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A kutatóhely neve:

ELTE TTK Geometriai Tanszék
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Finding sets of points on the sphere or in the ball of a Euclidean n-space En such that

the pairwise distances of the points are as large as possible is a long-standing question

of geometry. In particular, problems of this kind are stated by Coxeter, Greening and

Graham [5]. The best possible configurations of k points in the disc are found for k ≤ 12

and for k = 19. The proofs are given in papers of Fodor [10] and [11], Graham [14], Kravitz

[17] and Pirl [31], and also in the dissertation of Mellisen [28].

A generalization of this problem is presented by Lassak [24], and by Doyle, Lagarias

and Randall [8]. The authors of [8] consider points on the boundary of the unit ball C of

a Minkowski space, and the distance of the points is measured by the Minkowski distance.

In [24] we see a more general approach. Here C is allowed to be an arbitary convex body.

The question is finding configurations of points in C, or on the boundary of C, whose

pairwise distances are large in the sense of the following notion of C-distance of points.

For arbitrary points p, q ∈ En let |pq| denote the Euclidean length of the segment pq.

Let p′q′ be a chord of C parallel to pq such that there is no longer chord of C parallel

to pq. The C-distance dC(p, q) of points p and q is defined by the ratio of |pq| to 1

2
|p′q′|.

We also use the term C-length of the segment pq. If there is no doubt about C, we may

use the terms relative distance of p and q, or relative length of pq. Observe that for every

p, q ∈ En the C-distance of p and q is equal to their [ 1
2
(C −C)]-distance. Thus the metric

dC(p, q) is the metric of the Minkowski space whose unit ball is 1

2
(C − C).

Let dk(C) denote the greatest possible number d such that C contains k points in

pairwise C-distances at least d. Similarly, let bk(C) be the greatest possible number d

such that the boundary of C contains k points in pairwise C-distances at least d. We are

looking for the infima and the suprema of the numbers dk(C) and bk(C), where C runs

over the family of n-dimensional convex bodies. Compactness arguments show that the

above numbers are attained. We also provide an analogous investigation for C restricted

to be a centrally symmetric convex body.

In Chapter 1 we find systems of boundary points of an arbitrary convex body in

large pairwise relative distances. In Chapter 2 we find points in large pairwise relative

distances which are allowed to be also in the interior of the body. In other words, in these
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two chapters we look for the infima of bk(C) and dk(C) for some values of k. The aim of

Chapters 3 and 4 is to find upper bounds of the minimum of the pairwise relative distances

of k points on the boundary of a convex body, and in the body, respectively. Hence in

these two chapters we look for the suprema of bk(C) and dk(C). In the first four chapters

only plane convex bodies are considered. Chapter 5 deals with the connection between the

existence of points of a convex body in possibly large pairwise relative distances, and the

existence of large homothetical copies of a convex body packed into, or touching the body.

In Chapter 6 we examine another question. It is a well-known fact that if P is a

set of points on the sphere Sn−1 of En such that the Euclidean distances of all pairs of

points of P are equal, then the cardinality of P is at most n + 1. From the paper [12]

of Füredi, Lagarias and Morgan we see that the number of points on the boundary of an

n-dimensional convex body C having equal pairwise C-distances is at most 2n. A set P of

points is called almost d-equidistant, if among every three points of P there exists a pair

in the distance d. Rosenfeld [32] proved that if P is a set of almost
√

2-equidistant points

on Sn−1, then the cardinality of P is at most 2n. In this chapter we prove that if P is a

set of almost d-equidistant points of Sn−1, where
√

2 < d < 2, then the cardinality of P is

at most 2n + 2. We also show estimates about the cardinality of almost d-equidistant sets

of points of Sn−1 for some other values of d.

In this treatise we use the standard notation C for the family of plane convex bodies,

and M for the family of centrally symmetric plane convex bodies.
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Boundary Points of a Convex Body

in Large Relative Distances

Let k ≥ 2 be an integer. In this chapter we are looking for the greatest possible

number d such that every plane convex body contains k boundary points in pairwise

relative distances at least d. Remember that bk(C) denotes the greatest possible number

d such that C contains k boundary points in pairwise relative distances at least d. In this

chapter we are looking for the infimum of bk(C), where C runs over the family of plane

convex bodies. We also consider an analogous question about centrally symmetric plane

convex bodies.

Observe that two points of support in any two parallel opposite supporting lines of a

convex body C are of C-distance 2. Apparently, no convex body contains two points of

relative distance greater than 2. Thus we immediately see that for two points the infimum

that we are looking for is 2.

Bezdek, Fodor and Talata [1] proved that in the boundary of every plane convex body

there exist three points in pairwise relative distances at least 4
3 . A conjecture says that

in the boundary of every plane convex body there exist three points in pairwise relative

distances at least 1
2 (
√

5 + 1) (see, for example, [23] or [24]). This value is attained for the

regular pentagon (we examine this example in Chapter 5 in detail). Doliwka [6] proved

that the boundary of every plane convex body contains five points in pairwise relative

distances at least 1. Observe that no triangle contains four boundary points in pairwise

relative distances greater than 1. Hence we see that the estimate 1 cannot be improved

even for four points.

Let us denote by bk(C) the infimum of bk(C), where C runs over the family of plane

convex bodies. Simple compactness arguments show that this infimum is attained. Using

our notation we can reformulate the above results in a shorter form. We have b2(C) = 2,

and 4
3 ≤ b3(C) ≤ 1

2 (
√

5 + 1). Moreover, b4(C) = b5(C) = 1.

Now let us comment the case of centrally symmetric bodies. It is proved in [1] that in

the boundary of every centrally symmetric plane convex body there exist three points in

pairwise relative distances at least 3
2 . Lassak [26] improved it up to 1 +

√
3

3 . In [8] and in
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[24] it is conjectured that the best possible estimate is 1 +
√

2
2 . This value is attained for

the regular octagon. Lassak [24] and Doyle, Lagarias and Randall [8] showed that every

centrally symmetric plane convex body contains four boundary points in pairwise relative

distances at least
√

2. As it follows from the example of the circle, this estimate cannot

be improved. From [8] and from [24] we see that every centrally symmetric plane convex

body contains six boundary points in pairwise relative distances at least 1. Obviously, the

boundary of the square does not contain five points in pairwise relative distances greater

than 1. Hence the estimate 1 is the best possible one for five points and for six points in

the boundary of an arbitrary centrally symmetric plane convex body.

Let us denote by bk(M) the infimum of bk(C), where C runs over the family of

centrally symmetric plane convex bodies. Again, compactness arguments show that the

above infimum is attained. Now we have b2(M) = b2(C) = 2, and 1+
√

3
3

≤ b3(M) ≤ 1+
√

2
2

.

Furthermore, b4(M) =
√

2, and b5(M) = b6(M) = 1.

In this chapter first we prove the following result about the relative distances of seven

points in the boundary of a plane convex body.

Theorem 1. The boundary of an arbitrary plane convex body contains seven points in

pairwise relative distances at least 2
3

such that the relative distances of all pairs of successive

points are equal.

The example of a triangle shows that the value 2
3 in our theorem cannot be increased.

As it is explained after Lemma 6 of [27], Lemma 3 of [27] implies that if x is a boundary

point of a plane convex body C, and if y moves counterclockwise in the boundary of C

from x, then dC(x, y) does not decrease until it reaches 2, and it accepts all values from

the interval [0, 2]. Hence, for every positive integer r our theorem implies the existence of

7r points on the boundary of an arbitrary plane convex body in pairwise relative distances

at least 2
3
· 1

r
. As mentioned earlier, Theorem of [6] says that every plane convex body

contains five boundary points in pairwise relative distances at least 1. Thus, by Lemma 3

of [27] this theorem implies that for every positive integer r on the boundary of every plane

convex body there exist 5r points in pairwise relative distances at least 1
r
. The example

of a triangle shows that this estimate is the best possible one not only for r = 1 as proved

in [6], but also for r = 2.

5



In the second half of this chapter we improve the estimate 4
3 from [1] about three far

boundary points.

Proposition 1. In the boundary of every plane convex body there exist three points in

equal pairwise relative distances at least 1
5
(2 + 2

√
6) ≈ 1.3798.

The above results are presented in [20].

Now we prove Theorem 1. The proof is based on the following lemma.

Lemma 1. Let F = f1f2 . . . f7 be a convex heptagon. Then every convex heptagon

D = d1d2 . . . d7 inscribed in F such that di ∈ fifi+1 for i = 1, 2, . . . , 7, where f8 = f1, has

a side of F -length at least 2
3
.

Proof. Let αi denote the angle 6 fi−1fifi+1 (i = 1, . . . , 7), where f0 = f7. Since every

heptagon is the limit of a sequence of nondegenerate heptagons, it is sufficient to prove

our lemma under the assumptions that α1 < π, . . ., α7 < π.

First, we wish to show that if the sum of two consecutive angles of F is at most π,

then D has a side of F -length at least 1 (see Figure 1).

Figure 1

Assume, for example, that α1 + α2 ≤ π. Observe that in this case dF (f1, f2) = 2. As

mentioned earlier, Lemma 3 of [27] implies that if x is a boundary point of a plane convex

body C, and if y moves counterclockwise in the boundary of C from x, then dC(x, y) does

not decrease until it reaches 2, and it accepts all values from the interval [0, 2]. Thus we

get that dF (d7, d1) + dF (d1, d2) ≥ dF (f1, d1) + dF (d1, f2) = dF (f1, f2) = 2, and therefore

dF (d7, d1) ≥ 1 or dF (d1, d2) ≥ 1.
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Next we show that if the sum of every pair of consecutive angles of D is greater

than π and if D has three consecutive angles such that their sum is at most 2π, then

D has a side of F -length at least 2
3
. Let us assume that α1 + α2 + α3 ≤ 2π. In this

case dF (f1, f3) = 2. According to Lemma 3 of [27], we get that dF (d7, d1) + dF (d1, d2) +

dF (d2, d3) ≥ dF (f1, d1) + dF (d1, d2) + dF (d2, f3) ≥ d(f1, f2) = 2, where the last inequality

is a consequence of the triangle inequality. Similarly to the previous consideration, we

conclude that at least one of the numbers dF (d7, d1), dF (d1, d2), dF (d2, d3) is at least 2
3 .

Now consider the case when the sum of every three consecutive vertices of D is greater

than 2π. Denote the intersection of the lines containing the segments f2f3 and f4f5 by

a3. Similarly, let a5 be the intersection point of the lines containing the segments f5f6 and

f7f1 (see Figure 2).

Figure 2

Consider the convex pentagon D′ = d1d2d4d5d7 inscribed in the convex pentagon

F ′ = f1f2a3f5a5. The angles of F ′ are β1 = α1, β2 = α2, β3 = α3 + α4 − π, β4 = α5,

β5 = α6+α7−π. This implies that the sum of every two consecutive angles of F ′ is greater

than π. For the sake of simplicity we use the following notation in the sequel: a1 = f1,

a2 = f2, a4 = f5, b1 = d1, b2 = d2, b3 = d4, b4 = d5, b5 = d7.

We intend to show that the F ′-length of b2b3 or b4b5 is at least 4
3 , or that the F ′-length

of another side of D′ is at least 2
3
. We will show this indirectly. Hence let us assume that

dF ′(b2, b3) < 4
3 , dF ′(b4, b5) < 4

3 , and that the remaining sides of D′ are of F ′-length less

than 2
3
. Let c1 and c′1 denote the trisection points of a1a2 such that c1 is closer to a1 (see

Figure 3). Moreover, let c2, c3, c4, c5 be the trisection points of a2a3, a3a4, a4a5, a5a1

closer to the points a2, a4, a4, a1, respectively.
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Figure 3

Observe that dF ′(c′1, c2) = dF ′(c3, c4) = dF ′(c5, c1) = 2
3
, and that dF ′(c2, c3) =

dF ′(c4, c5) = 4
3 . Thus, thanks to Lemma 3 of [27], if b1 ∈ a1c

′
1 and b2 ∈ c2a3, then

dF ′(b1, b2) ≥ 2
3 . Similarly, from bi ∈ aici and bi+1 ∈ ci+1ai+2, where a6 = a1, a7 = a2,

b6 = b1 and c6 = c1, we get that dF ′(bi, bi+1) ≥ 2
3

if i = 3 or if i = 5, and that

dF ′(bi, bi+1) ≥ 4
3 if i = 2 or if i = 4. Therefore, with respect to our assumption, b1

cannot be an inner point of the segment c1c
′
1. Without loss of generality, we can assume

that b1 ∈ a1c1 (in the opposite case the proof is analogous). In this case bi ∈ aici for

i = 2, 3, 4, 5.

Take the common point p of the straight line containing the segment a5a1 and of the

straight line through a3 parallel to b1b2. Notice that dF ′(b1, b2) ≥ 2|b1b2|/|a3p|. Let x be

the intersection point of the line through b1 parallel to a2a3 and of the line through c′1

parallel to a5a1. Let L0 be the line containing a1a5. Consider the lines L1, L2, L3 and L4

parallel to a1a5, through b1, c′1, b2 and c2, respectively. The relative distance dF ′(c2, c
′
1)

is equal to the ratio of the width of the strip between the lines L2 and L4 to the half

of the width of the strip between the lines L0 and L4. From dF ′(b1, b2) ≥ 2|b1b2|/|a3p|
we have that dF ′(b1, b2) is at least the ratio of the width of the strip between the lines

L1 and L3 to the half of the width of the strip between the lines L0 and L3. Hence

dF ′(b1, b2) < 2
3 implies that |xb1| < |b2c2|. Now consider the triangle b1c

′
1x. We have

|b1c
′
1|/ sin(β1 + β2 − π) = |xb1|/ sin(π − β1). Thus,

sin(π − β1)|b1c1| < sin(π − β1)|b1c
′
1| < sin(β1 + β2 − π)|b2c2|.

We omit an analogous calculation that sin(π − βi)|bici| < sin(βi + βi+1 − π)|bi+1ci+1| for
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i = 2, 3, 4, 5, where β6 = β1. Hence

5∏

i=1

sin βi <
5∏

i=1

sin(βi + βi+1 − π).

This contradicts Lemma 2 of [18], which says that for every β1, . . . , β5 ∈ (0, π) such that
5∑

i=1

βi = 3π and βi + βi+1 > π for every i ∈ {1, . . . , 5}, where β6 = β1, we have

5∏

i=1

sin βi >
5∏

i=1

sin(βi + βi+1 − π).

We have shown that b2b3 or b4b5 has F ′-length at least 4
3 , or that another side of D′

is of F ′-length at least 2
3 . As F ⊂ F ′, we get that dF (s, t) ≥ dF ′(s, t) for every s, t ∈ E2.

Thus, if at least one of the numbers dF ′(b1, b2), dF ′(b3, b4) or dF ′(b5, b1) is at least 2
3
, then

we are done. If dF ′(b2, b3) or dF ′(b5, b1) is at least 4
3 , then the statement of our lemma is

a consequence of the triangle inequality.

Proof of Theorem 1. Let C be an arbitrary plane convex body. Theorem 1 from [27]

implies that for every k ≥ 3 there exists a k-gon inscribed in C whose sides are of equal

C-length. Thus, it is sufficient to show that every convex heptagon inscribed in C has

a side of C-length at least 2
3 . Consider an arbitrary convex heptagon D inscribed in C.

At every vertex of D take a supporting line of C. Let F denote the intersection of the

closed halfplanes containing C and bounded by the above supporting lines. Obviously, F

is a convex heptagon circumscribed about D such that D ⊂ C ⊂ F . Observe that the

C-length of every side of D is at least its F -length. Therefore our lemma implies that D

has a side of C-length at least 2
3
.

Proof of Proposition 1. Let C be a plane convex body. For the simplicity of considerations,

during the proof we denote the value 1
5 (1 +

√
6) by τ . First we wish to show the existence

of three points of C in pairwise C-distances at least 2τ .

According to Lemma 1 from [24] we circumscribe a parallelogram P about C such that

the midpoints of two its parallel sides belong to C. As the C-distance of two points does
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not change under affine transformations, we can assume that P is a rectangle such that

the length of the sides containing the mentioned midpoints is 2, and that the length of the

other sides is 1. Consider the Cartesian coordinate system such that the above midpoints

are o = (0, 0) and c = (0, 1). Since C is inscribed in P , it contains a point a = (−1, µ) and

a point b = (1, ν), where 0 ≤ µ ≤ 1 and 0 ≤ ν ≤ 1.

Case 1, when µ + ν ≤
√

6
3

or µ + ν ≥ 2 −
√

6
3

. We assume that µ + ν ≤
√

6
3

(in the

other case the proof is analogous). Observe that
√

6
3 = 1−τ

2τ−1 . We intend to prove that the

quadrangle obca contains points r and s with y-coordinates at most 1 − τ and with the

difference of their x-coordinates at least 2τ . As obca ⊂ C, the points r, s and c are three

points that we are looking for.

Subcase 1.1, when µ ≥ 1 − τ and ν ≥ 1 − τ . Since the harmonic mean is not greater

than the arithmetic mean, our assumptions imply that 1
µ

+ 1
ν
≥ 4

µ+ν
> 2τ

1−τ
. Furthermore,

a calculation shows that the intersection of the quadrangle obca with the straight line

y = 1− τ is a segment of Euclidean length (1− τ)( 1
µ

+ 1
ν
). Thus this length is at least 2τ .

In the part of r and s we take the endpoints of this segment.

Subcase 1.2, when µ < 1−τ or ν < 1−τ . Let µ < 1−τ (if ν < 1−τ , our consideration

is analogous). By the assumption of Case 1 we have ν ≤ 1−τ
2τ−1 . Thus the quadrangle obca

contains the point (2τ − 1, 1 − τ). We take it in the part of r. As s we take a.

Case 2, when
√

6
3

< µ + ν < 2−
√

6
3

. We intend to show that C contains points w and

z with the difference of their y-coordinates at least τ , and with their C-distances at least

2τ either from a or from b. Then w, z, and a or b are three promised points.

Let p and q denote the intersections of the straight line x = −1+ τ with the segments

ao and ac, respectively.

Subcase 2.1, when dC(p, b) ≥ 2τ and dC(q, b) ≥ 2τ . It is clear that dC(p, q) = 2τ .

Thus we take p and q in the part of w and z.

Subcase 2.2, when dC(p, b) < 2τ or dC(q, b) < 2τ . We can assume that dC(p, b) < 2τ

(in the other case our consideration is analogous). This assumption implies that there

exists a point t ∈ C whose translation u by ~v = 1
τ

−→
pb is also a point of C. We intend to

show that g = (−(2τ − 1), (2τ − 1)µ + 2− 3τ) or h = (2τ − 1, (2τ − 1)ν + τ) belongs to C

(see Figure 4). Suppose instead that g /∈ C and h /∈ C.
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Figure 4

Let Lg be the line through o and g. Its equation is y = −(µ − 3τ−2
2τ−1)x. Denote the

right-hand side of this equation by g(x). Let Lh be the line through c and h. Its equation

is y = (ν − 1−τ
2τ−1

)x + 1. Denote its right-hand side by h(x). Take the common point e of

the lines Lg and x = −1. We have e = (−1, µ − 3τ−2
2τ−1). The common point of Lh and the

line x = 1 is f = (1, ν + 3τ−2
2τ−1).

Let us denote the x-coordinate of a point m or a vector ~m by mx, and its y-coordinate

by my . Notice that vx > 1 + hx = 1 + |gx|. This, and the assumption that g /∈ C and

h /∈ C imply that the points t and u belong to the domain bounded by the sides of P and

by the lines Lg and Lh. Hence we can take either e in the part of t, or f in the part of u.

This depends on the directions of Lg and Lh. Then either of the following holds true.

(i) The translate of e by ~v is in the open half plane containing e bounded by the line

Lh. In this case

0 > ey + vy − h(ex + xvx) = (µ + ν)(3 −
√

6) − (
√

6 − 2).

Hence from µ + ν >
√

6
3 we obtain 0 > 0, which is a contradiction.

(ii) The translate of f by −~v is in the open half plane containing f bounded by the

line Lg. We get

0 < fy − vy − g(fx − vx) = 7 − 3
√

6 − (
√

6 − 2)(µ + ν).

From µ+ν >
√

6
3 we conclude that the right-hand side of this inequality is negative, which

is also impossible.

Thus g ∈ C or h ∈ C. An easy calculation shows that the intersection of the pentagon

agobc and the line x = −(2τ − 1) is a segment of length τ . Therefore, if g ∈ C, then the

11



intersection of the line x = −(2τ − 1) and C is a segment of length at least τ . We take the

endpoints of this segment as w and z. Since the distance of the lines x = −(2τ − 1) and

x = 1 is 2τ , and since C ⊂ P , we conclude that dC(b, w) ≥ 2τ and dC(b, z) ≥ 2τ .

Similarly, the intersection of the pentagon aobhc and the line x = 2τ − 1 is a segment

of length τ . Hence, if h ∈ C, then the intersection of C and the line x = 2τ−1 is a segment

of length at least τ . Now we use the endpoints of this segment in the part of w and z.

We have shown that there exists a triangle in C whose all sides have relative lengths at

least 1
5
(2+2

√
6). This permits to apply Theorem 2 of [27], which says that if an arbitrary

convex body C contains a k-gon whose all sides are of relative lengths at least d, then

there exists a k-gon inscribed in C whose sides are of equal relative length at least d.

12
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Points of a Convex Body

in Large Relative Distances

Let k ≥ 2 be an integer. In this chapter we are looking for the greatest possible

number d such that every plane convex body contains k points in pairwise relative distances

at least d. Remember that dk(C) denotes the greatest possible d such that the convex body

C contains k points in pairwise relative distances at least d. In this chapter we are looking

for the infimum of dk(C), where C runs over the family of plane convex bodies. We also

consider an analogous question about centrally symmetric plane convex bodies.

Apparently, if the boundary of a convex body contains k points in pairwise relative

distances at least d, then also the body contains k points in pairwise relative distances

at least d. Putting it in another form, for every k ≥ 2 and for every convex body C we

have dk(C) ≥ bk(C). Using this and the fact that no convex body contains two points in a

relative distance greater than 2 we get that for every convex body C we have d2(C) = 2.

In fact, apart from this trivial observation, the infimum of dk(C) over the family of

plane convex bodies is known only for k = 5 and for k = 8. For other values of k we know

only some estimates. In particular, the problem seems to be very difficult for three and

for four points. The discrepancy between the simplicity of the formulation of those two

questions and the trouble in finding a solution is especially striking.

To comment the case of three points we use Theorem 2 of [27], which says that if

a convex body contains a k-gon whose all sides are of relative lengths at least d, then

it permits to inscribe a k-gon whose sides are of equal relative length at least d. Thus

d3(C) = b3(C) for every plane convex body C. Therefore d3(C) ≥ 1
5
(2 + 2

√
6) for every

C ∈ C, and d3(P ) = 1
2(
√

5 + 1), where P denotes the regular pentagon.

Now we examine the pairwise relative distances of four points in a plane convex body.

We conjecture that every plane convex body contains four points in relative distances at

least
√

5 − 1 ≈ 1.236. This value is attained for C being the pentagon a′
1a1a2a

′
2a3 such

that the triangle a1a2a3 is isosceles with 6 a2a3a1 = π
2
, and the quadrangle a′

1a1a2a
′
2 is a

rectangle with |a1a2| = (
√

5 + 1)|a1a
′
1| (see Figure 5).

13



Figure 5

There are two configurations of four points in pairwise relative distances at least
√

5 − 1 here. The first configuration consists of three points a1, a2, a3 on the boundary of

the body and one point a inside of the triangle a1a2a3. Here the point a is the midpoint

of the segment a′
1a

′
2. The second configuration consists of four points b1, b2, b3, b4 on the

boundary of the pentagon.

Lassak proved [24] that every plane convex body contains five points in pairwise

relative distances at least 1 (this fact also follows from [6]). From the example of the

square we see that the estimate 1 is the best possible one. We conjecture that every plane

convex body contains also six points in pairwise relative distances at least 1. This value is

attained, for example, for triangles and for parallelograms. Moreover, we conjecture that

every plane convex body contains seven points in pairwise relative distances at least 4
5 .

This value is attained for triangles.

Let us denote by dk(C) the infimum of dk(C), where C runs over the family of plane

convex bodies. According to the mentioned results and examples we have d2(C) = 2 and

1
5 (2 + 2

√
6) ≤ d3(C) ≤ 1

2 (
√

5 + 1). Moreover, d4(C) ≤
√

5 − 1, d6(C) ≤ d5(C) = 1 and

d7(C) ≤ 4
5 .

Now we summarize the known results about centrally symmetric plane convex bodies.

We have mentioned in Chapter 1 that every centrally symmetric plane convex body con-

tains three boundary points in pairwise relative distances at least 1 +
√

3
3 (see [26]). Thus

d3(C) ≥ 1+
√

3
3

for every C ∈ M. Moreover, d3(Q) = 1+
√

2
2

, where Q denotes the regular

octagon.

In Chapter 1 we have written about the estimates b4(C) ≥
√

2, b5(C) ≥ b6(C) ≥ 1

for every C ∈ M (see [8] and [24]). Thus we also have d4(C) ≥
√

2, d5(C) ≥ d6(C) ≥ 1

for every C ∈ M. Moreover, from the examples of the circle and the square we see that

14



these estimates cannot be improved. It is observed in [24] and it also follows from [8] that

d7(C) ≥ 1 for every C ∈ M.

Denote by dk(M) the infimum of dk(C), where C runs over the family of centrally

symmetric plane convex bodies. Using this notation we can put the above results in the

following form. We have d2(M) = d2(C) = 2, and 1+
√

3
3 ≤ d3(M) ≤ 1+

√
2

2 . Furthermore,

d4(M) =
√

2 and d5(M) = d6(M) = d7(M) = 1.

In this chapter first we prove the following estimate about the relative distances of

four points in an arbitrary plane convex body.

Theorem 2. Every plane convex body C contains four points in pairwise C-distances at

least 1
3
(
√

5 + 1) ≈ 1.079.

This result appeared in the joint paper [22] with M. Lassak.

In the next part we show the following general estimate about the relative distances

of k points in an arbitrary plane convex body for certain values of k.

Proposition 2. Let C be a plane convex body and let t ≥ 2 be an integer. In C we can

find at least 1
8 (t2 + 4t + q) points in pairwise relative distances at least 4

t , where q = 3 for

t odd, where q = 4 for every even t which is not a multiple of 4, and where q = 8 if t is a

multiple of 4.

From Proposition 2 we obtain a number of reasonable estimates for the relative dis-

tances of k points in a plane convex body when k is not very large, as follows. We have

d3(C) ≥ 4
3 , d4(C) ≥ d5(C) ≥ 1, d6(C) ≥ 4

5 , d7(C) ≥ d8(C) ≥ 2
3 , d9(C) ≥ d10(C) ≥ 4

7 , and

d11(C) ≥ d12(C) ≥ d13(C) ≥ 1
2
. Pay attention that for d3(C) we get nothing else but the

estimate from [1] and that for d5(C) we get again the estimate from [24]. Observe that the

above estimate 1 for d4(C) is weaker than the estimate 1
3
(
√

5+1) ≈ 1.079 from Theorem 2,

which is still far from the conjectured value
√

5 − 1 ≈ 1.236. The example of any triangle

shows that d8(C) = 2
3 .

Let us show a system of eight points in pairwise relative distances at least 2
3
, which

is different from that presented in Proposition 2. For this purpose we apply a result of

Neumann [30], who proved that every plane convex body C contains a translate of −1
2C.
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Thus, 3
2C contains a translate of 1

2(C − C). Hence, C contains a translate of 1
3 (C − C).

In other words, C contains a point in the relative distance at least 2
3 from every boundary

point of C. Theorem 1 in Chapter 1 shows the existence of seven boundary points of C

in pairwise relative distances at least 2
3 . Thus C contains eight points in pairwise relative

distances at least 2
3 such that seven of them are boundary points of C. The construction

presented in Proposition 2 guarantees that at least two of those points are in the interior

of C. We see that (though the estimate 2
3 cannot be improved) every plane convex body

contains at least two different configurations of eight points in pairwise relative distances

at least 2
3 .

Finally we examine the case of centrally symmetric plane convex bodies. We show the

following estimate.

Claim. Let C be a centrally symmetric plane convex body and let s be a positive integer.

In C we can find at least 3s2 + 3s + 1 points in pairwise relative distances at least 1
s .

Observe that the thesis of Claim does not depend on the area of C like the estimates

in the last section of [8]. From Claim, in particular, we obtain that d7(M) ≥ 1. It also

gives the estimates d8(M) ≥ . . . ≥ d19(M) ≥ 1
2 .

Proposition 2 and Claim appear in the common paper [23] with M. Lassak.

First we prove Theorem 2. During the proof, by the C-distance of two parallel lines

we mean the minimum C-distance of two points from those lines, respectively. It is easy

to see that the C-distance of two parallel lines is nothing else but the ratio of the width of

the strip between those lines to the half of the width of C in the perpendicular direction.

Proof of Theorem 2. In our proof we are looking for four points positioned analogously to

those in the pentagon shown in Figure 5. If the shape of the body is somehow ”similar”

to a triangle, the first kind of configuration gives larger relative distances of points, and if

not, then the second kind of configuration.

Consider a triangle T = a1a2a3 of the largest possible area inscribed in C. Since the

C-distance of points does not change under affine transformations, we may assume that T

is a regular triangle of sides of length 2 (see Figure 6).
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During the proof it is convenient to imagine the direction of the side a2a3 as horizontal.

Figure 6

From the maximality of the area we conclude that the straight lines through the

vertices parallel to the opposite sides of T are supporting lines of C. By T ′ we denote

the triangle bounded by the above supporting lines. Consider the smallest positive ho-

mothetic image Tλ of T which contains C. Here λ denotes the ratio of the homothety

which transforms T into Tλ. The intersection of the triangles Tλ and T ′ is a hexagon

H = h1h2h3h4h5h6. The notation is chosen such that a1 ∈ h1h2, a2 ∈ h3h4, a3 ∈ h5h6.

We denote the common value of |a2h4| and |h5a3| by x1, the common value of |a3h6| and

|h1a1| by x2, and the common value of |a1h2| and |h3a2| by x3. Clearly, we have

λ =
1

2
(x1 + x2 + x3) + 1.

Since C ⊂ H, in order to find four points of C in pairwise C-distances at least 1
3 (
√

5+1)

it is sufficient to find four points of C in pairwise H-distances at least 1
3
(
√

5 + 1).

We intend to show that the pairwise H-distances of a1, a2, a3 are over 1
3 (
√

5 + 1).

Consider the three triangles T1, T2, T3 which are copies of T ′ under homotheties with

centers at the vertices of T ′ and with ratio 1
8 . The sides of T ′ are of length 4, and since

λ ≤ 5
2 (see [25]), the sides of Tλ are of length at most 5. As H is contained in Tλ, we

conclude that among T1, T2 and T3 there exists at most one such a triangle that H has

a point in its interior. Thus, the maximal chords of H parallel to the sides of T are of

lengths at most 7
2 . Since the sides of T are of length 2, we see that the H-distances of the
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vertices of T are at least 8
7 , and thus they are greater than 1

3 (
√

5 + 1).

Case 1, when λ ≤ 3
√

5 − 5. Let S be the triangle bounded by segments connecting

the centers of sides of Tλ. As S is a homothetic image of Tλ of ratio −1
2
, it is a homothetic

image of T of ratio −1
2λ. Denote by a the center of the homothety that transforms T into

S. Denote the images of the points a1, a2, a3 by s1, s2, s3, respectively. The segments

a1s1, a2s2, a3s3 intersect at a. We show that a ∈ C. If S∩T = ∅, then Tλ has a side which

does not intersect T ′, which means that C does not intersect this side of Tλ, contrary to

the definition of Tλ. So the intersection of T and S is not empty. This and the description

of a give a ∈ T ∩ S. Since T ⊂ C, we get a ∈ C.

Of course, |asi|
|aai| = λ

2 for i = 1, 2, 3. This implies that

|aai|
1
2 |aisi|

=
2|aai|

|aai| + |asi|
=

4

2 + 2|asi|
|aai|

=
4

2 + λ

for i = 1, 2, 3. Thus the H-distances of a from the points a1, a2, a3 are at least 4
2+λ .

Hence, those H-distances, and thus also C-distances are at least 4
2+3

√
5−5

= 1
3(
√

5 + 1).

The pairs of points a1, a2, a3 are also in C-distances at least 1
3
(
√

5 + 1) as explained

earlier. So the points a1, a2, a3, a of C are in pairwise C-distances at least 1
3 (
√

5 + 1).

Case 2, when λ ≥ 3
√

5 − 5. As λ = 1
2 (x1 + x2 + x3) + 1, in this case we have

x1 +x2 +x3 ≥ 6
√

5−12. We do not make our proof narrower assuming that x1 ≤ x2 ≤ x3.

Denote by c1 a point of the body C on the side h4h5 of the hexagon H, by c2 the

common point of segments a3h1 and a1h6, by c3 the common point of segments a1h3 and

a2h2. From the convexity of C we conclude that the hexagon G = a1c3a2c1a3c2 is a subset

of C.

Before Case 1 we have explained that the H-distance of a2 and a3 is greater than

1
3
(
√

5 + 1). Thus there is a horizontal segment S1 whose endpoints are on the segments

a2c1 and a3c1 in the H-distance 1
3 (
√

5 + 1).

Denote by e the intersection point of a1c3 and the horizontal line containing c2. We

show that under the assumption of Case 2 there is also a horizontal segment S2 whose

endpoints are on the segments a1c2 and a1c3 in the H-distance 1
3 (
√

5 + 1). For this it is

sufficient to show that dH(c2, e) ≥ 1
3
(
√

5 + 1).

Denote by p2 and by p3 the points of intersection of the line through a2 and a3 with

the lines through a1, h3, and through a1, h6, respectively. Observe that x2

|a2p3|−x2

= 2−x2

x2

.
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Thus

|a3p3| =
x2

2

2 − x2
+ x2 =

2x2

2 − x2
=

4

2 − x2
− 2.

We get analogously that |a2p2| = 4
2−x3

− 2. Hence

|p2p3| = |p2a2| + |a2a3| + |a3p3| =
4

2 − x2
+

4

2 − x3
− 2.

Let f be the common point of a1a3 and c2e. As the triangles a1a3c2 and h1c2h6

are similar, we have |a3c2|
|h1c2| = |a1a3|

|h1h6| = 2
2−x2

. From this we get that |a1f |
|a1a3| = |h1c2|

|h1a3| =

1
1+|a3c2|/|h1c2| = 1

1+2/(2−x2)
= 2−x2

4−x2

. Notice that |a1f |
|a1a3| = |c2e|

|p2p3| . Therefore

|c2e| =
2 − x2

4 − x2

(
4

2 − x2
+

4

2 − x3
− 2

)
.

Since the opposite sides of H are parallel, we conclude that the longest horizontal segment

in H is of length 2 + x2. Thanks to this a simple calculation gives

dH(c2, e) =
4

(2 + x2)(4 − x2)

(
x2 +

2(2 − x2)

2 − x3

)
.

As x2 ≤ x3, we have dH(c2, e) ≥ 4
4−x2

. Hence, if x2 > 7 − 3
√

5, then dH(c2, e) >

4
4−(7−

√
3)

> 1
3 (
√

5 + 1). If x2 ≤ 7 − 3
√

5 < 1, then (2 + x2)(4 − x2) is maximal for

x2 = 7 − 3
√

5. Thus 4
(2+x2)(4−x2)

≥ 4
(9−3

√
5)(3

√
5−1)

=
√

5+2
9 . Moreover, x1 ≤ x2 implies

that x3 ≥ 6
√

5 − 12 − 2(7 − 3
√

5) = 12
√

5 − 26. Therefore 2−x2

2−x3

≥ 2−(7−3
√

5)

2−(12
√

5−26)
= 5+3

√
5

8 .

From these calculations we conclude that also in the case when x2 ≤ 7 − 3
√

5, we have

dH(c2, e) ≥
√

5+2
9

· 5+3
√

5
4

> 1
3
(
√

5 + 1).

We have shown that under the assumption of Case 2 there is a horizontal segment S2

whose endpoints are on the segments a1c2 and a1c3 in the H-distance 1
3 (
√

5 + 1).

We see that the four endpoints of the segments S1 and S2 belong to G and thus to

C. We intend to show that they are in pairwise H-distances at least 1
3(
√

5 + 1). Thus it

remains to show that the H-distance l of the lines L1 and L2 containing the segments S1

and S2 is at least 1
3(
√

5 + 1).

We wish to check the behavior of the H-distance l in dependence on x2 and x3, but

under the condition that x1 and x2 + x3 are fixed.

As x2 + x3 is fixed, the value 2 + x2 is maximal for x2 = x3. From this and from the

fact that the H-distance of the endpoints of Si is fixed for i = 1 and i = 2 we get that
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|S1| = |S2| is maximal for x2 = x3. So the distance d1 of the line L1 and the line through

a2 and a3 is minimal for x2 = x3.

We have shown that |p2p3| = 4
2−x2

+ 4
2−x3

− 2. When x2 + x3 is fixed, this expression

is minimal for x2 = x3. Consider the distance d2 of the line L2 and the line through a2

and a3. As |S2| is maximal and |p2p3| is minimal for x2 = x3, from the triangle a1p2p3

we see that d2 is minimal for x2 = x3. Remember that also d1 is minimal for x2 = x3.

Therefore the distance between the straight lines L1 and L2 is minimal for x2 = x3. Since

the distance of the horizontal lines through a1 and c1 does not change, we conclude that l

is minimal for x2 = x3.

It remains to consider the special case when x2 = x3. We intend to show that l ≥
1
3
(
√

5 + 1). We have seen that the length of the maximal chord of H in the horizontal

direction is 2 + x2. Thus |S1| = |S2| = 1
3(
√

5 + 1) 2+x2

2 . Since |a2a3| = 2, the ratio of the

homothety wich maps a2a3 into S1 is 1
3(
√

5 + 1) 2+x2

4 . Therefore

d1 =

√
3

2
x1

(
1 − 1

3
(
√

5 + 1)
2 + x2

4

)
.

From x2 = x3 we have |p2p3| = 8
2−x2

− 2 = 4+2x2

2−x2

. This implies that the ratio of the

homothety which maps p2p3 into S2 is 1
3 (
√

5 + 1) 2−x2

4 . Hence

d2 =
√

3

(
1 − 1

3
(
√

5 + 1)
2 − x2

4

)
.

From the above calculations we get that the distance of the lines L1 and L2 is d1 + d2 =
√

3
2 (2+x1)

(
1
6(5 −

√
5) + 1

6 (
√

5 + 1)x2

2 · 2−x1

2+x1

)
. As the width of H in the direction parallel

to the lines L1 and L2 is
√

3
2 (2 + x1), we have

l =
1

3
(5 −

√
5) +

1

3
(
√

5 + 1)
x2

2
· 2 − x1

2 + x1
.

When x2 decreases and x1 increases, then l decreases. Hence l becomes minimal for

x1 = x2.

We see that the worst case is when x1 = x2 = x3. Thus now λ = 3
2x1 + 1. By the

assumption of Case 2 we have λ ≥ 3
√

5−5, and by [25] we have λ ≤ 5
2
. So 2

√
5−4 ≤ x1 ≤ 1.

From the preceding calculation we get that now

l =
1

3
(11 + 5

√
5) − 1

3
(
√

5 + 1) · 2
√

2 ·
(

x1 + 2

2
√

2
+

2
√

2

x1 + 2

)
.
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The form of the expression in the parenthesis shows that l is always at least the minimum

of its values at the ends of the interval [2
√

5− 4, 1] in which x1 changes. Thus it is always

at least 1
3
(
√

5 + 1). We conclude that the four endpoints of the segments S1 and S2 are in

pairwise H-distances at least 1
3 (
√

5 + 1). Since C ⊂ H, their C-distances are also at least

this number.

Proof of Proposition 2. By Lemma 1 from [24] there is a parallelogram P circumscribed

about C such that the midpoints of two its parallel sides belong to C (see Figure 7). Denote

them by a and c. Let b and d be points of C in the two remaining sides of P . Denote by

D the quadrangle abcd.

Put w = t/2 for t even, and w = (t− 1)/2 for t odd. We provide segments S0, . . . , Sw

with endpoints in the boundary of the quadrangle D which are parallel to the segment ac;

the line containing Si should be in the C- distance 4i/t from d, where i = 0, . . . , w. So the

C-distances of those lines are at least 4/t.

Figure 7

In Figures 8-10 we see the cases when t = 5, t = 6 and t = 8. They illustrate the

three cases in Proposition 2. If 4i/t ≤ 1, then Si contains k = 2i + 1 points in pairwise

relative distances at least 4/t. If 4i/t > 1, then

Si contains k = 2(w− i) + 1 points in pairwise

relative distances at least 4/t when t is even

(see Fig. 9 and 10), and Si contains k = 2(w−
i) + 2 points in pairwise relative distances at

least 4/t when t is odd (see Figure 8). Figure 8
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Figure 8 Figure 9

An easy calculation shows that the total number of those points in all the segments

S0, . . . , Sw is exactly like in the formulation of Proposition 2.

Proof of Claim. It is well known that we can inscribe in C an affine regular hexagon

H (under the assumption of the central symmetry this was proved in many papers; the

earliest of them seems to be [13]).

The central symmetry and convexity of C implies that for every diagonal of H there

is no longer parallel segment in C. Take a hexagonal configuration of points in H like in

Figure 11.

Figure 11

Considering s hexagons containing them on the boundaries we easily evaluate the number

of those points: 1 + 6 + . . . + 6s = 1 + 6 · s(s+1)
2 = 3s2 + 3s + 1.
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Upper Bounds of the Minimum Relative Distance

of Boundary Points of a Convex Body

Let k ≥ 2 be an integer. In this chapter we are looking for the least upper bound of

the minimum pairwise relative distance of k points in the boundary of an arbitrary plane

convex body. Remember that bk(C) denotes the greatest possible number d such that the

convex body C contains k boundary points in pairwise relative distances at least d. In this

chapter we are looking for the supremum of bk(C), where C runs over the family of plane

convex bodies. We also examine an analogous question about centrally symmetric plane

convex bodies.

Since no convex body contains a pair of points in a relative distance greater than 2,

we have bk(C) ≤ 2 for all values of k and for every plane convex body C. The boundary

of the square contains four points in pairwise relative distances 2. Thus the estimate 2

cannot be improved for k ≤ 4.

Doliwka and Lassak [7] proved that there exists no plane convex body whose boundary

contains five points in pairwise relative distances greater than
√

5−1. This value is attained

for the regular pentagon and decagon.

According to (266) on page 71 in [13], the circumference of every centrally symmetric

plane convex body C measured in the metric dC(x, y) is at least 6 and at most 8. From

Theorem 2 of [9] we see that for every C ∈ C the circumferences of C and 1

2
(C − C)

are equal in every Minkowski space. Since for every C ∈ C the metric dC(x, y) is the

metric of the Minkowski space whose unit ball is 1

2
(C − C), we conclude that for every

C ∈ C the circumference of C in the metric dC(x, y) is at least 6 and at most 8. Hence

for r ≥ 2 there exists no plane convex body containing 4r boundary points in pairwise

relative distances greater than 2

r
. Moreover, the boundary of the square contains 4r points

in pairwise relative distances at least 2

r
.

Let us denote by ck(C) the supremum of bk(C), where C runs over the family of plane

convex bodies. Using this notation we have ck(C) = 2 for k = 2, 3, 4. Furthermore, we

have c5(C) =
√

5 − 1, and c4r(C) = 2

r
for every r ≥ 2.
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Now let us remember the results about centrally symmetric plane convex bodies. Since

M ⊂ C, the least upper bound of bk(C) over the family of plane convex bodies is an upper

bound of bk(C) over the family of centrally symmetric plane convex bodies. Moreover,

from the examples of the square and of the regular decagon we see that all the mentioned

estimates for plane convex bodies are also attained for centrally symmetric ones. Thus the

least upper bound of the minimum pairwise relative distance of k boundary points of an

arbitrary centrally symmetric plane convex body is 2 for k = 2, 3, 4, it is
√

5− 1 for k = 5,

and it is 2

r
for k = 4r, where r ≥ 2.

It is shown in [8] that there exists no centrally symmetric plane convex body whose

boundary contains six points in pairwise relative distances greater than 1. The value 1 is

attained for every C ∈ M. Since b6(C) ≥ b7(C) ≥ b8(C) for every convex body C, there is

no centrally symmetric plane convex body whose boundary contains seven or eight points

in pairwise relative distances greater than 1.

Let ck(M) denote the infimum of bk(C), where C runs over the family of centrally

symmetric plane convex bodies. Now we can reformulate the mentioned results as follows.

We have ck(M) = 2 for k = 2, 3, 4. Besides, c5(M) =
√

5 − 1, c6(M) = c7(M) = 1, and

c4r(M) = 2

r
for every r ≥ 2.

In this chapter we determine the least upper bounds of the minimum pairwise relative

distance of six and seven points on the boundary of a plane convex body. These results

appear in [19]. Moreover, we conjecture that there exists no plane convex body whose

boundary contains nine points in pairwise relative distances greater than 4 sin(10◦) ≈
0.6946. This value is attained for the regular nine-gon and for the regular eighteen-gon.

We also conjecture that there exists no plane convex body whose boundary contains ten

points in pairwise relative distances greater than 2

3
. The value 2

3
is attained for the square

even for eleven points. In other words, we conjecture that c9(C) = 4 sin(10◦), and that

c10(C) = c11(C) = 2

3
. Observe that these values are also attained for centrally symmetric

plane convex bodies, namely for the regular eighteen-gon in case of nine points, and for

the square in cases of ten and eleven points. Thus we conjecture that c9(M) = 4 sin(10◦),

and that c10(M) = c11(M) = 2

3
.

In order to formulate our results about the relative distances of six and seven points

in a plane convex body first let us present some elementary observations. Notice that for
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arbitrary points p, q ∈ En and for arbitrary convex bodies D ⊂ C we have dC(p, q) ≤
dD(p, q). Thus to find an upper bound of the minimum pairwise relative distance of k

points in an arbitrary plane convex body it is enough to examine convex k-gons with

the k points at the vertices of the k-gon. Moreover, according to Lemma 3 of [27], if x

is a boundary point of a plane convex body C, and if y moves counterclockwise on the

boundary of C from x, then dC(x, y) is a non-decreasing function until it accepts the value

2, and it accepts all the values from the interval [0, 2]. Therefore to determine ck(C) it is

enough to examine the relative lengths of the sides of convex k-gons.

Consider the hexagon H0 which is the convex hull of a regular triangle and its homo-

thetical copy with the homothety center in the center of the triangle with the homothety

ratio 1−
√

3 (we remark that H0 is nothing else but the convex hull of the vertices and of

the midpoints of the arcs of the Reuleaux triangle). The relative length of the sides of H0

is 8 − 4
√

3 ≈ 1.071. Doliwka and Lassak [7] conjectured that every convex hexagon has a

side of relative length at most 8 − 4
√

3. First we prove their conjecture and we show that

the value 8 − 4
√

3 is attained only for the affine images of H0.

Theorem 3. Every convex hexagon H has a side of relative length at most 8 − 4
√

3.

Moreover, if the relative length of every side of H is at least 8 − 4
√

3, then H is an affine

image of H0.

In the remaining part of this chapter we prove a similar statement about convex

heptagons.

Theorem 4. Every convex heptagon has a side of relative length at most 1.

The example of the degenerated heptagon with four vertices at the vertices of a square

and with three remaining vertices at the midpoints of the sides of the square shows that

this result is the best possible one.

First we prove Theorem 3. Our proof is based on two lemmas.

Lemma 2. Let G be a convex k-gon, where k ≥ 6. Assume that a triangle of the largest

possible area inscribed in G has a side which coincides with a side of G. Then G has a

side of G-length at most 1.
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Proof. Let T = abc be a triangle mentioned in the formulation of our lemma. Observe

that we can assume that ab is a side of G, and that c is a vertex of G. At least one of the

two pieces of the boundary of G between a and c contains at least two additional vertices

e and f of G. For instance, let e be between c and f on this piece (see Figure 12).

Figure 12

Since the ratio of the areas of two figures does not change under affine transformations,

we may assume in our proof that abc is an isosceles triangle with right angle at b. Take

the point d such that S = abcd is a square. Since abc is a triangle of maximal area, we

conclude that e and f belong to S.

Consider the convex pentagon P = abcef . First, we intend to show that at least one

of the relative distances dP (c, e), dP (e, f), dP (f, a) is at most 1. We dissect S into four

equal squares Sa, Sb, Sc, Sd containing a, b, c, d, respectively. Since G is convex, e and

f are not in the interior of T . If dP (c, e) > 1 and dP (f, a) > 1, then e /∈ Sc and f /∈ Sa,

and thus e ∈ Sd and f ∈ Sd. Hence dP (e, f) ≤ 1. We see that at least one of the numbers

dP (c, e), dP (e, f), dP (f, a) is at most 1.

Finally, we intend to show that if one of the mentioned P -distances is at most 1, then

G has a side of G-length at most 1. We assume that dP (e, f) ≤ 1 (analogous consideration

can be applied for the remaining two cases). Examine the case when e and f are consecutive

vertices of G. Since P is a subset of G, we have dG(p, q) ≤ dP (p, q) for arbitrary points

p, q. Thus, in this case the thesis of our lemma holds true. Take into account the opposite

case, when e and f are not consecutive vertices, and take a vertex v of G between them.

Let V be a side of G with endpoint v. Consider the chords Ca and Cc of G with endpoints

a and c, respectively, which are parallel to V . Observe that Ca or Cc is at least twice as

long as V . Hence, the G-length of V is at most 1.
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Lemma 3. Consider a convex hexagon H = abcdef such that the triangle ace is regular.

Let us take the lines through a, c, e parallel to the segments ce, ea, ac, respectively. The in-

tersections of these lines are denoted by a0, c0, e0 (they are opposite to a, c, e, respectively).

Assume that b, d, f are in the triangle a0c0e0 and that the angles 6 cab, 6 acb, 6 aef, 6 eaf

are equal to α. Denote the angle 6 ecd by β, and denote the angle 6 ced by γ. If 0 < α < π

6
,

0 < min(β, γ) < π

6
, dH(c, d) ≥ 8 − 4

√
3, and dH(d, e) ≥ 8 − 4

√
3, then min(β, γ) ≥ α with

equality if and only if α = β = γ = π

12
.

Proof. We choose a Cartesian coordinate system such that a, c, e are (0, 0), (1,
√

3) and

(−1,
√

3), respectively (see Figure 13). Since dH(d, e) ≥ 8 − 4
√

3, d is not in the interior

of the homothetical copy C1 of the quadrangle cefa with the homothety ratio −(4− 2
√

3)

such that the image of c is e. Moreover, also d is not in the interior of the homothetical

copy C2 of the quadrangle eabc with the homothety ratio −(4− 2
√

3) such that the image

of e is c. The boundaries of C1 and C2 inside of the triangle ca0e intersect each other at

one point. Denote it by d0.

Figure 13

Case 1, when d0 is on the images of the sides ef and bc. In this case the minimum of

β and γ is attained for d = d0. The y-coordinate of d0 is

tan(α +
π

3
)(7 − 4

√
3) +

√
3.

This implies the inequality

tan(min(β, γ)) ≥ tan(α +
π

3
)(7 − 4

√
3).

Using elementary trigonometric and algebraic identities we easily get that

tan(α +
π

3
)(7 − 4

√
3) − tan(α) =

√
3(tan(α) +

√
3 − 2)2

1 −
√

3 tan(α)
.
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Observe that tan( π

12
) = 2 −

√
3. Thus, if 0 < α < π

6
, then tan(α) ≤ tan(α + π

3
)(7 − 4

√
3)

with equality if and only if α = π

12
. Hence we have α ≤ min(β, γ). Moreover, the equality

can hold if and only if α = min(β, γ) = π

12
. But when β or γ is equal to π

12
, d0 is the only

point on the segment in the triangle eca0 determined by the angle π

12
which is not in the

interiors of C1 and C2. That is, we have β = γ = π

12
.

Case 2: when d0 is on the images of the sides fa and ab. In this case we get the

minimum of β when d is d0 or when d is the homothetic image of a in C1. Hence β ≥ π

6
.

A similar inequality holds for γ. Therefore min(β, γ) ≥ π

6
, contrary to the hypothesis.

Proof of Theorem 3. Consider a convex hexagon H = abcdef . If a triangle of the largest

possible area inscribed in H has a side which coincides with a side of H, then we apply

Lemma 2.

Let us look to the opposite possibility, when no triangle of the maximum area in-

scribed in H contains a side of H. Observe that then ace or bdf is a triangle of maximal

area. Consider the first possibility (in the other one, further consideration is analogous).

Since the relative distance is affine invariant, we can assume that ace is a regular triangle

with vertices a(0, 0), c(1,
√

3), e(−1,
√

3) in a rectangular coordinate system. We provide

straight lines La, Lc, Le through a, c, e parallel to the segments ce, ea, ac, respectively.

Denote the point of intersection of Lc and Le by a0. Similarly, let c0 be the intersection

of La and Le. Moreover, let e0 be the intersection of La and Lc. Since ace is a triangle of

maximum area inscribed in H, the points b, d and f belong to the triangle a0c0e0. Denote

the angles 6 cab, 6 acb, 6 ecd, 6 ced, 6 aef, 6 eaf by α1, α2, . . . , α6, respectively.

We intend to show that if the relative lengths of the sides of H are at least 8 − 4
√

3,

then αi = π

12
for i = 1, . . . , 6.

In further consideration we exclude the case when αi = 0 for a certain i because in

this special situation the hexagon contains a closed segment containing three consecutive

vertices which means that it has a side of relative length at most 1.

We do not make our consideration narrower assuming that α4 = min{α1, . . . , α6}.

Case 1, when α4 < π

6
. Consider first an auxiliary hexagon H ′ in which we have α4 in

the place of α1, α2, α5, α6 . Then, from H ′ ⊂ H we get that dH(c, d) ≤ dH′(c, d) and that

dH(d, e) ≤ dH′(d, e).
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Now we apply Lemma 3 for H ′ putting α3 in the part of β, and α4 in the part of α and

γ. We get that α4 ≤ α4 with equality if and only if α3 = α4 = π

12
. Since α4 is the minimal

angle from among α1, . . . , α6, all those angles are at least π

12
. Let us take the homothetical

copies of the quadrangles cefa and eabc with the homothety ratio −(4 − 2
√

3) such that

the images of c and e are e and c, respectively. Since d is in the interior of neither of the

two copies, we get that min(α1, α2) and min(α5, α6) are at most π

12
. Consequently they

are equal to π

12
. Now we take an auxiliary hexagon H ′′ in which α5 and α6 are replaced

by α4 = π

12
. We apply Lemma 3 for H ′′ and we get that π

12
≤ π

12
with equality if and only

if α1 = α2 = π

12
. Thus, we can apply Lemma 3 for H, and as a result we get that αi = π

12

for every i ∈ {1, 2, . . . , 6}.
It can be easily verified that this hexagon is nothing else but the hexagon H0 mentioned

at the beginning of this chapter.

Case 2, when α4 ≥ π

6
. According to our previous assumption about α4, all the angles

are at least π

6
. Notice that in this case the area of the triangle bdf is not less than the area

of the triangle ace, with equality if and only if all the six angles are π

6
. Hence this case

concerns only the regular hexagon, whose sides are of relative length 1.

Finally, from the proof we see that if the relative length of every side of H is at least

8−4
√

3, then H is an affine image of the hexagon H0 constructed by Doliwka and Lassak.

Proof of Theorem 4. Let H = abcdefg be a convex heptagon, such that all the relative

lengths of its sides are greater than 1. According to Lemma 2 we can assume that acf is

a triangle of maximal area inscribed in H. As the relative distance is affine invariant, we

can assume that the triangle acf is regular (see Figure 14).

Figure 14
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Let us take the Cartesian coordinate system such that a, c, and f are (0, 0), (1,
√

3),

(−1,
√

3), respectively. We define the points a0, c0, f0 similarly like in the proof of The-

orem 3. Since acf is a triangle of maximal area, b, d, e, g are in the triangle a0c0f0.

Let a′, c′, f ′ be the midpoints of the segments cf , a0f and a0c, respectively. As dH(c, d)

and dH(e, f) are greater than 1, the points d and e belong to the rhombus a′f ′a0c
′. The

convexity of H implies that the slope of the segment de is between −
√

3 and
√

3. Hence

dH(d, e) ≤ 1. But this contradicts the assumption that the relative lengths of all the sides

of H are greater than 1.
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Upper Bounds of the Minimum Relative

Distance of Points of a Convex Body

Let k ≥ 2 be an integer. In this chapter we are looking for the least upper bound

of the minimum pairwise relative distance of k points in an arbitrary plane convex body.

Remember that dk(C) denotes the greatest possible number d such that C contains k points

in pairwise relative distances at least d. In this chapter we are looking for the supremum of

dk(C), where C runs over the family of plane convex bodies. We also consider an analogous

problem for centrally symmetric plane convex bodies.

Since no convex body contains points in a relative distance greater than 2, we have

dk(C) ≤ 2 for every value of k and for every convex body C. Moreover, in the square there

exist four points in pairwise relative distance 2. Thus for k ≤ 4 the least upper bound of

the minimum relative distance of k points in an arbitrary plane convex body is 2.

A simple consideration applying the result of [7] leads to the conclusion that there

exists no plane convex body which contains five points in pairwise relative distances greater

than
√

5 − 1. The value
√

5 − 1 is attained for the regular pentagon and for the regular

decagon.

Considering the area of homothetical copies we get that for any r ≥ 2 no plane convex

body can be packed by its r2 homothetical copies of ratio greater than 1
r
. Applying The-

orem 6 we get that no plane convex body contains r2 points in pairwise relative distances

greater than 2
r−1 . From the example of the square we see that the value 2

r−1 is attained.

Let us denote by ek(C) the supremum of dk(C), where C runs over the family of plane

convex bodies. Using this notation we have ek(C) = 2 for k ≤ 4, and e5(C) =
√

5 − 1.

Moreover, er2(C) = 2
r−1

for every r ≥ 2.

Now we comment the case of centrally symmetric plane convex bodies. Apparently,

the supremum of dk(C) over the family of plane convex bodies is an upper bound of dk(C)

over the family of centrally symmetric plane convex bodies. From the examples of the

square and the regular decagon we see that the mentioned least upper bounds for plane

convex bodies are also attained for centrally symmetric ones. Thus, the least upper bound
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of the minimum pairwise relative distance of k points in a centrally symmetric plane convex

body is 2 for k ≤ 4, it is
√

5 − 1 for k = 5, and it is 2
r−1 for k = r2, where r ≥ 2.

In Chapter 3 we have seen that there is no centrally symmetric plane convex body

containing six boundary points in pairwise relative distances greater than 1. An elementary

consideration shows that there is no centrally symmetric plane convex body containing six

points in pairwise relative distances greater than 1, even if the points are not obligatorily

on the boundary. Furthermore, the square contains also nine points in pairwise relative

distances at least 1.

Denote by ek(M) the supremum of dk(C), where C runs over the family of centrally

symmetric plane convex bodies. According to the above results and observations we have

ek(C) = 2 for k ≤ 4, and e5(M) =
√

5 − 1. Moreover, e6(M) = e7(M) = e8(M) =

e9(M) = 1, and also er2(M) = 2
r−1 for every r ≥ 2.

In this chapter we find the least upper bound of the minimum pairwise relative distance

of six points in a plane convex body.

Theorem 5. No plane convex body contains six points in pairwise relative distances greater

than 2− 2
√

5
5 ≈ 1.106. Furthermore, if p1, . . . , p6 are points in a plane convex body C such

that all their pairwise relative distances are at least 2 − 2
√

5
5 , then C is an affine regular

pentagon, and the points are its vertices and its center.

Besides, we conjecture that there exists no plane convex body containing seven points

in pairwise relative distances greater than 1. Since the square contains even nine points

in pairwise relative distances at least 1, we also conjecture an analogous statement about

eight points. Theorem 5 and the above conjectures are presented in the joint paper [4]

with K. Böröczky.

Now we prove Theorem 5. During the proof we denote points by small Latin letters.

In a Cartesian coordinate system, the x-coordinate and the y-coordinate of a point p ∈ E2

are denoted by px and by py, respectively. We denote the straight line through the points

p, q ∈ E2 by L(p, q). The value 2− 2
√

5
5 is denoted by λ, the value λ

2 = 1−
√

5
5 ≈ 0.553 by

τ , and the value λ
2−λ

=
√

5 − 1 by ν. By the kernel of a convex pentagon P we mean the

convex pentagon which is bounded by the diagonals of P .

The proof is based on three lemmas.
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Lemma 4. Take a convex pentagon P = a1a2a3a4a5 and take a point p in the kernel of P .

Denote min{dP (p, ai)|i = 1, . . . , 5} by λ(P, p). Then λ(P, p) ≤ λ, and the equality holds if

and only if P is an affine regular pentagon and p is its center.

Proof. Compactness arguments show that the maximal value of λ(P, p) is attained on the

family of convex pentagons P and of points p of the kernel of P . Moreover, if P is an

affine regular pentagon and if p is its center, then λ(P, p) is equal to λ. Hence it is enough

to show that if P is not affine regular or if P is affine regular but p is not its center, then

λ(P, p) cannot be maximal. During the proof we denote the intersection point of the line

L(p, ai) and of the segment ai+2ai+3 by bi, for i = 1, . . . , 5. Moreover, we denote the kernel

of P by Q.

Observe that if p is on the boundary of Q, then λ(P, p) ≤ 1, which is less than λ.

Thus in this case λ(P, p) cannot be maximal. Therefore in the sequel we assume that p is

in the interior of Q.

Case 1, when P has a side of P -length 2. For instance, let a1a2 be such a side. Instead

of the condition that p is in the kernel of P , during the proof in this case we use only the

facts that p ∈ a1a3a5 and p ∈ a2a3a5. For i = 1, . . . , 5 let us denote a maximal chord of P

parallel to aip by uivi. As |uivi| ≥ |aibi|, we have dP (ai, p) = |aip|
1

2
|uivi| ≤

2|aip|
|aibi| .

If |a5p| > |pb5| and if |a3p| > |pb3|, then L(a1, a2) separates p and the intersection point

of L(a1, a5) and L(a2, a3). Thus dP (a1, a2) < 2, which is a contradiction. If |a3p| ≤ |pb3|,
then dP (a3, p) ≤ 2|a3p|

|a3b3| = 2

1+
|pb3|

|a3p|

≤ 1. Hence λ(P, p) ≤ 1. Similarly, if |a5p| ≤ |pb5|, then

λ(P, p) ≤ dP (a5, p) ≤ 1.

Case 2, when P has no side of P -length 2. In this case dP (p, ai) = 2|aip|
|aibi| for i = 1, . . . , 5.

Subcase 2.1, when P has two consecutive vertices in P -distance from p greater than

λ(P, p). Assume, for example, that dP (a4, p) > λ(P, p) and that dP (a5, p) > λ(P, p)

(see Figure 15). For i = 1, . . . , 5 let us denote by Hi the open halfplane bounded by

the line through p parallel to ai+2ai+3 such that ai /∈ Hi. Observe that if p′ is in Hi,

then dP (ai, p) < dP (ai, p
′). Let H = H1 ∩ H2 ∩ H3. Notice that H ′ = H ∩ intQ is a

nonempty open set, and that p is a boundary point of H ′. If p′ is a point of H ′, then

dP (ai, p
′) > dP (ai, p) ≥ λ(P, p) for i = 1, 2, 3. Moreover, if p′ is close enough to p,

then dP (aj, p
′) > λ(P, p) for j = 4, 5. Thus, we can choose a point p′ ∈ intQ such that

λ(P, p) < λ(P, p′). Hence λ(P, p) cannot be maximal.
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Figure 15

Subcase 2.2, when P has exactly two vertices in P -distance from p greater than

λ(P, p), and these vertices are nonconsecutive. Without loss of generality, let dP (a1, p) =

dP (a2, p) = dP (a4, p) = λ(P, p), dP (a3, p) > λ(P, p) and dP (a5, p) > λ(P, p). Take the

convex pentagon P ′ = a1a2a3a4a
′
5, where a′

5 is an interior point of the segment a5a1.

We have dP ′(a1, p) = dP (a1, p) = λ(P, p), dP ′(a2, p) > dP (a2, p) = λ(P, p), dP ′(a3, p) =

dP (a3, p) > λ(P, p), dP ′(a4, p) = dP (a4, p) = λ(P, p), dP ′(a′
5, p) < dP (a5, p). Moreover, if

a′
5 is close enough to a5, then dP ′(a′

5, p) > λ(P, p), and p is in the kernel of P ′. Hence,

according to Subcase 2.1, there exists a point p′ in the kernel of P ′ such that λ(P, p) =

λ(P ′, p) < λ(P ′, p′).

Subcase 2.3, when P has exactly one vertex in P -distance from p greater than λ(P, p).

Let this vertex be a5. Take the convex pentagon P ∗ = a1a2a3a4a
∗
5, where a∗

5 is an interior

point of the segment a5a1. We have that dP ∗(a1, p) = dP (a1, p) = λ(P, p), dP ∗(a2, p) >

dP (a2, p) = λ(P, p), dP ∗(a3, p) = dP (a3, p) = λ(P, p), dP ∗(a4, p) = dP (a4, p) = λ(P, p),

dP ∗(a∗
5, p) < dP (a5, p). Moreover, if a∗

5 is close enough to a5, then dP ∗(a∗
5, p) > λ(P, p).

Hence, thanks to Subcase 2.2, there exist a convex pentagon P ′ and a point p′ in the kernel

of P ′ such that λ(P, p) = λ(P ∗, p) < λ(P ′, p′).

Subcase 2.4, when dP (ai, p) = λ(P, p) for i = 1, . . . , 5. As we are looking for the

maximal value of λ(P, p), we assume that λ(P, p) > 1. For the sake of simplicity, we

use the notation ν(P, p) = λ(P,p)
2−λ(P,p) . Thus |aip|

|pbi| = ν(P, p) for i = 1, . . . , 5. Observe that

ν(P, p) is a srictly increasing function of λ(P, p). Additionally, λ(P, p) > 1 implies that

ν(P, p) > 1. Let hp be the homothety with homothety center p and with homothety ratio

− 1
ν(P,p) . Then hp(ai) = bi for i = 1, . . . , 5.

Consider the intersection point a of the lines L(a1, a5) and L(a2, a3). Let us take
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a Cartesian coordinate system. As the relative distance of two points does not change

under affine transformations, we can assume that the points a, a1, a2 are (0, 0), (1,−1),

(−1,−1), respectively (see Figure 16). We intend to show that if px 6= 0, then λ(P, p) is

not maximal. Assume that px > 0 (in the other case the proof is analogous).

Figure 16

Take the intersection point q of the segments ap and b3b5. Denote the straight lines

y = py and y = qy by Lp and Lq, respectively. Let p′ and q′ be the points (0, py) and

(0, qy), respectively, and let hp′ be the homothety with center p′, and with homothety ratio

− 1
ν(P,p)

. Let us denote by b′3 and by b′5 the intersections of Lq and of the straight lines

L(a, a1) and L(a, a2), respectively. Let a′
3 be the intersection of L(a, a2) and L(p′, b′3).

Similarly, let a′
5 be the intersection of L(a, a1) and L(p′, b′5).

We show that b′3 = hp′(a′
3) and that b′5 = hp′(a′

5). Observe that pb3b5 = hp(pa3a5).

Thus a3a5 and b3b5 are parallel, and b3b5 is the homothetic image of a3a5 of ratio 1
ν(P,p)

,

where the center of homothety is a. Since a′
3a

′
5 and b′3b

′
5 are also parallel, b′3b

′
5 is the

homothetic image of a′
3a

′
5 of ratio 1

ν(P,p)
, where the center of homothety is a. Hence

|b′
3
b′
5
|

|a′
3
a′
5
| = 1

ν(P,p) . From this we get that b′3b
′
5p

′ = hp′(a′
3a

′
5p

′). That is, b′3 = hp′(a′
3) and

b′5 = hp′(a′
5).

Denote a1 by a′
1, a2 by a′

2, hp′(a1) by b′1, and hp′(a2) by b′2. Let a′
4 be the common

point of the straight lines L(a′
3, b

′
1) and L(a′

5, b
′
2), and let b′4 denote hp′(a′

4). Using these

notations we have
2|a′

i
p′|

|a′
i
b′

i
| = λ(P, p) for i = 1, . . . , 5. We omit a consideration which shows

that P ′ = a′
1a

′
2a

′
3a

′
4a

′
5 is a convex pentagon, that p′ is in the kernel of P ′ and that P ′ has no
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side of P ′-length 2. From the above properties of P ′ and p′ we get that dP ′(p′, a′
i) = λ(P, p)

for i = 1, 2, 3, 5. We show that dP ′(p′, a′
4) > λ(P, p).

Take the points c1 = hp(b1), c2 = hp(b2), c′1 = hp′(b′1) and c′2 = hp′(b′2). As the

homothety ratios of hp and hp′ are equal, we have cy
1 = cy

2 = c′1
y

= c′2
y
, and |c1c2| =

|c′1c′2|. Since b3b5 and a3a5 are parallel, the quadrangle a5b3b5a3 is a trapezoid. Thus

|b3q| = |qb5|. Consider the triangles b3b
′
3q and b5b

′
5q. We get that |b3b

′
3| = |b5b

′
5|. Let b∗3

be the intersection point of the segment b3b4 and the straight line Lq. Similarly, let b∗5 be

the intersection point of the segment b4b5 and the straight line Lq. Notice that bx
4 > 0,

b3 ∈ b′3a5, and b5 ∈ b′5a2. These observations and the equality of |b3b
′
3| and |b5b

′
5| imply

that |b∗3b∗5| > |b′3b′5|. Consider that b4 is the intersection of L(b∗3, c1) and L(b∗5, c2), and that

b′4 is the intersection of L(b′3, c
′
1) and L(b′5, c

′
2). As |b∗3b∗5| > |b′3b′5| and |c1c2| = |c′1c′2|, we

get that by
4 < b′4

y
. Take the intersection point b∗4 of a1a2 and p′b′4. Since

|p′a′
4
|

|p′b∗
4
| > ν(P, p),

we have dP ′(p′, a′
4) > λ(P, p). Obviously, λ(P, p) = λ(P ′, p′). Thus, according to Subcase

2.3, the value λ(P, p) cannot be maximal.

Notice that our choice of the side a1a2 was arbitrary. This implies that λ(P, p) can

be maximal only if P is affine symmetric to every line containing the midpoint of a side of

P and the opposite vertex of P , and if p is on every one of the above lines. But this holds

only if P is an affine regular pentagon and if p is its center.

Lemma 5. Let P = a1a2a3a4a5 be a convex pentagon and let p be a point of P which is

not in the kernel of P . Then among p, a1, . . . , a5 there exists a pair of points in P -distance

less than λ.

Proof. If P is a degenerate pentagon, then it has a chord containing at least 3 vertices of

P . Thus in this case P has a side of P -length at most 1, which is less than λ.

In the sequel we deal with the case when P is nondegenerate. Take a Cartesian

coordinate system. As the P -distance of two points is affine invariant, we assume that the

points a1, a2 and a5 are (0, 0), (1, 0) and (0, 1), respectively. Let b be the point (1, 1).

Denote the square a1a2ba5 by S. Furthermore, for every i, j ∈ {1, . . . , 5}, where i 6= j, we

denote the slope of the line L(ai, aj) by mij , provided it exists.

Case 1, when P has more than one side of P -length 2. Consider the case when P

has two nonconsecutive sides of P -length 2. We assume that dP (a1, a2) = 2 and that
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dP (a3, a4) = 2 (the proof of the other cases is analogous). Let the angle of P at the vertex

ai be denoted by αi, for i = 1, . . . , 5. From dP (a1, a2) = 2 we get that α1 + α2 ≤ π.

Similarly, from dP (a1, a2) = 2 we have α3 + α4 ≤ π. The convexity of P implies that

α5 ≤ π. Obviously,
5∑

i=1
αi = 3π. Thus, α1 + α2 = α3 + α4 = α5 = π. Therefore P is a

degenerate pentagon.

Let us assume that P has two consecutive sides of P -length 2. Without loss of gen-

erality, let these sides be a5a1 and a1a2. Hence P ⊂ S. Denote the triangle a1a2a5 by

S1. Take the homothetical copies S2, S3, S4 of a2ba5, S, a2ba5 with ratio 1
2

and with

homothety centers a2, b, a5, respectively. As P is convex, S1 contains neither of the points

a3 and a4 in its interior. If S2 contains a3 or if S4 contains a4, then dP (a2, a3) ≤ 1 or

dP (a4, a5) ≤ 1, respectively. Finally, if S3 contains both a3 and a4, then m34 < 0 implies

that dP (a3, a4) ≤ 1. Thus we get that P has a side of P -length at most 1.

Case 2, when P has exactly one side of P -length 2. We choose the indices of the points

such that dP (a1, a2) = 2, and that ay
3 ≥ 1. The condition of this case and the convexity of

P imply that 0 < ax
4 < ax

3 ≤ 1, and that 1 ≤ ay
3 < ay

4 . Moreover, either dP (a1, a5) < λ or

ay
4 ≤ 1

τ
. In the following we assume that ay

4 ≤ 1
τ

< 2.

Observe that for arbitrary w ∈ E2, the set of points whose P -distance from w is less

than λ is the interior of the translate of τ
2
(P −P ) where the center of the body is w. From

the previous considerations concerning the properties of P we get that the sides of the

centrally symmetric convex decagon τ
2 (P −P ) are parallel to a1a5, a4a5, a1a2, a3a4, a2a3.

First we show that if every side of P has P -length greater than 1, then m45 > m13. We

show the statement indirectly. Denote the intersection point of L(a2, a3) and L(a4, a5) by

s, and denote the intersection point of a1a3 and a2a5 by q. Let a′
3 and a′

4 be the homothetic

images of a3 and a4, respectively, where the center of homothety is s and its ratio is 2.

Denote the midpoint of the segment a5s by s5. Let t be the point of a2a3 such that a1t

and a4a5 are parallel. Similarly, let s′ be the point of L(a2, a3) such that a5s
′ and a1a3 are

parallel. Observe that a1t is a maximal chord of P parallel to a4a5. Thus dP (a4, a5) > 1

implies that 1
2 |a1t| < |a4a5|. Moreover, we have |a5s5| = 1

2 |a5s| ≤ 1
2 |a1t|. Therefore

|a5s5| < |a4a5|, from which a4 ∈ s5s. Since m13 ≥ 1, we get that 1 ≤ |a2q|
|qa5| = |a2a3|

|a3s′| .

Hence |a2a3|
|a3s| ≥ |a2a3|

|a3s′| ≥ 1. This and a4 ∈ s5s imply that a′
3a

′
4 is a chord of C. Thus

dP (a3, a4) ≤ 1, which is a contradiction.
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Now we prove the statement under the condition that m45 > m13. If p is in both

the triangles a1a3a5 and a2a3a5, then, according to the proof of Case 1 in Lemma 4 we

have dP (a3, p) ≤ 1 or dP (a5, p) ≤ 1. We intend to examine the cases when p ∈ a3a4a5, or

p ∈ a1a2a5, or p ∈ a2a3q.

Subcase 2.1, when p is in the triangle a3a4a5. Denote the midpoints of the segments

a4a5, a3a5 and a3a4 by c3, c4 and c5, respectively. Notice that the triangles a3c4c5,

a5c3c4 and the parallelogram a4c5c4c3 are contained in the homothetical copies of P with

homothety ratio 1
2 where the homothety centers are a3, a5 and a4, respectively. Thus in

this case at least one of the values dP (a3, p), dP (a4, p), dP (a5, p) is at most 1.

Subcase 2.2, when p is in the triangle a1a2a5. We show the statement indirectly,

therefore we assume that among p and the vertices of P there is no pair in P -distance less

than λ. Denote by Q1 and by Q5 the translates of τ
2
(P −P ) where the centers of the bodies

are a1 and a5, respectively. Consider the points b1 = (1− τ, 0) and b5 = (1− τ, 1− τ). As

dP (a2, p) ≥ λ, we have p ∈ a1b1b5a5. We show that a1b1b5a5 is covered by the interiors of

Q1 and Q5. For this it is enough to show that b1b5 is in the interior of Q1 ∪Q5. Denote by

d1 the intersection of b1b5 and of the boundary of Q1 such that d1 6= b1. Similarly, let d5

be the intersection of b1b5 and of the boundary of Q5. We omit an easy calculation that if

d1 is not on the side of Q1 parallel to a2a3, or if d5 is not on the side of Q5 parallel to a4a5,

then b1b5 is in the interior of Q1 ∪Q5. In the opposite case we get that dy
1 = m23(1− 2τ),

and that dy
5 = m45(1 − 2τ) + 1 − τ . Thus dy

1 − dy
5 = (2τ − 1)(m45 − m23) + τ − 1.

Let us assume that m34 ≤ −1. Take the point u on the line L(a2, a3) such that a3

is the midpoint of the segment a2u. As dP (a3, a4) ≥ λ > 1, we have 6 ua5b < 6 a4a5b.

Thus, 0 <
2a

y

3
−1

2ax

3
−1

< m45. This implies that dy
1 − dy

5 ≥ (2τ − 1)(
2a

y

3
−1

2ax

3
−1

+
a

y

3

1−ax

3

) + τ − 1 ≥
(2τ − 1)( 1

2ax

3
−1 + 1

1−ax

3

) + τ − 1. But the last expression is always positive.

Now we discuss the case when m34 > −1. In this case from dP (a3, a4) ≥ λ we

conclude that ax
3 − ax

4 ≥ τ . Consider the point m = (0, 1
1−τ

). Take the line Lm through

m with slope −1. Since m34 > −1 and since dP (a3, a4) ≥ λ, a3 and a4 are in the open

halfplane not containing a1 bounded by Lm. As ay
4 ≤ 1

τ
, we have ax

4 > 1
1−τ

− 1
τ
, and thus

ax
3 > 1

1−τ
− 1

τ
+ τ = 11

√
5−5

20
≈ 0.980. But this contradicts that d1 is on the side of Q1

parallel to a2a3, that is, that ax
3 ≤ 1−τ

τ
=

√
5+1
4 ≈ 0.809. Hence b1b5 is in the interior of

Q1∪Q5. Therefore every point of a1b1b5a5 is in P -distance from a1 or from a5 less than λ.
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Subcase 2.3, when p is in the triangle a2a3q. Let Q2 and Q3 be the translates of

τ
2 (P −P ) where the centers of the bodies are a2 and a3, respectively. If py > 1, then p is in

the interior of Q3. In the following we deal with the case when py ≤ 1. From dP (a5, p) ≥ λ

we have px ≥ τ . Let us show that the points of a2a3q with x-coordinates at least τ are

in the interior of Q2 ∪ Q3. Denote by e2 the common point of the line x = τ and of the

boundary of Q2 with greater y-coordinate. Denote by e3 the common point of the line

x = τ and of the boundary of Q3 with less y-coordinate. We show that ey
2 − ey

3 is positive.

We have ey
3 ≤ (1 − τ)ay

3. Moreover, ey
2 = τay

4 or ey
2 = m45(2τ − 1) + τ . If ey

2 = τay
4,

then ey
2 − ey

3 ≥ τ(ay
3 + ay

4) − ay
3 > 0. In the sequel we assume that ey

2 = m45(2τ − 1) + τ .

Observe that m45 ≥ m13 ≥ 1. Hence, if ay
3 < 3τ−1

1−τ
, then ey

2 − ey
3 ≥ 3τ − 1− (1− τ)ay

3 > 0.

Let us assume the opposite case, when ay
3 ≥ 3τ−1

1−τ
. In this case ay

4 ≤ 1
τ

< ay
3 + τ .

Thus dP (a3, a4) ≥ λ implies that ax
4 ≤ ax

3 − τ = 1 − τ . Take the points m(0, 1
1−τ

)

and g( 1
τ
, 1 − τ). Denote by h the intersection point of L(m, g) and x = 1. We omit

an elementary calculation which shows that hy = 1
τ
− 2τ−1

(1−τ)2
. Since dP (a3, a4) ≥ λ,

we get that a3 is in the closed halfplane containing a1 bounded by L(a4, m). Therefore

ay
4 − ay

3 ≥ 1
τ
− hy. Thus, ay

3 ≤ ay
4 − 1

τ
+ hy ≤ hy ≈ 1.281. But this contradicts our

assumption that ay
3 ≥ 3τ−1

1−τ
≈ 1.472.

We have shown that ey
2 − ey

3 is positive. But this implies that every point of the

triangle a2a3q with x-coordinate at least τ is in the interior of Q2 ∪ Q3.

Case 3, when P has no side of P -length 2. We assume that p is in the triangle a1a2a5

and that m34 is at least −1 (the proof of the other cases is analogous). Since P has no

side of P -length 2, we have ax
3 > 1 and ay

4 > 1. Observe that the points of a1a2a5 with

x-coordinates greater than 1 − τ are in P -distance from a2 less than λ. Similarly, the

points of a1a2a5 with y-coordinates greater than 1− τ are in P -distance from a5 less than

λ. Thus it is enough to deal with the case when both coordinates of p are at most 1 − τ .

Take the point f = ( 1
τ
− 1, 1

τ
− 1). We intend to show that if P has no side of P -length

less than λ, then f is in the interior of P .

Consider the case when the maximal chord parallel to a4a5 has an endpoint at a1.

In this case the other endpoint of the above chord is on the segment a3a4. This and

dP (a4, a5) ≥ λ imply that the y-coordinate of the common point of L(a3, a4) and of the

line y = 0 is at least 1
1−τ

=
√

5. Therefore, as −1 ≤ m34, we get that f is in the open
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halfplane containing a1 bounded by L(a3, a4). Thus f is in the interior of P .

Consider the case when the maximal chord of P parallel to a4a5 has an endpoint at

a3. In this case dP (a4, a5) ≥ λ implies that ax
4 ≥ τax

3 . Since dP (a3, a4) ≥ λ, we have

ax
3 −ax

4 ≥ τ . Therefore ax
4 ≥ τ2

1−τ
. From dP (a2, a3) ≥ λ we get that a3 is not in the interior

of the homothetical copy of a1a2a5 with homothety ratio τ where the image of a1 is a2.

Take the points a′
4 = ( τ2

1−τ
, 1) and a′

3 = (1, 1 − τ). We omit an elementary calculation

which shows that f is in the open halfplane containing a1 bounded by L(a′
3, a

′
4). Thus f

is in the open halfplane containing a1 bounded by L(a3, a4). Therefore f is in the interior

of P .

We have shown that if P has no side of P -length less than λ, then f is in the interior

of P . But the definition of f and our inequalities for the coordinates of p imply that in

this case dP (p, a1) < λ.

Lemma 6. Let a1, . . . , a6 be points such that their convex hull Q is a quadrangle or a

triangle. Then among those points there exists a pair in Q-distance at most 1.

Proof. We show the statement of our lemma indirectly. We assume that among the points

a1, . . . , a6 there is no pair in Q-distance at most 1. Let us take a Cartesian coordinate

system. As the Q-distance of two points does not change under affine transformation, we

assume that the points a1, a2 and a3 are (0, 1), (0, 0) and (1, 0), respectively. Take the

point b(1, 1) and the square S = a1a2a3b. We choose the indices of our points such that

Q ⊂ S. Let us denote the homothetical copies of S with homothety ratio 1
2 and with

centers a1, a2, a3, b by S1, S2, S3, S4, respectively. Consider the center c of S, the center

b1 of the segment a1a2 and the center b2 of the segment a2a3. Observe that every point of

the triangle a1b1c is in Q-distance at most 1 from a1. Similarly, every point of the triangles

a2b2b1 and b2a3c is in Q-distance at most 1 from a2 and from a3, respectively. Notice that

there are no two points in the triangle b1b2c in Q-distance from each other greater than 1.

Thus b1b2c contains at most one of the points a4, a5, a6. Hence Q is a quadrangle. Let

a4 be the fourth vertex of Q. As dQ(a1, a4) > 1 and dQ(a3, a4) > 1, we have a4 ∈ S4.

Hence every point of S1 and S3 is in Q-distance at most 1 from a1 and a3, respectively.

Furthermore, S4 ∩ Q is covered by the homothetical copy of Q with homothety center a4
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and with ratio 1
2 . Thus, every point of S4∩Q is in Q-distance at most 1 from a4. Moreover,

b2cb1 contains at most one of the points a5 and a6, which is a contradiction.

Proof of Theorem 5. First, observe that if C is an affine regular pentagon, and if the six

points are its vertices and its center, then the minimal pairwise C-distance of the points is

λ. Take an arbitrary plane convex body C. Let p1, . . . , p6 be points of C. Let us denote

the convex hull of p1, . . . , p6 by C′. As C′ ⊂ C, the C′-distance of arbitrary two points

is greater than or equal to their C-distance. If C′ is a hexagon, from Theorem 3 we get

that among p1, . . . , p6 there is a pair in C′-distance at most 8− 4
√

3, which is less than λ.

With respect to Lemma 4 and Lemma 5, if C′ is a pentagon, then the minimal pairwise

C′-distance of the points is at most λ, with equality if and only if C′ is an affine regular

pentagon and the points are its vertices and its center. According to Lemma 6, if C′ is a

quadrangle or a triangle, then there exists a pair of points in C′-distance at most 1, which

is less than λ. We have proved the first statement of our theorem.

To prove the second statement, it remains to show that if C′ is an affine regular

pentagon and if the points are its vertices and its center, and if there is no pair of them in

a C-distance less than λ, then C = C′. Let us choose the indices of the points such that

C′ is the pentagon p1p2p3p4p5 and that p6 is the center of C′. Assume that C 6= C′. In

this case there exists a point q ∈ C, which is not a point of C′ and the convex hull D of q

and C′ is a convex hexagon. It is enough to deal with the case when D = p1p2p3p4p5q (the

proof of the other cases is analogous). But then dC(p6, p3) ≤ dD(p6, p3) < dC′(p6, p3) = λ.

41



������� �

Relative Distance and a Convex Body Packed

or Touched by its Homothetical Copies

Let A and B be convex bodies in a Euclidean n-space En. If A is a subset of B,

and if A contains a boundary point of B, we say that A touches the boundary of B from

inside. If the intersection of A and B is not empty but their interiors are disjoint, we say

that A and B touch each other. If the interiors of A and B have a common point, we

call them overlapping. If A1, . . . , Ak are mutually nonoverlapping convex bodies, and if

B is a convex body such that Ai ⊂ B for i = 1, . . . , k, then we say that B is packed by

A1, . . . , Ak, or that A1, . . . , Ak are packed into B.

In this chapter we investigate the connection between the existence of points in a

convex body in large relative distances, and the existence of large homothetical copies of

a convex body packed into, or touching the body. The idea of such a connection first

appeared in [8] and in [24]. Both papers deal with the case when some small number of

homothetical copies of a plane convex body C with equal positive homothety ratio are

packed into C. The case when k mutually nonoverlapping homothetical copies of C with

equal homothety ratio touch the boundary of C from inside is discussed in [27]. In [27]

the case when mutually nonoverlapping equal negative homothetical copies of C touch C

is also examined.

In this chapter first we prove the following connection between the relative distances

of k points of C and the ratio of k equal positive homothetical copies of C packed into C.

Theorem 6. Let C be a convex body in En and let k ≥ 2 be an integer. If C contains

k points in relative distances at least d, then we can pack C by its k homothetical copies

of ratio d
2+d . Vice-versa; if we can pack C by its k homothetical copies of a positive ratio

r < 1, then we can find k points in C in relative distances at least 2r
1−r .

The below Figure 17 illustrates our theorem.

Let rk(C) denote the greatest possible positive ratio of k homothetical copies of C

that can be packed into C. Simple compactness arguments show that for every convex

body C in En and for every integer k ≥ 2, the number rk(C) exist.
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Figure 17

Using the notion of the values dk(C) and rk(C) we can rewrite Theorem 6 in the

following form.

For every convex body C ⊂ En and for every integer k ≥ 2 we have

rk(C) =
dk(C)

2 + dk(C)
and dk(C) =

2rk(C)

1 − rk(C)
.

Recall that the infimum and the supremum of dk(C), where C runs over the family of

plane convex bodies, are denoted by dk(C) and by ek(C), respectively. Also remember the

notations dk(M) and ek(M) for the infimum and the supremum of dk(C), respectively,

where C runs over the family of centrally symmetric plane convex bodies. In Chapters 2

and 4 we have collected the results and conjectures regarding the values of dk(C), ek(C),

dk(M) and ek(M).

Let us denote by rk(C) and by sk(C) the infimum and the supremum of rk(C), re-

spectively, where C runs over the family of plane convex bodies. Similarly, let rk(M) and

sk(M) be the infimum and the supremum of rk(C), respectively, where C runs over the

family of centrally symmetric plane convex bodies. Compactness arguments show that

these infima and suprema are attained. Applying Theorem 6 we get a number of estimates

for the values of rk(C), sk(C), rk(M) and sk(M).

From d2(C) = 2 we have r2(C) = 1
2 . Moreover, from Proposition 1 we obtain d3(C) ≥

1
5 (2 + 2

√
6). Using Theorem 6 we get that r3(C) ≥

√

6
6 ≈ 0.4082. We have mentioned a

conjecture which says that d3(C) = 1
2
(1 +

√
5) ≈ 1.618 (see [23] or [24]). The example of

the regular pentagon P in the part of C shows that this value cannot be replaced by a

larger one.
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Figure 18

In Figure 18 we see three homothetical copies P1, P2, P3 of P and corresponding

centers p1, p2, p3 of homotheties. Observe that they can be moved step by step around P

so that the relative distance between pairs of them is always 1
2 (1 +

√
5). Having in mind

Theorem 6, instead of this we can say that P1, P2, P3 may be moved around such that

they touch themselves and the boundary of P all the time. In Figure 18 we first move p1

up to the lower end of the corresponding side of P . This means that P1 moves and makes

some space which permits to move P2. Simultaneously, p2 moves on the boundary of P .

Then we can move P3 and so on. We conclude that for the regular pentagon the relative

distance 1+
√

5
2 cannot be increased. According to Theorem 6 we can also say that for the

regular pentagon the homothety ratio
√

5
5

cannot be increased.

From Theorem 2 and from the convex pentagon shown in Figure 5 we have seen that

1.0787 ≈
√

5+1
3 ≤ d4(C) ≤

√
5 − 1 ≈ 1.2361. Thus we also have 0.3504 ≈ 1+3

√

5
22 ≤

r4(C) ≤ 3−
√

5
2

≈ 0.3820. From [8] and [24], and from the example of the square we see that

r5(C) = 1
3 . Moreover, Proposition 2 and the example of any triangle imply that r8(C) = 1

4 .

For k ≤ 4, from ek(C) = 2 we conclude that sk(C) = 1
2 . Thanks to [7] and the example

of the regular pentagon we have s5(C) = 3−
√

5
2 ≈ 0.3820. Theorem 5 and the example of

the regular pentagon imply that s6(C) = 9−
√

5
19

≈ 0.3360.

From d2(M) = 2 we get that r2(M) = 1
2
. From [26] and from the example of the

regular octagon we see that 0.4409 ≈ 4+
√

3
13 ≤ r3(M) ≤ 5+2

√

2
17 ≈ 0.4605. Thanks to [8]

and [24], and thanks to the example of the circle, we have r4(M) =
√

2−1 ≈ 0.4142. From

[8], from [24], and from the example of the square we have r5(M) = r6(M) = r7(M) = 1
3 .

In Chapter 4 we have seen that ek(M) = 2 for k ≤ 4. Thus we also have sk(M) = 1
3

for k ≤ 4. From [7] and from the example of the regular decagon we get that s5(M) =
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3−
√

5
2 ≈ 0.3820. Moreover, from [8] and from the example of the square we conclude that

sk(M) = 1
3 for k = 6, . . . , 9.

Theorem 6 appears in the joint paper [23] with M. Lassak.

To formulate our next theorem we introduce the concept of translative kissing number

H(C) of a convex body C ⊂ En. By H(C) we mean the maximal number of mutually

nonoverlapping translates of C touching C. Hadwiger [16] showed that for every plane

convex body its translative kissing number is always at least 6 and at most 8. Grünbaum

[15] proved that if C is a parallelogram, then H(C) = 8, and the translative kissing number

of every other plane convex body is 6.

We examine the following question. Let k be a fixed integer and let C ⊂ En be a

convex body. We are looking for the greatest possible number t such that there exist k

mutually nonoverlapping homothetical copies of C with homothety ratio t touching C. In

the second part of this chapter we prove the following theorem.

Theorem 7. For every convex body C ⊂ En and for every t ∈ (0,∞) the following

two conditions are equivalent:

(i) there exist k mutually nonoverlapping homothetical copies of C with homothety

ratio t touching C,

(ii) there exist k points in the boundary of 1
1+t

C + t
1+t

(−C) in pairwise C-distances

at least 2t
1+t .

In our proof we also conclude that our theorem remains true if we take disjoint ho-

mothetical copies in (i) and C-distances greater than 2t
1+t

in (ii).

We consider the consequences of our theorem only for the planar case. For every

t ∈ (0,∞) we denote by Ct the family of plane convex bodies that can be presented in the

form 1
1+t

C + t
1+t

(−C), where all C ∈ C are taken.

Let tk, where k ≥ 3, denote the greatest possible number such that for every plane

convex body C there exist its k mutually nonoverlapping homothetical copies with ratio

tk touching C. Analogously, let uk, where k ≥ 5, denote the greatest possible number such

that there exists a plane convex body C for which there are k mutually nonoverlapping
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homothetical copies of C with ratio uk touching C. Here, compactness arguments show

that the above maxima exist. Obviously, both {tk} and {uk} are nonincreasing sequences.

Using Theorem 7, we get a number of estimates for some values of tk and uk. These

estimates are collected in the following Corollary.

Corollary. We have t5 = t6 = 1 and 1
2 ≤ t7 ≤ 3

4 . Moreover, u5 = 1
2 (
√

5 + 1) ≈ 1.618,

u6 = u7 = u8 = 1, and for every integer s ≥ 2 we have u4s = 1
s−1 .

Other values of tk and uk are not determined. We have conjectured in Chapter 3 that

e9(C) = e9(M) = 4 sin(10◦) ≈ 0.6946, and that e10(C) = e10(M) = e11(C) = e11(M) = 2
3
.

From the proof of our corollary we will see that verification of these conjectures imply

u9 = 2 sin(10◦)
1−2 sin(10◦) and u10 = u11 = 1

2 .

In the remaining part of this chapter we are looking for large negative homothetical

copies of a convex body C with equal homothety ratio packed into C. Like in Theorem 7,

we prove a connection between the ratio of the above homothetical copies and the relative

distances of points in a convex body.

Proposition 3. Let C be an arbitary convex body in En, and let t ∈ (0, 1]. Denote by Ct

the set of points of C whose C-distance from every boundary point of C is at least 2t
1+t

.

Then the following two conditions are equivalent:

(i) there exist k mutually nonoverlapping homothetical copies of C with homothety

ratio −t packed into C,

(ii) there exist k points in Ct in pairwise C-distances at least 2t
1+t .

Analogously to the proof of Proposition 3, we can show the following.

If there exist k negative homothetical copies of C with ratio −t touching the boundary

of C from inside, then there are k points in the boundary of Ct in pairwise C-distances

at least 2t
1+t

, and vica versa, if there exist k points in the boundary of Ct in pairwise C-

distances at least 2t
1+t , then there are k negative homothetical copies of C with ratio −t

touching the boundary of C from inside.

Theorem 7, Corollary and Proposition 3 are presented in the paper [21].
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First we prove Theorem 6. In order to prove it we show Lemma 7, which implies

Lemma 8. Our theorem is an immediate consequence of Lemma 8.

Lemma 7. Let xy and ab be two parallel segments in En. Put d = 2(|xy|/|ab|). The two

segments being homothetical copies of the segment ab with homothety centers x and y, and

with the homothety ratio d
2+d

, have exactly one common point.

Proof. Denote by w the point of intersection of the straight lines containing segments xb

and ya (see Figure 19). We tacitly assume that the notation for a and b is taken such that

the segments intersect. Through w we provide the straight line parallel to the segment xy.

The intersections of this line with the segment xa is denoted by g, and with the segment

yb is denoted by h. Thus |gw|

|ab| = |wx|
|bx| = |wx|

|bw|+|wx| = ( |bw|

|wx| + 1)−1 = ( |ab|
|xy| + 1)−1.

Figure 19

Analogousy, |hw|

|ab| = ( |ab|
|xy| +1)−1. Consequently, for the homothety ratio ( |ab|

|xy| +1)−1 =

( 2
d

+ 1)−1 = d
2+d

, the common part of the images of the segments ab under homotheties

with centers x and y is just the point w.

Lemma 8. Let C ⊂ En be a convex body and let x, y be boundary points of C. For every

positive constant d ≤ 2 the following conditions are equivalent.

(i) dC(x, y) = d,

(ii) the homothetical copies of C with homothety centers x and y, and with ratio d
2+d

touch each other.

Lemma 8 follows from Lemma 7 when in the part of ab we take a longest segment

contained in C which is parallel to xy (see Figure 20). Observe that this way of proving

permits to avoid using arguments of separation of the two copies of C by a hyperplane.
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Figure 20

From the proof of Lemma 7 we see that only for the ratio d
2+d we get exactly one point

of the intersection of the two segments which are homothetical copies of ab. If the ratio

is smaller, then the intersection is empty. If it is greater, then the intersection contains

more than one point. So analogous equivalence like in Lemma 8 holds true if we have

the inequality dC(x, y) < d in (i) and the condition about nonempty intersection of the

interiors of the copies in (ii).

Proof of Theorem 7. First we show that (i) implies (ii).

Case 1, when t ∈ (0, 1). Let us assume that C1, . . . , Ck are mutually nonoverlapping

homothetical copies of C with homothety ratio t touching C. Denote by ci the center of

the homothety hi which maps C into Ci, for i = 1, . . . , k (see Figure 21). Let qi be a

common point of C and Ci.

Figure 21

As C and Ci are not overlapping, they have a common supporting hyperplane Hi

containing qi. Take the point pi of C for which hi(pi) = qi. Obviously, dC(ci, qi) =

tdC(ci, pi). Since there exist parallel supporting hyperplanes of C containing pi and qi (for

instance, h−1
i (Hi) and Hi), we get dC(pi, qi) = 2. That is, t(dC(ci, qi) + 2) = dC(ci, qi).

Thus, dC(ci, qi) = 2t
1−t

. It is easy to see that for every point z ∈ C we have dC(ci, z) ≥
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2t
1−t . Observe that the set of points whose C-distance from a point w ∈ En equals to

d is the boundary of the convex body w + d
2 (C − C). Hence ci is on the boundary of

C + t
1−t

(C − C) = 1
1−t

C + t
1−t

(−C).

Now we intend to show that dC(ci, cj) ≥ 2t
1−t for i, j ∈ {1, . . . , k}, where i 6= j. Let

us take a point r of C. Denote hi(r) by ri, for i = 1, . . . , k (see Figure 22). Apparently,

|rri| = (1 − t)|rci|. As the triangles rrirj and rcicj are similar, we conclude that |rirj | =

(1 − t)|cicj |. It was noted by Minkowski in [29] that for an arbitrary convex body C, if

x+C and y +C are overlapping, touching or disjoint, then x+ 1
2(C−C) and y + 1

2 (C−C)

are overlapping, touching or disjoint, respectively (we will apply this property a few times).

Thus, as Ci and Cj are not overlapping, we obtain that dC(ri, rj) ≥ 2t. Hence dC(ci, cj) ≥
2t

1−t .

Figure 22

Finally, let us take the homothety h with the homothety ratio 1−t
1+t and with the center

at the origin. Then h(c1), . . . , h(ck) are k points in pairwise C-distances at least 2t
1+t

on

the boundary of 1
1+tC + t

1+t(−C).

Case 2, when t = 1. Let p1 + C, . . . , pk + C be mutually nonoverlapping translates

of C touching C. Thanks to the mentioned result of [29], we see that p1, . . . , pk are

points in C-distance 2 from the origin. Hence they are on the boundary of C − C. This

result in [29] also implies that the pairwise C-distances of p1, . . . , pk are at least 2. Let h

denote the homothety with the center at the origin and with the homothety ratio 1
2
. Then

h(p1), . . . , h(pk) are k points on the boundary of 1
2C + 1

2 (−C) in pairwise C-distances at

least 1.

Case 3, when t ∈ (1,∞). Let C1, . . . , Ck be mutually nonoverlapping homothetical

copies of C with homothety ratio t touching C. Denote by ci the center of the homothety

hi that maps C into Ci, for i = 1, . . . , k. We omit a consideration analogous to that in
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Case 1 which shows that ci is on the boundary of C + 1
t−1 (C −C) = t

t−1C + 1
t−1 (−C). We

also omit a consideration that dC(ci, cj) ≥ 2t
t−1 for every i, j ∈ {1, . . . , k}, where i 6= j).

Let h denote the homothety with the center at the origin and with the negative homothety

ratio 1−t
1+t . Then h(c1), . . . , h(ck) are k points on the boundary of 1

1+tC + t
1+t(−C) in

pairwise C-distances at least 2t
1+t .

Observe that the considerations in all the three cases are revertible. Thus (ii) im-

plies (i). Also notice that analogous proof can be given if in (i) we write about disjoint

homothetical copies of C, and in (ii) about points in pairwise C-distances greater than

2t
1+t .

Proof of Corollary. Notice that for every r ∈ [−1, 1] and for every convex body C the

C-distance of arbitrary two points is equal to their [rC +(1− r)(−C)]-distance. Hence for

every t ∈ (0,∞), the C-distance of arbitrary two points is equal to their [ t
1+t

C+ 1
1+t

(−C)]-

distance. Thus, according to Theorem 7, tk is the maximal number such that the boundary

of every C ∈ Ctk
contains k points in pairwise C-distances at least 2tk

1+tk

. Similarly, uk is

the maximal number such that there exists C ∈ Cuk
whose boundary contains k points

in pairwise C-distances at least 2uk

1+uk

. We use the notation d = 2t
1+t . Thus t = d

2−d .

Observe that C1 = M. Furthermore, for every t ∈ (0,∞) we have M ⊂ Ct ⊂ C. Hence, if

the boundary of every plane convex body contains k points in pairwise relative distances

at least d, and if there exists a centrally symmetric plane convex body whose boundary

does not contain k points in pairwise relative distances greater than d, then tk = d
2−d

.

Analogously, if there exists a centrally symmetric plane convex body whose boundary

contains k points in pairwise relative distances at least d, and if there is no plane convex

body whose boundary contains k points in pairwise relative distances greater than d, then

uk = d
2−d . We apply these two statements a few times in the remaining part of the proof.

In [6] it is proved that the boundary of every plane convex body contains five points

in pairwise relative distances at least 1. It is easy to check that the boundary of the

parallelogram does not contain five points in pairwise relative distances greater than 1.

Therefore t5 = 1.

In [8] and in [24] it is observed that the boundary of every centrally symmetric plane

convex body contains six points in pairwise relative distances at least 1. As C1 = M, we
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get t6 ≥ 1. It is also observed in [8] that there is no centrally symmetric plane convex

body whose boundary contains six points in pairwise relative distances greater than 1.

Consequently, Theorem implies that there is no plane convex body that can be touched

by its six mutually disjoint translates. This means that there is no convex body that can

be touched by its six mutually nonoverlapping homothetical copies with homothety ratio

greater than 1. Hence u6 ≤ 1. Obviously t6 ≤ u6. Thus t6 = u6 = 1.

We have proved in Theorem 1 that the boundary of every plane convex body contains

seven points in pairwise relative distances at least 2
3
. Hence t7 ≥ 1

2
. We omit an elementary

consideration which shows that the boundary of the regular hexagon does not contain seven

points in pairwise relative distances greater than 6
7
. This gives the estimate t7 ≤ 3

4
.

In [7] it is proved that there exists no plane convex body whose boundary contains

five points in pairwise relative distances greater than
√

5−1. The value
√

5−1 is attained

for the regular pentagon and decagon. Therefore u5 = 1
2 (
√

5 + 1).

We have mentioned that the circumference of every plane convex body measured in

the metric dC(x, y) is at most 8 (see page 22). The example of the parallelogram shows

that for every integer s ≥ 2, we have u4s = 1
s−1 . Hence u8 = 1.

We see that u6 = u8 = 1. As the sequence {uk} is nonincreasing, we get u7 = 1.

Now we prove Proposition 3. Since its proof is analogous to the proof of Theorem 7,

we only sketch it.

Proof of Proposition 3. Consider a homothetical copy K of C with homothety ratio −t

packed into C. Denote by h the homothety which maps C into K, and let c be the center

of homothety. For the sake of simplicity let us assume that c is the origin. Then K = −tC.

Observe that for arbitrary sets A and B, and for arbitary r ∈ [0, 1], the set rA+(1−r)B is

contained in the convex hull of A∪B. Therefore C contains t
1+tC+ 1

1+t (−tC) = t
1+t (C−C).

That is, the C-distance of c and every boundary point of C is at least 2t
1+t . So c is in Ct.

We omit a consideration analogous to that in Theorem 7 that if −tC is not contained

in C, then c /∈ Ct.

Finally, take two arbitrary homothetical copies K1 and K2 of C with homothety ratio

−t. Let c1 and c2 be the centers of the homotheties which map C into K1 and K2,

51



respectively. Similarly like in Theorem 7, we observe that K1 and K2 do not overlap if

and only if dC(c1, c2) ≥ 2t
1+t .
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Almost Equidistant Points on the Sphere

Let Sn−1 denote the (n − 1)-dimensional unit sphere centered at the origin o of the

n-dimensional Euclidean space En, and let d ∈ (0, 2). It is an elementary exercise to

show that the number of points on Sn−1 having pairwise distances equal to d is at most

n + 1. Moreover, it follows from the paper [12] of Füredi, Lagarias and Morgan that

the number of points on the boundary of an n-dimensional convex body C having equal

pairwise C-distances is at most 2n.

Here we present a generalization of the above problem. A set P of points on Sn−1 is

called almost d-equidistant if among any three points of P there is at least one pair lying

in the Euclidean distance d. Rosenfeld [32] proved in a very elegant way that the maximal

number of almost
√

2-equidistant points on Sn−1 is 2n. In this chapter we prove a similar

result for almost d-equidistant points, where
√

2 < d < 2. Moreover, we prove that the

estimate 2n of Rosenfeld holds true also in a neighbourhood of
√

2. Finally we show an

analogous estimate for every d ∈ (0,
√

2). These theorems appeared in the joint paper [2]

with K. Bezdek. For the maximum cardinality of almost equidistant pointsets in various

Minkowski spaces see also the paper [3] of Bezdek, Naszódi and Visy.

Between the spherical distance and the Euclidean distance of two points on Sn−1 there

is a one-to-one correspondence (as usual, we measure the spherical distance between any

two points of Sn−1 by the length of the shortest geodesic arc connecting the two points).

Thus we can also measure the distance of points of an almost equidistant set on Sn−1 by

their spherical distance. Equivalently, we may also consider angles between unit vectors

of En.

First we prove the following theorem.

Theorem 8. For every d ∈ (
√

2, 2) and for every integer n ≥ 2 the number of almost

d-equidistant points on Sn−1 is at most 2n + 2.

The Euclidean distance between any two vertices of a regular n-dimensional simplex

inscribed in Sn−1 is equal to dn =
√

2n+2
n . Notice that

√
2 < dn < 2. Thus, if one takes
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the set V of 2(n + 1) vertices of two regular n-dimensional simplices inscribed in Sn−1,

then among any three vertices of V there is a pair lying in the Euclidean distance dn. This

shows that the upper bound 2(n + 1) in Theorem 8 is sharp.

In the second part of this chapter we prove the following statement.

Theorem 9. For every integer n ≥ 2 there exists a positive real number ε(n) such that

the maximum number of almost d-equidistant points on Sn−1, where |d −
√

2| ≤ ε(n), is

equal to 2n.

Observe that for the distance dn =
√

2n+2
n

introduced after the formulation of The-

orem 8 we have limn→+∞ dn =
√

2. As a result, the construction after the formulation

of Theorem 8 shows that limn→+∞ ε(n) = 0. Finally, if one takes two congruent copies

of a regular spherical (n − 1)-dimensional simplex of edge length d, where 0 < s ≤ dn−1,

then the 2n vertices of the two spherical simplices form an almost d-equidistant pointset

on Sn−1. This shows that the upper bound 2n in Theorem 9 cannot be improved.

In the last part of this chapter we give the following estimate about the maximum

cardinality of almost d-equidistant pointsets of Sn−1 for d ∈ (0,
√

2).

Theorem 10. For every d ∈ (0,
√

2) and for every n ≥ 2 the number of almost d-

equidistant points on Sn−1 is at most n2 + n − 2.

It is likely that the upper bound n2 + n− 2 of Theorem 10 can be improved for every

n ≥ 2. Moreover, for any “small” d > 0 we provide the following construction. Take a

regular spherical (n−1)-dimensional simplex of edge length d with vertices v1, . . . , vn−1, vn

on Sn−1. Then reflect vn about the (n − 2)-dimensional great-sphere of Sn−1 passing

through the vertices v1, . . . , vn−1, and denote by c the point obtained. Finally, let v∗
i

be the rotated copy of the point vi about the point c through the same angle for all

i ∈ {1, . . . , n} on Sn−1 such that the distance between vn and v∗
n is equal to d. It is easy

to check that the points c, v1, . . . , vn−1, vn, v∗
1 , . . . , v∗

n−1, v
∗
n form an almost d-equidistant

pointset of cardinality 2n + 1 on Sn−1.

Now we prove Theorem 8. In order to prove our statement we need the following

lemma which is a somewhat stronger version of the lemma from [32].
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Lemma 9. Let {x1, . . . , xm} be a set of m real numbers with the property such that there

exists y > 0 for which x1 ≥ −y, . . . xm ≥ −y and
∑m

i=1 xi = (m + s)y, where s ≥ 0. Then

m
∑

i=1

x3
i ≥ (m + 3s)y3.

Proof. If xi ≥ 0 for all i = 1, . . . , m, then the following well-known inequality holds true:

(1)
3

√

∑m
i=1 x3

i

m
≥
∑m

i=1 xi

m
.

From (1) it follows in a straightforward way that

m
∑

i=1

x3
i ≥ (

∑m
i=1 xi)

3

m2
=

(m + s)3y3

m2
≥ (m + 3s)y3.

Now, we proceed by induction on the number t of indices i for which xi < 0. If t = 0, then

we are done. If t > 0, then without loss of generality we may assume that x1 = −ly for

some l ∈ (0, 1]. We replace x1 by 0 in order to obtain m real numbers 0, x2, . . . , xm whose

sum is equal to (m + s + l)y. The induction hypothesis implies that

m
∑

i=2

x3
i ≥ [m + 3(s + l)]y3.

Thus, we get that

m
∑

i=1

x3
i =

(

m
∑

i=2

x3
i

)

− l3y3 ≥ [m + 3(s + l) − l3]y3 ≥ (m + 3s)y3.

This completes the proof of Lemma 9.

Proof of Theorem 8. The proof presented here follows the ideas of [32] with some necessary

modifications. First observe that any two points of Sn−1 lying in a Euclidean distance

greater than
√

2 are in a spherical distance greater than π
2
.

Let U = {u1,u2, . . . ,ur} be a maximal system of unit vectors in En with the prop-

erty that among any three vectors ui,uj,uk ∈ U there are two, for instance ui,uj with
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〈ui,uj〉 = cos α. We now consider the matrix A = (〈ui,uj〉 − cos α)r×r. Notice that

A = G− cos αE, where G = (〈ui,uj〉)r×r is the Grammian matrix assigned to the vectors

of U , and E is the matrix with entries being equal to 1, that is E = (1)r×r. Clearly,

U and E are positive semidefinite matrices. As cos α < 0, the matrix A is also positive

semidefinite. Since the rank of U is at most n, it is easy to check that the rank of A is at

most n+1 and so 0 is an eigenvalue of A with the multiplicity at least r− (n+1). As A is

positive semidefinite, all other eigenvalues of A are positive. Moreover, as the points (i.e.

vectors) of U ⊂ Sn−1 form an almost α-equidistant pointset, for all pairwisely different

i, j, k ∈ {1, . . . , r} we have aijajkaki = 0, where aij = 〈ui,uj〉 − cos α. Finally, notice that

the main diagonal entries of A are all 1−cos α. Thus, if I denotes the r×r identity matrix,

then the matrix B = A − (1 − cos α)I with the ij-entry bij , where 1 ≤ i, j ≤ r, has the

following properties:

(2) bii = 0 for all i = 1, . . . , r;

(3) −(1− cos α) is the smallest eigenvalue of B with the multiplicity at least r− (n+1);

(4) bijbjkbki = 0 for all triples 1 ≤ i, j, k ≤ r.

Let λ1, . . . , λn denote the eigenvalues of B. According to (3), we may assume that

λn+2 = . . . = λr = −(1 − cos α) and that λ1 ≥ −(1 − cos α), . . . , λn+1 ≥ −(1 − cos α).

Apparently, (2) implies that
r
∑

i=1

λi = trB = 0,

where trB denotes the trace of B. As an immediate result we get that

(5)

n+1
∑

i=1

λi = (r − n − 1)(1 − cos α).

Since trB3 =
∑

1≤i,j,k≤r bijbjkbki, (4) yields that tr B3 = 0. Notice that the eigenvalues

of B3 are λ3
1, . . . , λ

3
r. Consequently,

∑r
i=1 λ3

i = trB3 = 0. In other words, we have

(6)

n+1
∑

i=1

λ3
i = (r − n − 1)(1 − cos α)3.

Now we intend to use Lemma 9. Assume that r > 2(n+1). Introducing the notations

s = r − 2(n + 1) ≥ 1 and y = 1 − cos α > 0 we can rewrite (6) as follows:

n+1
∑

i=1

λi = (n + 1 + s)y.
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Thus, Lemma 9 implies that

n+1
∑

i=1

λ3
i ≥ (n + 1 + 3s)y3.

Finally, according to (6) we have

n+1
∑

i=1

λ3
i = (n + 1 + s)y3,

a contradiction. This completes the proof of Theorem 8.

Proof of Theorem 9. As the proof presented here is a properly modified version of the

proof of Theorem 8, we describe the major steps only without going into details.

Let U = {u1,u2, . . . ,ur} be a maximal system of unit vectors in En with the prop-

erty that among any three vectors ui,uj,uk ∈ U there are two, for example ui,uj with

〈ui,uj〉 = cos α, where |α − π
2
| ≤ ε(n) for a sufficiently small ε(n) > 0 that will be chosen

later. (Notice that as ε(n) > 0 is small, the angle α is close to π
2 and so cos α is close to

0.)

Assume that r > 2n. Then let A = (〈ui,uj〉)(2n+1)×(2n+1) be the Grammian matrix

assigned to the vectors u1,u2, . . . ,u2n+1. Clearly, A is positive semidefinite of rank at

most n and so 0 is an eigenvalue of A with the multiplicity at least (2n + 1) − n = n + 1,

and all other eigenvalues of A are positive. Finally, if I is the (2n + 1)× (2n + 1) identity

matrix, then the matrix B = A − I with the ij-entry bij , where 1 ≤ i, j ≤ 2n + 1, has the

following properties:

(7) bii = 0 for all i = 1, . . . , 2n + 1;

(8) −1 is the smallest eigenvalue of B with multiplicity at least n + 1;

(9) bijbjkbki is close to 0 for all 1 ≤ i, j, k ≤ 2n + 1 if ε(n) > 0 is sufficiently small.

Let λ1, . . . , λ2n+1 denote the eigenvalues of B. Thanks to (8), we may assume that

λn+1 = . . . = λ2n+1 = −1 and that λ1 ≥ −1, . . . , λn ≥ −1. From (7) we obtain that

(10)
n
∑

i=1

λi = n + 1.
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Since tr B3 =
∑

1≤i,j,k≤2n+1 bijbjkbki, (9) yields that tr B3 is close to 0 if ε(n) is sufficiently

small. That is,

(11)
d
∑

i=1

λ3
i is close to n + 1 if ε(n) is sufficiently small.

Finally, applying Lemma 9 with the choice y = 1, we get

(12)
n
∑

i=1

λ3
i ≥ n + 3.

As (12) clearly contradicts (11) for any sufficiently small ε(n), the proof of Theorem 9 is

complete.

Proof of Theorem 10. Let U = {u1, . . . , ur} be an almost d-equidistant pointset on Sn−1,

for a value d ∈ (0,
√

2). Let G be the graph defined on the points of U as vertices such

that two points of U are connected by an edge if and only if the distance between them is

equal to d. Finally, let f(n − 1) denote the maximum cardinality of almost d-equidistant

pointsets of Sn−1.

If the distance between any two points of U is equal to d, then it is easy to see that

r ≤ n and so we are done. Thus, we are left with the case when there are two points

of U , for instance u1 and u2 lying in a distance different from d. This means that there

is no edge of G between the vertices u1 and u2. Now, let U1 and U2 denote the sets of

the vertices of G that are not connected by an edge to the vertex u1 and u2, respectively.

Moreover, let U3 = U \ (U1 ∪ U2). As U is an almost d-equidistant pointset, the graphs G

restricted to U1 and U2 are complete graphs. Thus,

(13) card(U1) ≤ n and card(U2) ≤ n.

Finally, notice that the vertices of U3 are connected by an edge to u1 as well as to u2. As

a result, U3 lies on an (n − 2)-dimensional great-sphere of Sn−1. Hence,

(14) card(U3) ≤ f(n − 2).

Thus, (13) and (14) imply that

(15) r = card(U) ≤ 2n + f(n − 2).
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From (15) we immediately get that

(16) f(n − 1) ≤ 2n + f(n − 2).

Finally, (16) with f(1) = 4 completes the proof of Theorem 10.
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〈., .〉 the standard inner product of the Euclidean n-space En

bk(C) the greatest possible number d such that the convex body C contains k boundary

points in pairwise C-distances at least d

bk(C) the infimum of bk(C), where C runs over C

bk(M) the infimum of bk(C), where C runs over M

C the family of plane convex bodies

card(S) the cardinality of the set S

ck(C) the supremum of bk(C), where C runs over C

ck(M) the supremum of bk(C), where C runs over M

Ct the set of points of the convex body C whose C-distance from every boundary

point of C is at least 2t
1+t

Ct the family of the plane convex bodies that can be presented in the form 1

1+t
C +

t
1+t

(−C), where all C ∈ C are taken

dC(p, q) the C-distance of points p and q

dk(C) the greatest possible number d such that the convex body C contains k points

in pairwise C-distances at least d

dk(C) the infimum of dk(C), where C runs over C

dk(M) the infimum of dk(C), where C runs over M

dn the edge length of the n-dimensional regular simplex inscribed in the unit sphere

Sn−1 of En

ek(C) the supremum of dk(C), where C runs over C

ek(M) the supremum of dk(C), where C runs over M

En the n-dimensional Euclidean space

H(C) the translative kissing number of the convex body C

L(p, q) the line containing the points p and q

M the family of centrally symmetric plane convex bodies
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mx the x-coordinate of the point m or the vector ~m

my the y-coordinate of the point m or the vector ~m

pq the segment with endpoints p and q

|pq| the Euclidean length of the segment pq

rk(C) the greatest possible number r such that the convex body C can be packed by

its k homothetical copies of ratio r

rk(C) the infimum of rk(C), where C runs over C

rk(M) the infimum of rk(C), where C runs over M

sk(C) the supremum of rk(C), where C runs over C

sk(M) the supremum of rk(C), where C runs over M

Sn−1 the (n − 1)-dimensional unit sphere of the Euclidean n-space En

tk the greatest possible number t such that every plane convex body C can be

touched by k mutually nonoverlapping translates of tC

trM the trace of the matrix M

uk the greatest possible number t such that there exists a plane convex body C

that can be touched by k mutually nonoverlapping translates of tC
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almost d-equidistant points 3, 53

C-distance of points 2

C-distance of parallel lines 16

C-length of a segment 2

kernel of a convex pentagon 32

overlapping convex bodies 42

packing 42

relative distance of points 2

relative length of a segment 2

touching convex bodies 42

touching the boundary of a convex body from inside 42

translative kissing number 45
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[4] K. Böröczky and Z. Lángi, On the relative distances of six points in a plane convex

body, Stud. Sci. Math. Hungar., submitted

[5] H. S. M. Coxeter, M. G. Greening and R. L. Graham, Set of points with given maxi-

mum separation (Problem E 1921), Amer. Math. Monthly 75 (1968), 192-193.

[6] K. Doliwka, On five points in the boundary of a plane convex body pairwise in at least

unit relative distances, J. Geom. 53 (1995), 76-78.

[7] K. Doliwka and M. Lassak, On relatively short and long sides of convex pentagons,

Geom. Dedicata 56 (1995), 221-224.

[8] P. G. Doyle, J. C. Lagarias and D. Randall, Self-packing of centrally symmetric convex

bodies in R2, Discrete Comput. Geom. 8 (1992), 171-189.
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Let C ⊂ En be an arbitrary convex body, and let p, q ∈ En be arbitrary points. Take

a chord p′q′ of C parallel to pq such that there is no longer chord of C parallel to pq. The

C-distance dC(p, q) of points p and q is defined by the ratio of |pq| to 1

2
|p′q′|. If there is

no doubt about C, we may use the term relative distance of p and q.

In our dissertation we examine the pairwise C-distances of points of C. In the main

part we investigate the following problem. Let k ≥ 2. By dk(C) (resp., by bk(C)) we

denote the greatest possible number d such that the convex body C (resp., the boundary

of C) contains k points in pairwise C-distances at least d. Compactness arguments show

that for every k ≥ 2 and for every convex body C the above numbers exist. Let us denote

the infimum and the supremum of dk(C), where C runs over the family of plane convex

bodies by dk(C) and by ek(C), respectively. Moreover, let dk(M) and ek(M) denote the

infimum and the supremum of dk(C), where C runs over the family of centrally symmetric

plane convex bodies. We define the quantities bk(C), ck(C), bk(M), ck(M) analogously.

Using compactness arguments one can easily show that for every k ≥ 2 all the numbers

bk(C), ck(C), dk(C), ek(C), bk(M), ck(M), dk(M), ek(M) exist. In the dissertation we

determine the above defined eight numbers for some values of k. Moreover, we show general

estimates about dk(C) and dk(M). We also examine the connection between the existence

of k points of a convex body in large pairwise relative distances and the existence of large

mutually nonoverlapping homothetical copies of a convex body packed into, or touching

the body.

In the last chapter of the dissertation we deal with another problem. It is a well-known

fact that the maximal number of points on the (n − 1)-dimensional unit sphere Sn−1 of

En lying at equal pairwise distances is at most n+1. It is also proved that the cardinality

of a pointset on the boundary of a convex body C ⊂ En such that the pairwise relative

distances of the points are equal is at most 2n. A pointset P is called almost d-equidistant,

if among every three points of P there exists a pair in the distance d. In our dissertation we

find estimates about the maximal cardinality of almost d-equidistant pointsets on Sn−1.
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Legyen C ⊂ En egy tetszőleges konvex test, és legyenek p, q ∈ En tetszőleges pontok.

Vegyük C egy pq-val párhuzamos p′q′ húrját, amelynél nincs hosszabb pq-val párhuzamos

C-beli húr. A p és q pontok C-távolságát |pq|-nak 1

2
|p′q′|-vel vett hányadosaként definiáljuk,

és dC(p, q)-val jelöljük. Ha nyilvánvaló, hogy melyik C konvex testről beszélünk, a p és q

pontok relat́ıv távolsága elnevezést is használjuk.

A disszertációban C-beli pontok páronkénti C-távolságait vizsgáljuk. Főként a

következő probémával foglalkozunk. Legyen k ≥ 2. A dk(C) (ill. a bk(C)) jelölést

használjuk a lehetséges legnagyobb d számra, melyre igaz, hogy a C konvex test (ill. C

határa) tartalmaz k pontot, melyek páronkénti C-távolsága legalább d. Kompaktsági érvek

mutatják, hogy a fenti számok léteznek minden C konvex testre k minden lehetséges értéke

esetén. Jelöljük dk(C) infimumát és supremumát rendre dk(C)-vel és ek(C)-vel, ahol C

végigfut a konvex śıkidomok családján. Emellett jelöljük rendre dk(M)-mel és ek(M)-mel

dk(C) infimumát és supremumát, ahol C végigfut a középpontosan szimmetrikus konvex

śıkidomok családján. Hasonlóan definiáljuk a bk(C), a ck(C), a bk(M) és a ck(M) men-

nyiségeket. Kompaktsági érvek alapján könnyen megmutatható, hogy bk(C), ck(C), dk(C),

ek(C), bk(M), ck(M), dk(M) és ek(M) létezik k ≥ 2 minden értéke esetén. A dissz-

ertációban az előbb definiált számokat határozzuk meg k különböző értékei esetén. A

dk(C) és dk(M) mennyiségekre általános becslést is adunk. Emellett megvizsgáljuk egy

konvex testbeli, nagy páronkénti relat́ıv távolsággal rendelkező k pont létezésének kapcso-

latát azzal, hogy található-e egy konvex testnek a test köré vagy a testbe ı́rt, páronként

diszjunkt belsővel rendelkező nagy homotetikus arányú homotetikus képe.

A disszertáció utolsó fejezetében egy másik problémával foglalkozunk. Jól ismert tény,

hogy az n-dimenziós euklideszi tér egységgömbjén található, páronként egyenlő távolságra

levő pontok maximális száma n + 1. Ugyancsak bizonýıtott az az álĺıtás, hogy egy n-

dimenziós konvex test határán található, páronként egyenlő relat́ıv távolságra levő pontok

száma legfeljebb 2n. A P ponthalmazt majdnem egyenlő d távolságú pontok halmazának

h́ıvjuk, ha P bármely három eleme közül létezik kettő, melyek távolsága d. A dissz-

ertáció utolsó fejezetében becsléseket adunk az n-dimenziós euklideszi tér egységgömbjén

található, majdnem egyenlő d távolságú ponthalmazok maximális számosságára.
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