2%””2. Therefore

AT

-2 = 4;—2;522. This implies that the ratio of the

homothety which maps pops into Sy is %(\/3 + 1)27%. Hence

From zo = x3 we have ‘P2p3| = 24,

d2:\/§(1—%(ﬁ+1)2_4‘”2).

From the above calculations we get that the distance of the lines L and Ls is dy + do =
@(Q-i-xl) (%(5 —V5)+ $(VE+1)Z . 2_3) . As the width of H in the direction parallel

2+

to the lines L and Ly is @(2 + x1), we have
2 — I

2—|—.’131

zz%(5—f5)+%(\/5+1)%

When x, decreases and x; increases, then [ decreases. Hence [ becomes minimal for
r1 = I9.
We see that the worst case is when x; = 2o = x3. Thus now A = %xl + 1. By the

assumption of Case 2 we have A > 3v/5—5, and by [25] we have A < % So2v5—4 <z < 1.

From the preceding calculation we get that now

T1+2  2V/2
(ﬁ+1).2\/§-< e +$1+2>.

1 1
l=-(11+5V5) — =
3( +\/_) 3
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The form of the expression in the parenthesis shows that [ is always at least the minimum
of its values at the ends of the interval [21/5 —4, 1] in which 1 changes. Thus it is always
at least %(\/5 +1). We conclude that the four endpoints of the segments S; and S; are in
pairwise H-distances at least %(\/5 +1). Since C' C H, their C-distances are also at least

this number.

Proof of Proposition 2. By Lemma 1 from [24] there is a parallelogram P circumscribed
about C such that the midpoints of two its parallel sides belong to C' (see Figure 7). Denote
them by a and c. Let b and d be points of C' in the two remaining sides of P. Denote by
D the quadrangle abcd.

Put w = t/2 for t even, and w = (¢t — 1)/2 for t odd. We provide segments Sy, ..., Sy,
with endpoints in the boundary of the quadrangle D which are parallel to the segment ac;
the line containing S; should be in the C- distance 4i/t from d, where i = 0,...,w. So the

C-distances of those lines are at least 4/t.

Figure 7
In Figures 8-10 we see the cases when t = 5, t = 6 and t = 8. They illustrate the
three cases in Proposition 2. If 4i/t < 1, then S; contains k = 2i + 1 points in pairwise
relative distances at least 4/t. If 4i/t > 1, then
S; contains k = 2(w — i) + 1 points in pairwise
relative distances at least 4/t when t is even

(see Fig. 9 and 10), and S; contains k = 2(w —

i) + 2 points in pairwise relative distances at

least 4/t when t is odd (see Figure 8). Figure 8
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Figure 8 Figure 9

An easy calculation shows that the total number of those points in all the segments

So, . - ., S is exactly like in the formulation of Proposition 2.

Proof of Claim. 1t is well known that we can inscribe in C an affine regular hexagon
H (under the assumption of the central symmetry this was proved in many papers; the
earliest of them seems to be [13]).

The central symmetry and convexity of C' implies that for every diagonal of H there
is no longer parallel segment in C'. Take a hexagonal configuration of points in H like in

Figure 11.

Figure 11

Considering s hexagons containing them on the boundaries we easily evaluate the number

of those points: 1+6+...+6$:1+6~@:352—|—3s—|—1.
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CHAPTER 3

Upper Bounds of the Minimum Relative Distance

of Boundary Points of a Convex Body

Let £ > 2 be an integer. In this chapter we are looking for the least upper bound of
the minimum pairwise relative distance of k£ points in the boundary of an arbitrary plane
convex body. Remember that by (C') denotes the greatest possible number d such that the
convex body C contains k boundary points in pairwise relative distances at least d. In this
chapter we are looking for the supremum of by (C'), where C' runs over the family of plane
convex bodies. We also examine an analogous question about centrally symmetric plane
convex bodies.

Since no convex body contains a pair of points in a relative distance greater than 2,
we have b (C) < 2 for all values of k and for every plane convex body C. The boundary
of the square contains four points in pairwise relative distances 2. Thus the estimate 2
cannot be improved for k < 4.

Doliwka and Lassak [7] proved that there exists no plane convex body whose boundary
contains five points in pairwise relative distances greater than v/5—1. This value is attained
for the regular pentagon and decagon.

According to (266) on page 71 in [13], the circumference of every centrally symmetric
plane convex body C measured in the metric do(x,y) is at least 6 and at most 8. From
Theorem 2 of [9] we see that for every C' € C the circumferences of C' and 1(C — O)
are equal in every Minkowski space. Since for every C' € C the metric deo(z,y) is the
metric of the Minkowski space whose unit ball is %(C — (), we conclude that for every
C € C the circumference of C' in the metric do(z,y) is at least 6 and at most 8. Hence
for r > 2 there exists no plane convex body containing 4r boundary points in pairwise
relative distances greater than % Moreover, the boundary of the square contains 4r points
in pairwise relative distances at least %

Let us denote by ¢ (C) the supremum of by (C'), where C runs over the family of plane
convex bodies. Using this notation we have ¢ (C) = 2 for k = 2,3,4. Furthermore, we

have ¢5(C) = v/5 — 1, and c4,.(C) = 2 for every r > 2.

o
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Now let us remember the results about centrally symmetric plane convex bodies. Since
M C C, the least upper bound of b, (C') over the family of plane convex bodies is an upper
bound of b;(C) over the family of centrally symmetric plane convex bodies. Moreover,
from the examples of the square and of the regular decagon we see that all the mentioned
estimates for plane convex bodies are also attained for centrally symmetric ones. Thus the
least upper bound of the minimum pairwise relative distance of k£ boundary points of an
arbitrary centrally symmetric plane convex body is 2 for k = 2, 3,4, it is v/5 — 1 for k = 5,

and it is % for k = 4r, where r > 2.

It is shown in [8] that there exists no centrally symmetric plane convex body whose
boundary contains six points in pairwise relative distances greater than 1. The value 1 is
attained for every C' € M. Since bg(C) > b7(C) > bg(C') for every convex body C, there is
no centrally symmetric plane convex body whose boundary contains seven or eight points

in pairwise relative distances greater than 1.

Let ¢, (M) denote the infimum of bg(C), where C runs over the family of centrally
symmetric plane convex bodies. Now we can reformulate the mentioned results as follows.
We have ¢ (M) = 2 for k = 2,3,4. Besides, c¢5(M) = V5 — 1, cg(M) = c7(M) = 1, and
car(M) = 2 for every r > 2.

In this chapter we determine the least upper bounds of the minimum pairwise relative
distance of six and seven points on the boundary of a plane convex body. These results
appear in [19]. Moreover, we conjecture that there exists no plane convex body whose
boundary contains nine points in pairwise relative distances greater than 4sin(10°) =
0.6946. This value is attained for the regular nine-gon and for the regular eighteen-gon.
We also conjecture that there exists no plane convex body whose boundary contains ten
points in pairwise relative distances greater than % The value % is attained for the square
even for eleven points. In other words, we conjecture that cg(C) = 4sin(10°), and that
¢10(C) = 11(C) = 2. Observe that these values are also attained for centrally symmetric
plane convex bodies, namely for the regular eighteen-gon in case of nine points, and for

the square in cases of ten and eleven points. Thus we conjecture that co(M) = 4sin(10°),

and that c10(M) = ¢11 (M) = %

In order to formulate our results about the relative distances of six and seven points

in a plane convex body first let us present some elementary observations. Notice that for
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arbitrary points p,q € E™ and for arbitrary convex bodies D C C' we have d¢(p,q) <
dp(p,q). Thus to find an upper bound of the minimum pairwise relative distance of k
points in an arbitrary plane convex body it is enough to examine convex k-gons with
the k points at the vertices of the k-gon. Moreover, according to Lemma 3 of [27], if z
is a boundary point of a plane convex body C, and if y moves counterclockwise on the
boundary of C from x, then d¢(x,y) is a non-decreasing function until it accepts the value
2, and it accepts all the values from the interval [0, 2]. Therefore to determine ¢ (C) it is
enough to examine the relative lengths of the sides of convex k-gons.

Consider the hexagon Hy which is the convex hull of a regular triangle and its homo-
thetical copy with the homothety center in the center of the triangle with the homothety
ratio 1 — /3 (we remark that Hj is nothing else but the convex hull of the vertices and of
the midpoints of the arcs of the Reuleaux triangle). The relative length of the sides of Hy
is 8 — 44/3 =~ 1.071. Doliwka and Lassak [7] conjectured that every convex hexagon has a
side of relative length at most 8 — 41/3. First we prove their conjecture and we show that

the value 8 — 44/3 is attained only for the affine images of H.

Theorem 3. Every convex hexagon H has a side of relative length at most 8 — 4+/3.
Moreover, if the relative length of every side of H is at least 8 — 4\/3, then H is an affine
image of Hy.

In the remaining part of this chapter we prove a similar statement about convex

heptagons.
Theorem 4. Every convexr heptagon has a side of relative length at most 1.

The example of the degenerated heptagon with four vertices at the vertices of a square
and with three remaining vertices at the midpoints of the sides of the square shows that

this result is the best possible one.
First we prove Theorem 3. Our proof is based on two lemmas.

Lemma 2. Let G be a convex k-gon, where k > 6. Assume that a triangle of the largest
possible area inscribed in G has a side which coincides with a side of G. Then G has a

side of G-length at most 1.
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Proof. Let T = abc be a triangle mentioned in the formulation of our lemma. Observe
that we can assume that ab is a side of G, and that c is a vertex of G. At least one of the
two pieces of the boundary of G between a and ¢ contains at least two additional vertices

e and f of G. For instance, let e be between ¢ and f on this piece (see Figure 12).

Cc\ - od

be Sa
Figure 12

Since the ratio of the areas of two figures does not change under affine transformations,
we may assume in our proof that abc is an isosceles triangle with right angle at b. Take
the point d such that S = abed is a square. Since abc is a triangle of maximal area, we
conclude that e and f belong to S.

Consider the convex pentagon P = abcef. First, we intend to show that at least one
of the relative distances dp(c,e), dp(e, f), dp(f,a) is at most 1. We dissect S into four
equal squares S,, Sy, S¢, Sq containing a, b, ¢, d, respectively. Since G is convex, e and
f are not in the interior of T. If dp(c,e) > 1 and dp(f,a) > 1, then e ¢ S. and f ¢ S,
and thus e € Sy and f € S;. Hence dp(e, f) < 1. We see that at least one of the numbers
dp(c,e), dp(e, f), dp(f,a) is at most 1.

Finally, we intend to show that if one of the mentioned P-distances is at most 1, then
G has a side of G-length at most 1. We assume that dp(e, f) < 1 (analogous consideration
can be applied for the remaining two cases). Examine the case when e and f are consecutive
vertices of GG. Since P is a subset of G, we have dg(p,q) < dp(p,q) for arbitrary points
p, q. Thus, in this case the thesis of our lemma holds true. Take into account the opposite
case, when e and f are not consecutive vertices, and take a vertex v of G between them.
Let V be a side of G with endpoint v. Consider the chords C, and C. of G with endpoints
a and c, respectively, which are parallel to V. Observe that C, or C. is at least twice as

long as V. Hence, the G-length of V' is at most 1.
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Lemma 3. Consider a convex hexagon H = abcdef such that the triangle ace is reqular.
Let us take the lines through a, c, e parallel to the segments ce, ea, ac, respectively. The in-
tersections of these lines are denoted by ag, co, ey (they are opposite to a, ¢, e, respectively).
Assume that b, d, f are in the triangle agcoeq and that the angles /cab, Lach, Laef, Leaf
are equal to a. Denote the angle Zecd by 3, and denote the angle Zced by ~y. If0 < a < §,
0 <min(8,7) < Z, du(c,d) > 8 — 4v/3, and dy(d,e) > 8 — 4v/3, then min(B,v) > a with
equality if and only if a = B = v = {5.

Proof. We choose a Cartesian coordinate system such that a, ¢, e are (0,0), (1,v/3) and
(—1,v/3), respectively (see Figure 13). Since dg(d,e) > 8 —44/3, d is not in the interior
of the homothetical copy C; of the quadrangle cefa with the homothety ratio —(4 — 2/3)
such that the image of ¢ is e. Moreover, also d is not in the interior of the homothetical
copy Oy of the quadrangle eabc with the homothety ratio —(4 — 2v/3) such that the image
of e is ¢. The boundaries of C; and C5 inside of the triangle cage intersect each other at

one point. Denote it by dj.

Figure 13

Case 1, when dj is on the images of the sides ef and be. In this case the minimum of

(£ and ~ is attained for d = dy. The y-coordinate of dj is
tan(a + g)(7 —4V/3) + V3.
This implies the inequality
tan(min(8, 7)) > tan(a + g)w —4V3).
Using elementary trigonometric and algebraic identities we easily get that

V3(tan(a) + /3 —2)?
1 — v/3tan(a) '

tan(a + g)(7 — 4V/3) — tan(a) =
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Observe that tan(%) = 2 — /3. Thus, if 0 < o < Z, then tan(a) < tan(a + Z)(7 — 4v/3)

with equality if and only if & = {5. Hence we have o < min(3, ). Moreover, the equality

can hold if and only if o = min(3,7) = {5. But when 8 or v is equal to

s

15+ do is the only

point on the segment in the triangle ecag determined by the angle {5 which is not in the
interiors of C1 and C. That is, we have 8 =~y = 5.
Case 2: when dy is on the images of the sides fa and ab. In this case we get the

minimum of § when d is dy or when d is the homothetic image of a in C;. Hence 8 > %.

A similar inequality holds for . Therefore min(3,y) > %, contrary to the hypothesis.
|

Proof of Theorem 3. Consider a convex hexagon H = abcdef. If a triangle of the largest
possible area inscribed in H has a side which coincides with a side of H, then we apply
Lemma 2.

Let us look to the opposite possibility, when no triangle of the maximum area in-
scribed in H contains a side of H. Observe that then ace or bdf is a triangle of maximal
area. Consider the first possibility (in the other one, further consideration is analogous).
Since the relative distance is affine invariant, we can assume that ace is a regular triangle
with vertices a(0,0), ¢(1,v/3), e(—1,v/3) in a rectangular coordinate system. We provide
straight lines L,, L., L. through a, c, e parallel to the segments ce, ea, ac, respectively.
Denote the point of intersection of L. and L. by ag. Similarly, let ¢y be the intersection
of L, and L.. Moreover, let ey be the intersection of L, and L.. Since ace is a triangle of
maximum area inscribed in H, the points b, d and f belong to the triangle agcgey. Denote
the angles Zcab, Zacb, Lecd, /ced, Laef, Leaf by aq, s, ..., ag, respectively.

We intend to show that if the relative lengths of the sides of H are at least 8 — 4\/3,
then o; = {5 fori=1,...,6.

In further consideration we exclude the case when a; = 0 for a certain ¢ because in
this special situation the hexagon contains a closed segment containing three consecutive
vertices which means that it has a side of relative length at most 1.

We do not make our consideration narrower assuming that ay = min{aq, ..., as}.

Case 1, when oy < . Consider first an auxiliary hexagon H' in which we have a4 in
the place of ay, ag, a5, ag . Then, from H' C H we get that dy(c,d) < dg/(c,d) and that
dH(dv 8) < dH’ (dv 8).
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Now we apply Lemma 3 for H' putting a3 in the part of 8, and a4 in the part of « and
7. We get that ay < a4 with equality if and only if a3 = a4 = {5. Since a4 is the minimal
angle from among a1, . . ., ag, all those angles are at least 5. Let us take the homothetical
copies of the quadrangles cefa and eabc with the homothety ratio —(4 — 2v/3) such that

the images of ¢ and e are e and ¢, respectively. Since d is in the interior of neither of the

s

15+ Consequently they

two copies, we get that min(ag, as) and min(as, ag) are at most

are equal to {5. Now we take an auxiliary hexagon H” in which a5 and ag are replaced

by as = 5. We apply Lemma 3 for H” and we get that {5 < {5 with equality if and only

s

if a1 = @ = {5. Thus, we can apply Lemma 3 for H, and as a result we get that a; = 75

for every i € {1,2,...,6}.
It can be easily verified that this hexagon is nothing else but the hexagon Hy mentioned

at the beginning of this chapter.

Case 2, when ay > . According to our previous assumption about ay, all the angles
are at least ¢. Notice that in this case the area of the triangle bdf is not less than the area
of the triangle ace, with equality if and only if all the six angles are §. Hence this case
concerns only the regular hexagon, whose sides are of relative length 1.

Finally, from the proof we see that if the relative length of every side of H is at least

8 —44/3, then H is an affine image of the hexagon Hj constructed by Doliwka and Lassak.
|

Proof of Theorem 4. Let H = abcdefg be a convex heptagon, such that all the relative
lengths of its sides are greater than 1. According to Lemma 2 we can assume that acf is
a triangle of maximal area inscribed in H. As the relative distance is affine invariant, we

can assume that the triangle acf is regular (see Figure 14).

Figure 14
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Let us take the Cartesian coordinate system such that a, ¢, and f are (0,0), (1,v/3),
(—1,+/3), respectively. We define the points ag, co, fo similarly like in the proof of The-
orem 3. Since acf is a triangle of maximal area, b, d, e, g are in the triangle agcg fo.
Let o', ¢, f’ be the midpoints of the segments cf, agf and agc, respectively. As dg(c,d)
and dy (e, f) are greater than 1, the points d and e belong to the rhombus d’ f’agc’. The
convexity of H implies that the slope of the segment de is between —v/3 and /3. Hence
dp(d,e) < 1. But this contradicts the assumption that the relative lengths of all the sides
of H are greater than 1. |
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CHAPTER 4

Upper Bounds of the Minimum Relative

Distance of Points of a Convex Body

Let £ > 2 be an integer. In this chapter we are looking for the least upper bound
of the minimum pairwise relative distance of k£ points in an arbitrary plane convex body.
Remember that dj (C') denotes the greatest possible number d such that C' contains k points
in pairwise relative distances at least d. In this chapter we are looking for the supremum of
di(C), where C runs over the family of plane convex bodies. We also consider an analogous
problem for centrally symmetric plane convex bodies.

Since no convex body contains points in a relative distance greater than 2, we have
di(C) < 2 for every value of k and for every convex body C. Moreover, in the square there
exist four points in pairwise relative distance 2. Thus for k£ < 4 the least upper bound of
the minimum relative distance of k points in an arbitrary plane convex body is 2.

A simple consideration applying the result of [7] leads to the conclusion that there
exists no plane convex body which contains five points in pairwise relative distances greater
than v/5 — 1. The value v/5 — 1 is attained for the regular pentagon and for the regular
decagon.

Considering the area of homothetical copies we get that for any » > 2 no plane convex
body can be packed by its 72 homothetical copies of ratio greater than % Applying The-
orem 6 we get that no plane convex body contains r? points in pairwise relative distances
greater than % From the example of the square we see that the value % is attained.

Let us denote by ey (C) the supremum of di(C), where C' runs over the family of plane
convex bodies. Using this notation we have e;(C) = 2 for k < 4, and e5(C) = v/5 — 1.
Moreover, e,2(C) = -2 for every r > 2.

Now we comment the case of centrally symmetric plane convex bodies. Apparently,
the supremum of dy(C') over the family of plane convex bodies is an upper bound of dx(C')
over the family of centrally symmetric plane convex bodies. From the examples of the

square and the regular decagon we see that the mentioned least upper bounds for plane

convex bodies are also attained for centrally symmetric ones. Thus, the least upper bound
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of the minimum pairwise relative distance of k£ points in a centrally symmetric plane convex
body is 2 for k < 4, it is \/5—1fork::5, and it is % for k = r2, where r > 2.

In Chapter 3 we have seen that there is no centrally symmetric plane convex body
containing six boundary points in pairwise relative distances greater than 1. An elementary
consideration shows that there is no centrally symmetric plane convex body containing six
points in pairwise relative distances greater than 1, even if the points are not obligatorily
on the boundary. Furthermore, the square contains also nine points in pairwise relative
distances at least 1.

Denote by e (M) the supremum of dj(C'), where C runs over the family of centrally
symmetric plane convex bodies. According to the above results and observations we have
ex(C) = 2 for k < 4, and e5(M) = /5 — 1. Moreover, eg(M) = er(M) = eg(M) =
eg(M) = 1, and also e,2(M) = 2= for every r > 2.

r—1

In this chapter we find the least upper bound of the minimum pairwise relative distance

of six points in a plane convex body.

Theorem 5. No plane convex body contains six points in pairwise relative distances greater

than 2 — %g ~ 1.106. Furthermore, if p1,...,pe are points in a plane convex body C' such

2v5
5

that all their pairwise relative distances are at least 2 — , then C is an affine regular

pentagon, and the points are its vertices and its center.

Besides, we conjecture that there exists no plane convex body containing seven points
in pairwise relative distances greater than 1. Since the square contains even nine points
in pairwise relative distances at least 1, we also conjecture an analogous statement about
eight points. Theorem 5 and the above conjectures are presented in the joint paper [4]

with K. Boroczky.

Now we prove Theorem 5. During the proof we denote points by small Latin letters.
In a Cartesian coordinate system, the z-coordinate and the y-coordinate of a point p € E?
are denoted by p* and by pY, respectively. We denote the straight line through the points
p,q € E? by L(p,q). The value 2 — 27\/5 is denoted by A, the value % =1- % ~ 0.553 by
7, and the value ﬁ = /5 —1 by v. By the kernel of a convex pentagon P we mean the
convex pentagon which is bounded by the diagonals of P.

The proof is based on three lemmas.
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Lemma 4. Take a convexr pentagon P = ajasazasas and take a point p in the kernel of P.
Denote min{dp(p,a;)|i =1,...,5} by N(P,p). Then A\(P,p) < A, and the equality holds if

and only if P is an affine reqular pentagon and p is its center.

Proof. Compactness arguments show that the maximal value of A(P, p) is attained on the
family of convex pentagons P and of points p of the kernel of P. Moreover, if P is an
affine regular pentagon and if p is its center, then A(P, p) is equal to A\. Hence it is enough
to show that if P is not affine regular or if P is affine regular but p is not its center, then
A(P,p) cannot be maximal. During the proof we denote the intersection point of the line
L(p, a;) and of the segment a;12a;43 by b;, fori = 1,...,5. Moreover, we denote the kernel
of P by Q.

Observe that if p is on the boundary of @, then A(P,p) < 1, which is less than A.
Thus in this case A\(P, p) cannot be maximal. Therefore in the sequel we assume that p is
in the interior of Q.

Case 1, when P has a side of P-length 2. For instance, let ajas be such a side. Instead
of the condition that p is in the kernel of P, during the proof in this case we use only the

facts that p € ajaszas and p € asaszas. For i =1,...,5 let us denote a maximal chord of P

— _laip|  ~ 2[aip]|
%|uzvz| — Jaib;|*

parallel to a;p by w;v;. As |u;v;| > |a;b;|, we have dp(a;, p)

If |asp| > |pbs| and if |agp| > |pbs|, then L(aq, as) separates p and the intersection point

of L(ay,as) and L(ag,az). Thus dp(ai,as) < 2, which is a contradiction. If |asp| < |pbs|,
2|la .. .

then dp(as,p) < |(|13§’3’|‘ = 1+‘QPL3‘ < 1. Hence A(P,p) < 1. Similarly, if |asp| < |pbs|, then

lagp]
>\<P7p) < dP(a57p) < 1.
Case 2, when P has no side of P-length 2. In this case dp(p,a;) = 2laipl for = 1,...,5.

la;b;]

Subcase 2.1, when P has two consecutive vertices in P-distance from p greater than
A(P,p). Assume, for example, that dp(as,p) > A(P,p) and that dp(as,p) > AP, p)
(see Figure 15). For ¢ = 1,...,5 let us denote by H; the open halfplane bounded by
the line through p parallel to a;i2a;43 such that a; ¢ H;. Observe that if p’ is in H;,
then dp(a;,p) < dp(a;,p’). Let H = Hy N Hy N Hs. Notice that H' = H NintQ is a
nonempty open set, and that p is a boundary point of H’. If p’ is a point of H’, then
dp(a;,p’) > dp(a;,p) > MP,p) for i = 1,2,3. Moreover, if p’ is close enough to p,
then dp(aj,p’) > AN(P,p) for j = 4,5. Thus, we can choose a point p’ € int@ such that
A(P,p) < A(P,p"). Hence A(P,p) cannot be maximal.
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Figure 15

Subcase 2.2, when P has exactly two vertices in P-distance from p greater than
AP, p), and these vertices are nonconsecutive. Without loss of generality, let dp(a1,p) =
dp(ag,p) = dp(as,p) = XN(P,p), dp(as,p) > A(P,p) and dp(as,p) > A(P,p). Take the
convex pentagon P’ = ajasasasal, where af is an interior point of the segment asa;.
We have dp/(a1,p) = dp(a1,p) = AN(P,p), dp/(az,p) > dp(az,p) = X(P,p), dp/(as,p) =
dp(as,p) > A(P,p), dp/(as,p) = dp(as,p) = NP, p), dp:(al,p) < dp(as,p). Moreover, if
af is close enough to as, then dp/(as,p) > A(P,p), and p is in the kernel of P’. Hence,
according to Subcase 2.1, there exists a point p’ in the kernel of P’ such that A(P,p) =
AP, p) < MNP, p).

Subcase 2.3, when P has exactly one vertex in P-distance from p greater than A(P, p).
Let this vertex be as. Take the convex pentagon P* = ajasasasaf, where af is an interior
point of the segment asa;. We have that dp«(a1,p) = dp(a1,p) = AN(P,p), dp=(az,p) >
dp(az2,p) = MP,p), dp-(as,p) = dp(as,p) = NP,p), dp-(as,p) = dp(as,p) = MNP, p),
dp+(at,p) < dp(as,p). Moreover, if af is close enough to as, then dp«(af,p) > A(P,p).
Hence, thanks to Subcase 2.2, there exist a convex pentagon P’ and a point p’ in the kernel
of P’ such that A\(P,p) = A\(P*,p) < A(P,p').

Subcase 2.4, when dp(a;,p) = AN(P,p) for i = 1,...,5. As we are looking for the
maximal value of A(P,p), we assume that A\(P,p) > 1. For the sake of simplicity, we
use the notation v(P,p) = AMPp) - g larl v(P,p) for i = 1,...,5. Observe that

2=X(P,p) " |pbi|
v(P,p) is a srictly increasing function of A(P,p). Additionally, A\(P,p) > 1 implies that

v(P,p) > 1. Let h, be the homothety with homothety center p and with homothety ratio
—oppy- Then hy(a;) =b; fori=1,....5.

Consider the intersection point a of the lines L(aq,as) and L(as,a3). Let us take
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a Cartesian coordinate system. As the relative distance of two points does not change
under affine transformations, we can assume that the points a, a1, as are (0,0), (1,—1),
(—1,—1), respectively (see Figure 16). We intend to show that if p* # 0, then A(P,p) is
not maximal. Assume that p® > 0 (in the other case the proof is analogous).

a

2l s

Figure 16

Take the intersection point ¢ of the segments ap and b3bs. Denote the straight lines
y =pY and y = ¢¥ by L, and L,, respectively. Let p’ and ¢’ be the points (0,p?) and
(0, ¢¥), respectively, and let h,, be the homothety with center p’, and with homothety ratio
—ﬁ. Let us denote by b5 and by bf the intersections of L, and of the straight lines
L(a,ay) and L(a,asz), respectively. Let aj be the intersection of L(a,as2) and L(p', b5).
Similarly, let af be the intersection of L(a,a1) and L(p’, bf).

We show that b5 = hy (a%) and that by = h,(af). Observe that pbsbs = hy(pasas).
Thus asas and bsbs are parallel, and b3bs is the homothetic image of azas of ratio ﬁ,
where the center of homothety is a. Since ajaf and b3bj are also parallel, b5b; is the

homothetic image of ajaf of ratio ﬁ, where the center of homothety is a. Hence
||2§Z/Z|| = u(113,p)' From this we get that b4bip’ = hy (asazp’). That is, b5 = hy(a%) and

b = hy (az).
Denote ay by aj, az by a5, hy(a1) by b, and hy (az2) by b5. Let a)y be the common
point of the straight lines L(aj,b]) and L(ag, b5), and let b}y denote h, (a}). Using these
2]aip| _

notations we have Tao] = A(P,p) fori =1,...,5. We omit a consideration which shows

that P’ = a)abasalaf is a convex pentagon, that p’ is in the kernel of P’ and that P’ has no
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side of P’-length 2. From the above properties of P’ and p’ we get that dp/ (p’, a}) = A(P, p)
for i = 1,2,3,5. We show that dp/(p’,a}) > A(P,p).

Take the points ¢; = hy(b1), c2 = hy(b2), ¢4 = hy (b)) and ¢ = hy (b5). As the
homothety ratios of h, and h, are equal, we have ¢ = ¢§ = ¢|¥ = ¢, and |cica| =
|cich|. Since bsbs and asas are parallel, the quadrangle asbsbsas is a trapezoid. Thus
|bsq| = |gbs|. Consider the triangles bsbsq and bsbyq. We get that |bsbh| = |bsbs|. Let b3
be the intersection point of the segment b3bs and the straight line L,. Similarly, let b7 be
the intersection point of the segment bsbs and the straight line L,. Notice that b} > 0,
bs € bsas, and bs € biaz. These observations and the equality of |bsb5| and |bsbg| imply
that |b3b%| > |b5b5|. Consider that by is the intersection of L(b3, ¢1) and L(bf, c2), and that

i is the intersection of L(bf,c}) and L(bg,ch). As |b5bE| > |55 and |cica| = |c)ch|, we

get that by < b}Y. Take the intersection point b} of ajas and p'b). Since El,gg > v(P,p),
we have dp/(p’,a}) > A(P,p). Obviously, A\(P,p) = A(P’,p’). Thus, according to Subcase
2.3, the value A(P, p) cannot be maximal.

Notice that our choice of the side ajas was arbitrary. This implies that A(P,p) can
be maximal only if P is affine symmetric to every line containing the midpoint of a side of
P and the opposite vertex of P, and if p is on every one of the above lines. But this holds

only if P is an affine regular pentagon and if p is its center.

Lemma 5. Let P = ajasazagas be a convex pentagon and let p be a point of P which is
not in the kernel of P. Then among p, a1, ...,as there exists a pair of points in P-distance

less than \.

Proof. If P is a degenerate pentagon, then it has a chord containing at least 3 vertices of
P. Thus in this case P has a side of P-length at most 1, which is less than \.

In the sequel we deal with the case when P is nondegenerate. Take a Cartesian
coordinate system. As the P-distance of two points is affine invariant, we assume that the
points aq, as and as are (0,0), (1,0) and (0, 1), respectively. Let b be the point (1,1).
Denote the square ajasbas by S. Furthermore, for every i,j € {1,...,5}, where i # j, we
denote the slope of the line L(a;, a;) by m;;, provided it exists.

Case 1, when P has more than one side of P-length 2. Consider the case when P

has two nonconsecutive sides of P-length 2. We assume that dp(aj,az2) = 2 and that
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dp(as,as) = 2 (the proof of the other cases is analogous). Let the angle of P at the vertex
a; be denoted by «;, for ¢ = 1,...,5. From dp(aj,as) = 2 we get that a3 + ag < 7.
Similarly, from dp(aq,a2) = 2 we have ag + a4 < 7. The convexity of P implies that

5
as < m. Obviously, > a; = 3w. Thus, a1 + a2 = ag + a4 = a5 = 7. Therefore P is a
i=1
degenerate pentagon.

Let us assume that P has two consecutive sides of P-length 2. Without loss of gen-
erality, let these sides be asa; and ajas. Hence P C S. Denote the triangle ajasas by
S1. Take the homothetical copies Sa, S3, S4 of asbas, S, asbas with ratio % and with
homothety centers as, b, as, respectively. As P is convex, S7 contains neither of the points
as and a4 in its interior. If S, contains as or if Sy contains a4, then dp(asz,a3) < 1 or
dp(ag,as) < 1, respectively. Finally, if S3 contains both a3 and a4, then m34 < 0 implies

that dp(as,as) < 1. Thus we get that P has a side of P-length at most 1.

Case 2, when P has exactly one side of P-length 2. We choose the indices of the points
such that dp(ay,as) = 2, and that ag > 1. The condition of this case and the convexity of
P imply that 0 < a} < af < 1, and that 1 < af < aj. Moreover, either dp(aj,as) < A or

aj < % In the following we assume that af < % < 2.

Observe that for arbitrary w € E?, the set of points whose P-distance from w is less
than A is the interior of the translate of 7 (P — P) where the center of the body is w. From
the previous considerations concerning the properties of P we get that the sides of the

centrally symmetric convex decagon %(P — P) are parallel to ajas, aqas, aias, asay, asas.

First we show that if every side of P has P-length greater than 1, then mys > mqy3. We
show the statement indirectly. Denote the intersection point of L(as, as) and L(ay4, as) by
s, and denote the intersection point of ajas and azas by g. Let a4 and a); be the homothetic
images of ag and a4, respectively, where the center of homothety is s and its ratio is 2.
Denote the midpoint of the segment ass by s5. Let t be the point of asas such that aqt
and agas are parallel. Similarly, let s’ be the point of L(as, a3) such that ass’ and ajasz are

parallel. Observe that a1t is a maximal chord of P parallel to asas. Thus dp(ay,as) > 1

implies that 3|ait| < |asas|. Moreover, we have |asss| = 3|ass| < Z|ait|. Therefore
lasss| < |agas|, from which a4 € sss. Since my3 > 1, we get that 1 < Igzq} = ||Zz‘;f’||.
Hence |f;3°;‘°’|| > ||‘;ZZ?|| > 1. This and a4 € szs imply that ajal is a chord of C. Thus

dp(as,as) < 1, which is a contradiction.
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Now we prove the statement under the condition that mys > mq3. If p is in both
the triangles ajasas and asaszas, then, according to the proof of Case 1 in Lemma 4 we
have dp(as,p) < 1 or dp(as,p) < 1. We intend to examine the cases when p € asayas, or

p € aijazas5, Or P € a2a3(.

Subcase 2.1, when p is in the triangle azasas. Denote the midpoints of the segments
asas, azas and agag by c3, ¢4 and cs, respectively. Notice that the triangles agcycs,
ascscy and the parallelogram agcscycs are contained in the homothetical copies of P with
homothety ratio % where the homothety centers are as, as and a4, respectively. Thus in

this case at least one of the values dp(as,p), dp(as,p), dp(as,p) is at most 1.

Subcase 2.2, when p is in the triangle ajasas. We show the statement indirectly,
therefore we assume that among p and the vertices of P there is no pair in P-distance less
than A. Denote by Q; and by @5 the translates of 7 (P — P) where the centers of the bodies
are a1 and as, respectively. Consider the points by = (1 —7,0) and b5 = (1 — 7,1 — 7). As
dp(ag,p) > A, we have p € ajb1bsas. We show that a;bybsas is covered by the interiors of
Q1 and Q5. For this it is enough to show that b;b5 is in the interior of ()1 U Q5. Denote by
dy the intersection of b1b; and of the boundary of @1 such that d; # by. Similarly, let d5
be the intersection of b1b5 and of the boundary of (J5. We omit an easy calculation that if
d; is not on the side of Q1 parallel to asag, or if d5 is not on the side of )5 parallel to asas,
then by b5 is in the interior of @1 U Q5. In the opposite case we get that df = maz(1 — 27),
and that df = my5(1 —27) + 1 — 7. Thus dY — d = (27 — 1)(ma5 — ma3) + 7 — 1.

Let us assume that mgs < —1. Take the point u on the line L(as,as3) such that as
is the midpoint of the segment asu. As dp(as,as) > A > 1, we have Zuasb < Lagasb.

Thus, 0 < 2%=Y < ;n,-. This implies that d¥ — d¥ > (21 — 1)(2(13_1 + as )+T—1>
; 20z —1 45- b 1 5 = 2a2—1 " 1—al =

(21 = 1)(322—7 + =) + 7 — 1. But the last expression is always positive.
3 3

Now we discuss the case when mgs > —1. In this case from dp(asz,aq) > \ we
conclude that a§ — afj > 7. Consider the point m = (0, ﬁ) Take the line L,, through
m with slope —1. Since mgq4 > —1 and since dp(as,as) > A, a3z and a4 are in the open
halfplane not containing a; bounded by L,,. As aj < %, we have aj > ﬁ — %, and thus
ag > ﬁ — % + 7 = %8_5 ~ 0.980. But this contradicts that d; is on the side of @,
parallel to agas, that is, that af < 1—77 = @ ~ 0.809. Hence b1b5 is in the interior of

Q1 UQs5. Therefore every point of a1b1bsas is in P-distance from a; or from as less than A.

38



Subcase 2.3, when p is in the triangle asasq. Let ()2 and Q3 be the translates of
5 (P — P) where the centers of the bodies are az and as, respectively. If p¥ > 1, then p is in
the interior of Q3. In the following we deal with the case when p¥ < 1. From dp(as,p) > A
we have p* > 7. Let us show that the points of asaszq with x-coordinates at least 7 are
in the interior of Q2 U ()3. Denote by e; the common point of the line x = 7 and of the
boundary of ()2 with greater y-coordinate. Denote by e3 the common point of the line
xz = 7 and of the boundary of Q3 with less y-coordinate. We show that e — e} is positive.
We have e < (1 — 7)aj. Moreover, e§ = 7aj or e§ = mys5(27 — 1) + 7. If €§ = 7a},
then e — e§ > 7(a§ + aj) — af > 0. In the sequel we assume that e = my5(27 — 1) + 7.

Observe that mys > my3 > 1. Hence, if a§ < 3= then e§ —e4 > 37 —1— (1 —17)aj > 0.

1—7

Let us assume the opposite case, when a¥ > 22=L  In this case ¢ < L < a¥% 4+ 7.
Y 3 1—7 4 T 3

Thus dp(az,as) > A implies that af < a — 7 = 1 — 7. Take the points m(0, %)

Y 1—1
and g(,1 — 7). Denote by h the intersection point of L(m,g) and z = 1. We omit

an elementary calculation which shows that hY = % — (37_2)12. Since dp(as,aq) > A,

we get that as is in the closed halfplane containing a; bounded by L(a4, m). Therefore
aj —aj > L —hY. Thus, a < aj — 1+ h¥ < hY ~ 1.281. But this contradicts our
~ 1.472.

3r—1

assumption that af > 57—

We have shown that e§ — e} is positive. But this implies that every point of the

triangle asasq with z-coordinate at least 7 is in the interior of Qs U Q3.

Case 3, when P has no side of P-length 2. We assume that p is in the triangle ajasas
and that mgy is at least —1 (the proof of the other cases is analogous). Since P has no
side of P-length 2, we have a% > 1 and aj > 1. Observe that the points of ajazas with
x-coordinates greater than 1 — 7 are in P-distance from as less than A. Similarly, the
points of ajasas with y-coordinates greater than 1 — 7 are in P-distance from a5 less than
A. Thus it is enough to deal with the case when both coordinates of p are at most 1 — 7.
Take the point f = (% -1, % —1). We intend to show that if P has no side of P-length
less than A, then f is in the interior of P.

Consider the case when the maximal chord parallel to asas has an endpoint at a;.
In this case the other endpoint of the above chord is on the segment aszas. This and
dp(ag,as) > X\ imply that the y-coordinate of the common point of L(as,as) and of the
line y = 0 is at least ﬁ = /5. Therefore, as —1 < mgy, we get that f is in the open

39



halfplane containing a; bounded by L(as,as). Thus f is in the interior of P.
Consider the case when the maximal chord of P parallel to asas has an endpoint at
as. In this case dp(as,as) > X implies that a > 7af. Since dp(as,as) > A, we have
T

2
a3 —aj > 7. Therefore aj > 7—. From dp(az, a3) > X we get that a3z is not in the interior

of the homothetical copy of ajasas with homothety ratio 7 where the image of a; is as.

7_2

7—,1) and a5 = (1,1 — 7). We omit an elementary calculation

Take the points a) = (
which shows that f is in the open halfplane containing a; bounded by L(a%,a}). Thus f
is in the open halfplane containing a; bounded by L(as, a4). Therefore f is in the interior
of P.

We have shown that if P has no side of P-length less than A, then f is in the interior
of P. But the definition of f and our inequalities for the coordinates of p imply that in

this case dp(p,a1) < A

Lemma 6. Let ay,...,ag be points such that their convexr hull Q) is a quadrangle or a

triangle. Then among those points there exists a pair in QQ-distance at most 1.

Proof. We show the statement of our lemma indirectly. We assume that among the points
ai,...,ag there is no pair in )-distance at most 1. Let us take a Cartesian coordinate
system. As the Q)-distance of two points does not change under affine transformation, we
assume that the points aj, as and az are (0,1), (0,0) and (1,0), respectively. Take the
point b(1,1) and the square S = ajasazb. We choose the indices of our points such that
@ C S. Let us denote the homothetical copies of S with homothety ratio % and with
centers aq, as, as, b by S1, Sz, S3, S4, respectively. Consider the center ¢ of S, the center
by of the segment aias and the center by of the segment asaz. Observe that every point of
the triangle a1b;c is in Q)-distance at most 1 from a;. Similarly, every point of the triangles
asboby and boasc is in QQ-distance at most 1 from as and from ag, respectively. Notice that
there are no two points in the triangle b;boc in QQ-distance from each other greater than 1.
Thus b1byc contains at most one of the points a4, a5, ag. Hence @) is a quadrangle. Let
ays be the fourth vertex of Q). As dg(ai,as) > 1 and dg(as,as) > 1, we have aq € Sy.
Hence every point of S; and S5 is in @)-distance at most 1 from a; and ag, respectively.

Furthermore, S5 N Q is covered by the homothetical copy of () with homothety center a4
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and with ratio % Thus, every point of S4NQ is in Q-distance at most 1 from a4. Moreover,

bacby contains at most one of the points as and ag, which is a contradiction.

Proof of Theorem 5. First, observe that if C' is an affine regular pentagon, and if the six
points are its vertices and its center, then the minimal pairwise C-distance of the points is
A. Take an arbitrary plane convex body C. Let pq,...,pg be points of C. Let us denote
the convex hull of p1,...,pg by C'. As C' C C, the C’-distance of arbitrary two points
is greater than or equal to their C-distance. If C’ is a hexagon, from Theorem 3 we get
that among p1, . .., pe there is a pair in C’-distance at most 8 — 4v/3, which is less than \.
With respect to Lemma 4 and Lemma 5, if C’ is a pentagon, then the minimal pairwise
(C'-distance of the points is at most A, with equality if and only if C” is an affine regular
pentagon and the points are its vertices and its center. According to Lemma 6, if C’ is a
quadrangle or a triangle, then there exists a pair of points in C’-distance at most 1, which
is less than A. We have proved the first statement of our theorem.

To prove the second statement, it remains to show that if C’ is an affine regular
pentagon and if the points are its vertices and its center, and if there is no pair of them in
a C-distance less than A, then C' = C’. Let us choose the indices of the points such that
C'’ is the pentagon pipapspaps and that pg is the center of C’. Assume that C' # C’. In
this case there exists a point ¢ € C, which is not a point of C’ and the convex hull D of ¢
and C’ is a convex hexagon. It is enough to deal with the case when D = p1papspapsq (the
proof of the other cases is analogous). But then dc(ps, p3s) < dp(ps, p3) < de(ps, p3) = A.
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CHAPTER 5

Relative Distance and a Convex Body Packed
or Touched by its Homothetical Copies

Let A and B be convex bodies in a Euclidean n-space E™. If A is a subset of B,
and if A contains a boundary point of B, we say that A touches the boundary of B from
inside. If the intersection of A and B is not empty but their interiors are disjoint, we say
that A and B touch each other. If the interiors of A and B have a common point, we
call them overlapping. If Aq,..., Ay are mutually nonoverlapping convex bodies, and if
B is a convex body such that A; C B for ¢ = 1,...,k, then we say that B is packed by
Aq,..., Ay, or that Ay, ..., Ax are packed into B.

In this chapter we investigate the connection between the existence of points in a
convex body in large relative distances, and the existence of large homothetical copies of
a convex body packed into, or touching the body. The idea of such a connection first
appeared in [8] and in [24]. Both papers deal with the case when some small number of
homothetical copies of a plane convex body C with equal positive homothety ratio are
packed into C'. The case when k& mutually nonoverlapping homothetical copies of C' with
equal homothety ratio touch the boundary of C' from inside is discussed in [27]. In [27]
the case when mutually nonoverlapping equal negative homothetical copies of C' touch C'
is also examined.

In this chapter first we prove the following connection between the relative distances

of k points of C' and the ratio of k equal positive homothetical copies of C' packed into C.

Theorem 6. Let C' be a conver body in E™ and let k > 2 be an integer. If C' contains
k points in relative distances at least d, then we can pack C by its k homothetical copies
of ratio #‘ld. Vice-versa; if we can pack C' by its k homothetical copies of a positive ratio

2r
1—r"

r < 1, then we can find k points in C in relative distances at least

The below Figure 17 illustrates our theorem.
Let r;(C) denote the greatest possible positive ratio of k£ homothetical copies of C
that can be packed into C'. Simple compactness arguments show that for every convex

body C' in E™ and for every integer k > 2, the number r(C') exist.
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Figure 17

Using the notion of the values di(C) and r,(C) we can rewrite Theorem 6 in the

following form.

For every convex body C' C E™ and for every integer k > 2 we have

ry(C) = - )

. 27‘k<0)
=55 40 and di(C)

- 1—7‘].3(0)'

Recall that the infimum and the supremum of dj(C'), where C runs over the family of
plane convex bodies, are denoted by d(C) and by ex(C), respectively. Also remember the
notations dy(M) and er(M) for the infimum and the supremum of dj(C'), respectively,
where C' runs over the family of centrally symmetric plane convex bodies. In Chapters 2
and 4 we have collected the results and conjectures regarding the values of d(C), ex(C),
dr(M) and eg(M).

Let us denote by 7;(C) and by sx(C) the infimum and the supremum of r;(C), re-
spectively, where C' runs over the family of plane convex bodies. Similarly, let (M) and
sp(M) be the infimum and the supremum of r(C'), respectively, where C' runs over the
family of centrally symmetric plane convex bodies. Compactness arguments show that
these infima and suprema are attained. Applying Theorem 6 we get a number of estimates
for the values of r4(C), si(C), (M) and sx(M).

From d5(C) = 2 we have r(C) = 3. Moreover, from Proposition 1 we obtain ds(C) >
$(2+2v6). Using Theorem 6 we get that r3(C) > @ ~ 0.4082. We have mentioned a
conjecture which says that d3(C) = 3(1 + V/5) ~ 1.618 (see [23] or [24]). The example of
the regular pentagon P in the part of C' shows that this value cannot be replaced by a

larger one.
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Figure 18

In Figure 18 we see three homothetical copies P, P>, P3 of P and corresponding

centers pi1, p2, p3 of homotheties. Observe that they can be moved step by step around P

so that the relative distance between pairs of them is always 1 (1 4 v/5). Having in mind

Theorem 6, instead of this we can say that P;, P, P3 may be moved around such that
they touch themselves and the boundary of P all the time. In Figure 18 we first move p;
up to the lower end of the corresponding side of P. This means that P; moves and makes
some space which permits to move P,. Simultaneously, po moves on the boundary of P.
Then we can move P53 and so on. We conclude that for the regular pentagon the relative

distance 15 cannot be increased. According to Theorem 6 we can also say that for the

2
regular pentagon the homothety ratio % cannot be increased.

From Theorem 2 and from the convex pentagon shown in Figure 5 we have seen that

1.0787 ~ @ < d4(C) < V5 —1 ~ 1.2361. Thus we also have 0.3504 ~ —1+232\/5 <

ra(C) < % ~ 0.3820. From [8] and [24], and from the example of the square we see that

r5(C) = 5. Moreover, Proposition 2 and the example of any triangle imply that r5(C) = 1.

For k < 4, from €5 (C) = 2 we conclude that s;(C) = 3. Thanks to [7] and the example

of the regular pentagon we have s5(C) = % ~ 0.3820. Theorem 5 and the example of

the regular pentagon imply that s¢(C) = 9_15/5 ~ 0.3360.

From dy(M) = 2 we get that r5(M) = 3. From [26] and from the example of the

regular octagon we see that 0.4409 ~ 44{;’/5 < rg(M) < %7\/5 ~ 0.4605. Thanks to [§]

and [24], and thanks to the example of the circle, we have r4(M) = v/2—1 ~ 0.4142. From

[8], from [24], and from the example of the square we have r5(M) = rg(M) = re(M) = 3.

In Chapter 4 we have seen that e (M) = 2 for k < 4. Thus we also have sz(M) = 3

for k£ < 4. From [7] and from the example of the regular decagon we get that s5(M) =
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% ~ 0.3820. Moreover, from [8] and from the example of the square we conclude that
sp(M) =1 for k=6,...,9.

Theorem 6 appears in the joint paper [23] with M. Lassak.

To formulate our next theorem we introduce the concept of translative kissing number
H(C) of a convex body C C E™. By H(C) we mean the maximal number of mutually
nonoverlapping translates of C' touching C'. Hadwiger [16] showed that for every plane
convex body its translative kissing number is always at least 6 and at most 8. Griinbaum
[15] proved that if C is a parallelogram, then H(C') = 8, and the translative kissing number
of every other plane convex body is 6.

We examine the following question. Let k£ be a fixed integer and let C' C E™ be a
convex body. We are looking for the greatest possible number ¢ such that there exist k
mutually nonoverlapping homothetical copies of C' with homothety ratio ¢t touching C'. In

the second part of this chapter we prove the following theorem.

Theorem 7. For every convex body C' C E™ and for every t € (0,00) the following
two conditions are equivalent:
(i) there exist k mutually nonoverlapping homothetical copies of C' with homothety

ratio t touching C,

_t

1 (—C) in pairwise C-distances

(ii) there exist k points in the boundary of %HC +

t 2t

at leas 0

In our proof we also conclude that our theorem remains true if we take disjoint ho-

mothetical copies in (i) and C-distances greater than 12—th in (ii).

We consider the consequences of our theorem only for the planar case. For every
t € (0,00) we denote by C; the family of plane convex bodies that can be presented in the
form 5 C + 45 (=C), where all C € C are taken.

Let tx, where k > 3, denote the greatest possible number such that for every plane
convex body C there exist its k mutually nonoverlapping homothetical copies with ratio
tx touching C'. Analogously, let ux, where k > 5, denote the greatest possible number such

that there exists a plane convex body C for which there are k mutually nonoverlapping

45



homothetical copies of C' with ratio uy touching C'. Here, compactness arguments show
that the above maxima exist. Obviously, both {¢;} and {ux} are nonincreasing sequences.
Using Theorem 7, we get a number of estimates for some values of ¢, and ug. These

estimates are collected in the following Corollary.

Corollary. We have t5 = tg = 1 and % <t; <

>

. Moreover, us = %(\/S—i— 1) ~ 1.618,

ug = uy = ug = 1, and for every integer s > 2 we have uss = 5711

Other values of t; and u; are not determined. We have conjectured in Chapter 3 that

e9(C) = eg(M) = 45in(10°) ~ 0.6946, and that e10(C) = e19(M) = €11(C) = e11 (M) = 2.

From the proof of our corollary we will see that verification of these conjectures imply

2sin(10°) 1

T—2si(ioe) and u10 = u11 = 5

Ug = 3"

In the remaining part of this chapter we are looking for large negative homothetical
copies of a convex body C with equal homothety ratio packed into C. Like in Theorem 7,
we prove a connection between the ratio of the above homothetical copies and the relative

distances of points in a convex body.

Proposition 3. Let C be an arbitary convex body in E™, and let t € (0,1]. Denote by C}

¢ 2t

the set of points of C whose C-distance from every boundary point of C is at leas T

Then the following two conditions are equivalent:
(i) there exist k mutually nonoverlapping homothetical copies of C with homothety

ratio —t packed into C),

t 2t

(ii) there exist k points in Ct in pairwise C-distances at least 175 .

Analogously to the proof of Proposition 3, we can show the following.

If there exist k negative homothetical copies of C' with ratio —t touching the boundary
of C from inside, then there are k points in the boundary of Cy in pairwise C-distances

at least 12—435’ and vica versa, if there exist k points in the boundary of C; in pairwise C'-

distances at least 2L

T+t
touching the boundary of C from inside.

then there are k megative homothetical copies of C' with ratio —t

Theorem 7, Corollary and Proposition 3 are presented in the paper [21].
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First we prove Theorem 6. In order to prove it we show Lemma 7, which implies

Lemma 8. Our theorem is an immediate consequence of Lemma 8.

Lemma 7. Let xy and ab be two parallel segments in E™. Put d = 2(|zy|/|ab|). The two
segments being homothetical copies of the segment ab with homothety centers x and y, and

with the homothety ratio have exactly one common point.

2—|—d’
Proof. Denote by w the point of intersection of the straight lines containing segments xb
and ya (see Figure 19). We tacitly assume that the notation for a and b is taken such that
the segments intersect. Through w we provide the straight line parallel to the segment zy.

The intersections of this line with the segment xa is denoted by g, and with the segment

lgw| _ |wz| _ _ |wal |bw] - |ab]
yb is denoted by h. Thus |9b| = Toa] = Towl+lwa] — (|wx| +1)7 (Ixyl +1)7
x Yy
g s h
a b
Figure 19
Analogousy, ||ab|| (||gZ|| + 1) . Consequently, for the homothety ratio (||ab|| + 1)

(% + 1)t = 5 + 547, the common part of the images of the segments ab under homotheties

with centers x and y is just the point w. ]

Lemma 8. Let C' C E™ be a convex body and let x, y be boundary points of C'. For every
positive constant d < 2 the following conditions are equivalent.

(1) de(z,y) = d,

(ii) the homothetical copies of C with homothety centers x and y, and with ratio m

touch each other.
Lemma 8 follows from Lemma 7 when in the part of ab we take a longest segment

contained in C' which is parallel to zy (see Figure 20). Observe that this way of proving

permits to avoid using arguments of separation of the two copies of C' by a hyperplane.
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Figure 20
From the proof of Lemma 7 we see that only for the ratio #‘ld we get exactly one point
of the intersection of the two segments which are homothetical copies of ab. If the ratio
is smaller, then the intersection is empty. If it is greater, then the intersection contains
more than one point. So analogous equivalence like in Lemma 8 holds true if we have
the inequality deo(z,y) < d in (i) and the condition about nonempty intersection of the

interiors of the copies in (ii).

Proof of Theorem 7. First we show that (i) implies (ii).

Case 1, when t € (0,1). Let us assume that C,..., Cy are mutually nonoverlapping
homothetical copies of C' with homothety ratio ¢ touching C. Denote by ¢; the center of
the homothety h; which maps C into C;, for i = 1,...,k (see Figure 21). Let ¢; be a

common point of C' and C;.

Figure 21

As C and C; are not overlapping, they have a common supporting hyperplane H;
containing ¢;. Take the point p; of C' for which h;(p;) = ¢;. Obviously, dc(c;,q;) =
tdco(ci, pi). Since there exist parallel supporting hyperplanes of C' containing p; and ¢; (for
instance, h; ' (H;) and H;), we get do(pi,q;) = 2. That is, t(do(ci, q;) +2) = do(ci, ¢)-

Thus, de(ei, ;) = % It is easy to see that for every point z € C we have d¢(c¢;, 2) >
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2t
1-t°

d is the boundary of the convex body w + %(C’ — C). Hence ¢; is on the boundary of
C+{5(C-0)=C+(-0).
Now we intend to show that dc(c;, ¢;) > £5 for 4,5 € {1,...,k}, where i # j. Let

Observe that the set of points whose C-distance from a point w € E" equals to

us take a point r of C. Denote h;(r) by r;, for i = 1,...,k (see Figure 22). Apparently,
77| = (1 — t)|rei]. As the triangles rr;r; and rc¢;c; are similar, we conclude that |rr;| =
(1 —t)|cicj]. It was noted by Minkowski in [29] that for an arbitrary convex body C, if
z+C and y+ C are overlapping, touching or disjoint, then z + 3(C —C) and y+ 1 (C' - C)
are overlapping, touching or disjoint, respectively (we will apply this property a few times).

Thus, as C; and C; are not overlapping, we obtain that d¢(r;, ;) > 2t. Hence dc(c;, ¢j) >

2t
1-t°

G
Figure 22
Finally, let us take the homothety h with the homothety ratio }—jﬂ’z and with the center
at the origin. Then h(c1),...,h(ck) are k points in pairwise C-distances at least 12—J:t on

the boundary of %HC’ + 5 (=0).

Case 2, when t = 1. Let p1 + C, ..., pr + C be mutually nonoverlapping translates
of C touching C. Thanks to the mentioned result of [29], we see that pi,...,pp are
points in C-distance 2 from the origin. Hence they are on the boundary of C' — C. This
result in [29] also implies that the pairwise C-distances of pq,...,py are at least 2. Let h
denote the homothety with the center at the origin and with the homothety ratio % Then
h(p1), ..., h(px) are k points on the boundary of 1C + 1(—C) in pairwise C-distances at
least 1.

Case 3, when t € (1,00). Let Ci,...,Ck be mutually nonoverlapping homothetical
copies of C' with homothety ratio ¢ touching C. Denote by ¢; the center of the homothety

h; that maps C into C;, for ¢ = 1,..., k. We omit a consideration analogous to that in
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Case 1 which shows that ¢; is on the boundary of C + 2+ (C' —C) = 5C+ 2 (-C). We
also omit a consideration that dc(c;,¢;) > 25 for every i,j € {1,...,k}, where i # j).
Let h denote the homothety with the center at the origin and with the negative homothety

I_IHC’-l- 1+t( C) in

ratio 1—;’2 Then A(cy),... h(ck) are k points on the boundary of

pairwise C-distances at least 1 + ;-

Observe that the considerations in all the three cases are revertible. Thus (ii) im-
plies (i). Also notice that analogous proof can be given if in (i) we write about disjoint

homothetical copies of C, and in (ii) about points in pairwise C-distances greater than

2t
14t

Proof of Corollary. Notice that for every r € [—1,1] and for every convex body C the
C-distance of arbitrary two points is equal to their [rC + (1 —r)(—C)]-distance. Hence for
every t € (0,00), the C-distance of arbitrary two points is equal to their [litC—l— 1+t< O)]-

distance. Thus, according to Theorem 7, ¢}, is the maximal number such that the boundary

2ty
14ty

the maximal number such that there exists C' € C,, whose boundary contains k points

of every C € C;, contains k points in pairwise C-distances at least . Similarly, ug is

in pairwise C-distances at least 2“’“ . We use the notation d = 12—415 Thus t = f'ld.
Observe that C; = M. Furthermore, for every t € (0,00) we have M C C; C C. Hence, if
the boundary of every plane convex body contains k points in pairwise relative distances

at least d, and if there exists a centrally symmetric plane convex body whose boundary

_d_
2—d-

does not contain k£ points in pairwise relative distances greater than d, then t;, =
Analogously, if there exists a centrally symmetric plane convex body whose boundary
contains k£ points in pairwise relative distances at least d, and if there is no plane convex
body whose boundary contains k points in pairwise relative distances greater than d, then
Up = 57 d We apply these two statements a few times in the remaining part of the proof.

In [6] it is proved that the boundary of every plane convex body contains five points
in pairwise relative distances at least 1. It is easy to check that the boundary of the
parallelogram does not contain five points in pairwise relative distances greater than 1.
Therefore t5 = 1.

In [8] and in [24] it is observed that the boundary of every centrally symmetric plane

convex body contains six points in pairwise relative distances at least 1. As C; = M, we
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get t¢ > 1. It is also observed in [8] that there is no centrally symmetric plane convex
body whose boundary contains six points in pairwise relative distances greater than 1.
Consequently, Theorem implies that there is no plane convex body that can be touched
by its six mutually disjoint translates. This means that there is no convex body that can
be touched by its six mutually nonoverlapping homothetical copies with homothety ratio
greater than 1. Hence ug < 1. Obviously tg < ug. Thus tg = ug = 1.

We have proved in Theorem 1 that the boundary of every plane convex body contains
seven points in pairwise relative distances at least % Hence t7 > % We omit an elementary
consideration which shows that the boundary of the regular hexagon does not contain seven
points in pairwise relative distances greater than g. This gives the estimate t7 < %.

In [7] it is proved that there exists no plane convex body whose boundary contains
five points in pairwise relative distances greater than V5 —1. The value v/5 — 1 is attained
for the regular pentagon and decagon. Therefore us = %(\/3 +1).

We have mentioned that the circumference of every plane convex body measured in
the metric do(x,y) is at most 8 (see page 22). The example of the parallelogram shows
that for every integer s > 2, we have uys = ﬁ Hence ug = 1.

We see that ug = ug = 1. As the sequence {uy} is nonincreasing, we get uy = 1.

Now we prove Proposition 3. Since its proof is analogous to the proof of Theorem 7,

we only sketch it.

Proof of Proposition 3. Consider a homothetical copy K of C' with homothety ratio —t
packed into C. Denote by h the homothety which maps C' into K, and let ¢ be the center
of homothety. For the sake of simplicity let us assume that c is the origin. Then K = —tC.
Observe that for arbitrary sets A and B, and for arbitary r € [0, 1], the set rA+ (1 —7)B is
contained in the convex hull of AUB. Therefore C' contains %HC’—l—ﬁ_t (—tC) = £5(C=0).

That is, the C-distance of ¢ and every boundary point of C' is at least 12—_'3 So cis in C;.

We omit a consideration analogous to that in Theorem 7 that if —tC is not contained
in C, then ¢ ¢ C,.

Finally, take two arbitrary homothetical copies K7 and K5 of C' with homothety ratio
—t. Let ¢; and co be the centers of the homotheties which map C' into K; and Ko,
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respectively. Similarly like in Theorem 7, we observe that K7 and K5 do not overlap if

and only if do(c1,c2) > 12_415
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CHAPTER 6

Almost Equidistant Points on the Sphere

Let S™~! denote the (n — 1)-dimensional unit sphere centered at the origin o of the
n-dimensional Euclidean space E™, and let d € (0,2). It is an elementary exercise to
show that the number of points on S”~! having pairwise distances equal to d is at most
n + 1. Moreover, it follows from the paper [12] of Fiiredi, Lagarias and Morgan that
the number of points on the boundary of an n-dimensional convex body C' having equal
pairwise C-distances is at most 2".

Here we present a generalization of the above problem. A set P of points on S™~! is
called almost d-equidistant if among any three points of P there is at least one pair lying
in the Euclidean distance d. Rosenfeld [32] proved in a very elegant way that the maximal
number of almost v/2-equidistant points on S”~! is 2n. In this chapter we prove a similar
result for almost d-equidistant points, where v/2 < d < 2. Moreover, we prove that the
estimate 2n of Rosenfeld holds true also in a neighbourhood of /2. Finally we show an
analogous estimate for every d € (0,/2). These theorems appeared in the joint paper [2]
with K. Bezdek. For the maximum cardinality of almost equidistant pointsets in various
Minkowski spaces see also the paper [3] of Bezdek, Naszédi and Visy.

Between the spherical distance and the Euclidean distance of two points on S™~! there
is a one-to-one correspondence (as usual, we measure the spherical distance between any
two points of S”~! by the length of the shortest geodesic arc connecting the two points).
Thus we can also measure the distance of points of an almost equidistant set on S™~! by
their spherical distance. Equivalently, we may also consider angles between unit vectors
of E™.

First we prove the following theorem.

Theorem 8. For every d € (v/2,2) and for every integer n > 2 the number of almost

d-equidistant points on S™~1 is at most 2n + 2.

The Euclidean distance between any two vertices of a regular n-dimensional simplex

inscribed in S"~! is equal to d,, = % Notice that v2 < d,, < 2. Thus, if one takes
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the set V of 2(n + 1) vertices of two regular n-dimensional simplices inscribed in S™71!,
then among any three vertices of V' there is a pair lying in the Euclidean distance d,,. This

shows that the upper bound 2(n 4 1) in Theorem 8 is sharp.
In the second part of this chapter we prove the following statement.

Theorem 9. For every integer n > 2 there exists a positive real number €(n) such that
the mazimum number of almost d-equidistant points on S, where |d — /2| < e(n), is

equal to 2n.

Observe that for the distance d,, = \/@ introduced after the formulation of The-
orem 8 we have lim, 4. d, = V2. As a result, the construction after the formulation
of Theorem 8 shows that lim,, .., €(n) = 0. Finally, if one takes two congruent copies
of a regular spherical (n — 1)-dimensional simplex of edge length d, where 0 < s < d,,_1,
then the 2n vertices of the two spherical simplices form an almost d-equidistant pointset

on S™~!. This shows that the upper bound 2n in Theorem 9 cannot be improved.

In the last part of this chapter we give the following estimate about the maximum

cardinality of almost d-equidistant pointsets of S~ for d € (0, v/2).

Theorem 10. For every d € (0,/2) and for every n > 2 the number of almost d-

equidistant points on S™~1 is at most n® +n — 2.

It is likely that the upper bound n? +n — 2 of Theorem 10 can be improved for every
n > 2. Moreover, for any “small” d > 0 we provide the following construction. Take a
regular spherical (n—1)-dimensional simplex of edge length d with vertices vy, ...,v,-1,Vn
on S"71. Then reflect v, about the (n — 2)-dimensional great-sphere of S"~! passing
through the vertices vi,...,v,—-1, and denote by c the point obtained. Finally, let v}

be the rotated copy of the point v; about the point ¢ through the same angle for all

i € {1,...,n} on S"! such that the distance between v, and v is equal to d. It is easy
to check that the points c,v1,...,vp—-1,0n,0],...,0;_;,v; form an almost d-equidistant

pointset of cardinality 2n + 1 on S~ 1.

Now we prove Theorem 8. In order to prove our statement we need the following

lemma which is a somewhat stronger version of the lemma from [32].
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Lemma 9. Let {x1,...,x,} be a set of m real numbers with the property such that there

exists y > 0 for which x4 > —y, ... 2y > —y and Y ;- x; = (m + s)y, where s > 0. Then

> a2t > (m+3s)y’.
=1

Proof. If x; > 0 for all : =1, ..., m, then the following well-known inequality holds true:

3 2211 xf’ > 2211 L
m - m

(1)

From (1) it follows in a straightforward way that

> (m + 3s)y°.

s (Zikim)®  (m+ )P

Z vz 2 - 2

; m m

=1
Now, we proceed by induction on the number ¢ of indices ¢ for which z; < 0. If t = 0, then
we are done. If ¢ > 0, then without loss of generality we may assume that z; = —ly for
some [ € (0,1]. We replace x; by 0 in order to obtain m real numbers 0, xo, . .., z,, whose

sum is equal to (m + s+ 1)y. The induction hypothesis implies that

Thus, we get that

fo’ = (Z xf’) —Py? > [m+3(s +1) — Ply® > (m + 3s)y°.
i=1 =2

This completes the proof of Lemma 9.

Proof of Theorem 8. The proof presented here follows the ideas of [32] with some necessary
modifications. First observe that any two points of S”~! lying in a Euclidean distance

us

greater than y/2 are in a spherical distance greater than 5

Let U = {uj, usg,...,u,} be a maximal system of unit vectors in E™ with the prop-

erty that among any three vectors u;,u;,u; € U there are two, for instance u;, u; with
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(uj,uj) = cosa. We now consider the matrix A = ((u;,u;) — cosa),x,. Notice that
A = G —cosaFE, where G = ((u;,u;))rx, is the Grammian matrix assigned to the vectors
of U, and FE is the matrix with entries being equal to 1, that is £ = (1),x,. Clearly,
U and FE are positive semidefinite matrices. As cosa < 0, the matrix A is also positive
semidefinite. Since the rank of U is at most n, it is easy to check that the rank of A is at
most n+ 1 and so 0 is an eigenvalue of A with the multiplicity at least r — (n+1). As A is
positive semidefinite, all other eigenvalues of A are positive. Moreover, as the points (i.e.
vectors) of U C S™~! form an almost a-equidistant pointset, for all pairwisely different
i,j,k € {1,...,r} we have a;ja;,ar; = 0, where a;; = (u;,u;) — cos . Finally, notice that
the main diagonal entries of A are all 1 —cos a.. Thus, if I denotes the r x r identity matrix,
then the matrix B = A — (1 — cosa)l with the ij-entry b;;, where 1 < ¢,j < r, has the

following properties:

(2) biy=0foralli=1,... 7

(3)  —(1—cosa) is the smallest eigenvalue of B with the multiplicity at least r — (n+1);
(4)  bijbjrbr; = 0 for all triples 1 < 4,7,k <r.

Let A1,..., A, denote the eigenvalues of B. According to (3), we may assume that
Ang2 = ... = A\ = —(1 —cosa) and that A\; > —(1 —cosa), ..., Apt1 > —(1 — cos ).

Apparently, ( ) implies that

T

Z)\iztI‘B:O,

i=1
where tr B denotes the trace of B. As an immediate result we get that

n+1

(5) Z/\i:(r—n—l)(l—cosa).

i=1
Since tr B3 = ZlSi,j,kST bijbjkbri, (4) yields that tr B®> = 0. Notice that the eigenvalues
of B3 are A\3,...,\3. Consequently, PO A3 = tr B3 = 0. In other words, we have

n+1

(6) Z/\?’ (r—mn—1)(1—cosa)?.

Now we intend to use Lemma 9. Assume that r > 2(n+1). Introducing the notations

s=r—2(n+1)>1and y=1-cosa > 0 we can rewrite (6) as follows:

n+1
Z)\i =(n+1+s)y.

=1
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Thus, Lemma 9 implies that

n+1
DN > (n+1+3s)y°
=1

Finally, according to (6) we have

n+1
DN =(n+1+s)y°
i=1

a contradiction. This completes the proof of Theorem 8.

Proof of Theorem 9. As the proof presented here is a properly modified version of the
proof of Theorem 8, we describe the major steps only without going into details.

Let U = {uj,usg,...,u,} be a maximal system of unit vectors in E™ with the prop-
erty that among any three vectors u;,u;,u, € U there are two, for example u;, u; with
(u;,u;) = cosa, where |a — 5| < €(n) for a sufficiently small €(n) > 0 that will be chosen

later. (Notice that as e(n) > 0 is small, the angle « is close to % and so cos« is close to

2
0.)

Assume that r > 2n. Then let A = ((u;,u;))2n+1)x(2n+1) be the Grammian matrix
assigned to the vectors uj,us,...,uz,+1. Clearly, A is positive semidefinite of rank at
most n and so 0 is an eigenvalue of A with the multiplicity at least (2n +1) —n =n+1,
and all other eigenvalues of A are positive. Finally, if I is the (2n + 1) x (2n + 1) identity
matrix, then the matrix B = A — I with the ij-entry b;;, where 1 <14,j <2n + 1, has the
following properties:

(7) by =0foralli=1,...,2n+1;
(8)  —1 is the smallest eigenvalue of B with multiplicity at least n + 1;

(9)  bijbjrby; is close to 0 for all 1 < 4,5,k < 2n + 1 if e(n) > 0 is sufficiently small.

Let A1,...,A2,,41 denote the eigenvalues of B. Thanks to (8), we may assume that

Ant1 = ... = Aapy1 = —1 and that Ay > =1, ..., A\, > —1. From (7) we obtain that

(10) d Ni=n+1.
=1
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Since tr B3 = > i<ijk<onsi Dijbikbri, (9) yields that tr B3 is close to 0 if e(n) is sufficiently
small. That is,

d
(11) Z A3 is close to n + 1 if €(n) is sufficiently small.

i=1

Finally, applying Lemma 9 with the choice y = 1, we get
(12) S A >n+3.
i=1

As (12) clearly contradicts (11) for any sufficiently small €(n), the proof of Theorem 9 is

complete.

Proof of Theorem 10. Let U = {uy,...,u,} be an almost d-equidistant pointset on S™~1,
for a value d € (0,v/2). Let G be the graph defined on the points of U as vertices such
that two points of U are connected by an edge if and only if the distance between them is
equal to d. Finally, let f(n — 1) denote the maximum cardinality of almost d-equidistant
pointsets of S*~1.

If the distance between any two points of U is equal to d, then it is easy to see that
r < n and so we are done. Thus, we are left with the case when there are two points
of U, for instance u; and us lying in a distance different from d. This means that there
is no edge of GG between the vertices u; and us. Now, let U; and Uy denote the sets of
the vertices of GG that are not connected by an edge to the vertex u; and us, respectively.
Moreover, let Us = U \ (U; UUsz). As U is an almost d-equidistant pointset, the graphs G
restricted to U; and U, are complete graphs. Thus,

(13) card(Uy) <n and card(Us) < n.

Finally, notice that the vertices of Us are connected by an edge to u; as well as to us. As

a result, Us lies on an (n — 2)-dimensional great-sphere of S™~!. Hence,
(14) card(Us) < f(n — 2).

Thus, (13) and (14) imply that

(15) r=card(U) < 2n+ f(n —2).
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From (15) we immediately get that
(16) f(n—=1) <2n+ f(n—2).

Finally, (16) with f(1) = 4 completes the proof of Theorem 10.
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card(.9)
c(C)
ck(M)
Ci

Ce

de(p, q)
di(C)

di(C)
dp(M)

NOTATIONS

the standard inner product of the Euclidean n-space E™

the greatest possible number d such that the convex body C' contains k boundary

points in pairwise C-distances at least d

the infimum of by (C'), where C runs over C

the infimum of by (C'), where C' runs over M

the family of plane convex bodies

the cardinality of the set S

the supremum of b, (C'), where C runs over C

the supremum of b (C'), where C' runs over M

the set of points of the convex body C' whose C-distance from every boundary

2t

point of C'is at least ;95

the family of the plane convex bodies that can be presented in the form %_HC +
1 (=C), where all C' € C are taken
the C-distance of points p and ¢

the greatest possible number d such that the convex body C contains k points

in pairwise C-distances at least d
the infimum of di(C'), where C runs over C
the infimum of d(C'), where C' runs over M

the edge length of the n-dimensional regular simplex inscribed in the unit sphere

Sl of B

the supremum of dy(C'), where C' runs over C

the supremum of di(C'), where C' runs over M

the n-dimensional Euclidean space

the translative kissing number of the convex body C
the line containing the points p and ¢

the family of centrally symmetric plane convex bodies

60



trM

U

the z-coordinate of the point m or the vector m
the y-coordinate of the point m or the vector m
the segment with endpoints p and ¢

the Euclidean length of the segment pq

the greatest possible number r such that the convex body C' can be packed by

its k homothetical copies of ratio r

the infimum of 74 (C), where C runs over C

the infimum of 7 (C), where C runs over M

the supremum of r,(C), where C runs over C

the supremum of r;(C'), where C' runs over M

the (n — 1)-dimensional unit sphere of the Euclidean n-space E”

the greatest possible number ¢ such that every plane convex body C' can be

touched by k mutually nonoverlapping translates of tC'
the trace of the matrix M

the greatest possible number ¢ such that there exists a plane convex body C

that can be touched by k mutually nonoverlapping translates of tC'
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SUMMARY

Let C' C E™ be an arbitrary convex body, and let p,q € E™ be arbitrary points. Take
a chord p'q’ of C parallel to pg such that there is no longer chord of C' parallel to pg. The
C-distance dc(p, q) of points p and q is defined by the ratio of |pq| to %\p’q’\. If there is
no doubt about C, we may use the term relative distance of p and q.

In our dissertation we examine the pairwise C-distances of points of C'. In the main
part we investigate the following problem. Let k > 2. By di(C) (resp., by bx(C)) we
denote the greatest possible number d such that the convex body C' (resp., the boundary
of C) contains k points in pairwise C-distances at least d. Compactness arguments show
that for every k > 2 and for every convex body C' the above numbers exist. Let us denote
the infimum and the supremum of di(C'), where C runs over the family of plane convex
bodies by d(C) and by e (C), respectively. Moreover, let di(M) and ex(M) denote the
infimum and the supremum of di(C), where C runs over the family of centrally symmetric
plane convex bodies. We define the quantities by (C), cx(C), bx(M), cx(M) analogously.
Using compactness arguments one can easily show that for every k£ > 2 all the numbers
bi(C), cx(C), dix(C), ex(C), br(M), cx(M), dp(M), ex(M) exist. In the dissertation we
determine the above defined eight numbers for some values of k. Moreover, we show general
estimates about di(C) and di(M). We also examine the connection between the existence
of k points of a convex body in large pairwise relative distances and the existence of large
mutually nonoverlapping homothetical copies of a convex body packed into, or touching
the body.

In the last chapter of the dissertation we deal with another problem. It is a well-known
fact that the maximal number of points on the (n — 1)-dimensional unit sphere S™~! of
E™ lying at equal pairwise distances is at most n+ 1. It is also proved that the cardinality
of a pointset on the boundary of a convex body C' C E™ such that the pairwise relative
distances of the points are equal is at most 2™. A pointset P is called almost d-equidistant,
if among every three points of P there exists a pair in the distance d. In our dissertation we

find estimates about the maximal cardinality of almost d-equidistant pointsets on S™~!.
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OSSZEFOGLALAS

Legyen C' C E™ egy tetszOleges konvex test, és legyenek p, q € E™ tetszoleges pontok.
Vegyiik C egy pg-val parhuzamos p’q’ hirjit, amelynél nincs hosszabb pg-val parhuzamos
C-beli hiir. A p és q pontok C-tdvolsdgdt |pq|-nak %| p'q'|-vel vett hdnyadosaként definidljuk,
és do(p, q)-val jeloljiik. Ha nyilvanval6, hogy melyik C konvex testrél beszéliink, a p és g
pontok relativ tavolsdga elnevezést is hasznaljuk.

A disszertaciéban C-beli pontok péaronkénti C-tavolsagait vizsgaljuk. Fdként a
kovetkez6 probéméval foglalkozunk. Legyen k£ > 2. A di(C) (ill. a bg(C)) jelolést
hasznaljuk a lehetséges legnagyobb d szédmra, melyre igaz, hogy a C konvex test (ill. C
hatdra) tartalmaz k pontot, melyek paronkénti C-tavolsdga legaldbb d. Kompaktsagi érvek
mutatjak, hogy a fenti szamok léteznek minden C' konvex testre k minden lehetséges értéke
esetén. Jeloljik di(C) infimumat és supremumdat rendre dy(C)-vel és ex(C)-vel, ahol C
végigfut a konvex sikidomok csalddjan. Emellett jeloljiik rendre dy (M)-mel és ey (M )-mel
d(C) infimumét és supremumat, ahol C' végigfut a kdzéppontosan szimmetrikus konvex
sikidomok csalddjan. Hasonléan definidljuk a bx(C), a cx(C), a bp(M) és a ci(M) men-
nyiségeket. Kompaktsigi érvek alapjan konnyen megmutathatd, hogy bx(C), ¢k (C), di(C),
ex(C), bg(M), cx(M), dp(M) és ex(M) létezik k > 2 minden értéke esetén. A dissz-
ertaciéban az elobb definidlt szamokat hatarozzuk meg k kiilonbozd értékei esetén. A
di(C) és di(M) mennyiségekre altaldnos becslést is adunk. Emellett megvizsgéljuk egy
konvex testbeli, nagy paronkénti relativ tavolsaggal rendelkez6 k pont 1étezésének kapcso-
latat azzal, hogy talalhaté-e egy konvex testnek a test koré vagy a testbe irt, paronként
diszjunkt belsovel rendelkez6 nagy homotetikus aranyt homotetikus képe.

A disszertacio utolso fejezetében egy masik problémaval foglalkozunk. Jol ismert tény,
hogy az n-dimenziés euklideszi tér egységgombjén talalhatd, paronként egyenlo tavolsagra
levé pontok maximalis szdma n + 1. Ugyancsak bizonyitott az az &llitds, hogy egy n-
dimenzios konvex test hataran talalhatd, paronként egyenlo relativ tavolsagra levé pontok
szama legfeljebb 2. A P ponthalmazt majdnem egyenl6 d tavolsagu pontok halmazanak
hivjuk, ha P barmely hidrom eleme koziil 1étezik kettd, melyek tavolsaga d. A dissz-
ertacio utolso fejezetében becsléseket adunk az n-dimenzids euklideszi tér egységgdombjén

talalhaté, majdnem egyenl6 d tavolsagi ponthalmazok maximalis szamossagara.
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