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Abstract. Erdős and Szekeres [5] made the conjecture that, for n ≥ 3, any
set of 2n−2 + 1 points in the plane, in general position, contains n points in
convex position. A computer-based proof of this conjecture for n = 6 appeared

in [9] of Peters and Szekeres. The aim of this paper is to give a partial proof
of the conjecture for n = 6, without the use of computers, for the special case
when the convex hull of the point set is a pentagon.

1. Introduction

In the early 1930s Esther Klein asked whether there is an integer N , for every
n ≥ 3, such that any planar set of N points in general position contains n points
in convex position. Paul Erdős and George Szekeres [5] showed the existence of
such an integer, and also that there is a solution satisfying N ≤

(

2n−4
n−2

)

+ 1. This
problem is well-known as the “happy ending problem”.

The task that arose naturally was to find the smallest value g(n) of cardS with
the mentioned property for each S. In [5], the authors made the following conjec-
ture.

Conjecture 1 (Erdős-Szekeres Conjecture). Let n ≥ 3. Then the smallest number
g(n) such that every planar set of g(n) points in general position contains n points
in convex position, is 2n−2 + 1.

In [6], Erdős and Szekeres constructed a planar set of 2n−2 points in general
position that does not contain n points in convex position. Presently, the best
known bounds are

2n−2 + 1 ≤ g(n) ≤

(

2n − 5

n − 2

)

+ 1.

The upper bound is due to G. Tóth and Valtr [10].
Another attempt is to verify the Conjecture for small values of n. Note that

three points in general position are in convex position. Thus, clearly g(3) = 3. The
value of g(4) was determined by Esther Klein in the early 1930s.

According to [9], Makai was the first to prove the equality g(5) = 9 but he
has never published his result. The first published proof appeared in 1970 in [7].
In 1974, Bonnice [2] gave a simple and elegant proof of the same result. In [1],
Bisztriczky and G. Fejes Tóth also mention an unpublished proof by Böröczky and
Stahl.

1991 Mathematics Subject Classification. 52A10, 52C35, 52B05.
Key words and phrases. happy ending problem, Erdős-Szekeres Conjecture, hexagon, convex
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The case n = 6 seems considerably more complicated. Bonnice [2] makes the
following comparison. In a set of nine points, we have

(

9
5

)

= 126 possibilities for
five points to be in convex position, whereas in a set of seventeen points, we have
(

17
6

)

= 12376 possibilities for six points to be in convex position.
For this case, a computer-based proof has been given recently by Peters and

Szekeres [9]. In their paper they used a computer to re-prove the case n = 5. They
remark that to prove the n = 5 case required less than one second “using a 1.5GHz
workstation”, whereas, for the case of convex hexagons, “the total computing time
. . . was approximately 3,000 GHz hours”. For other results related to the Erdős-
Szekeres Conjecture, the reader is referred to [3] or [8].

In this paper, we examine the n = 6 case of the Erdős-Szekeres Conjecture
without the use of computers. If S = {ai : i = 1, 2, . . . , k} is a finite point set in E

2,
we denote the convex hull of S by [S] or by [a1, a2, . . . , ak]. For S1, S2, . . . , Sk ⊂ E

2,
we set [S1, S2, . . . , Sk] = [S1 ∪ S2 ∪ . . . ∪ Sk]. By V (P ), we denote the vertex set of
the convex polygon P . Our main result is the following theorem.

Theorem 1. Let S ⊂ E
2 be a set of seventeen points in general position and

P = [S] be a pentagon. Then S contains six points in convex position.

We note that a different proof of the same statement appeared in the diploma
thesis [4] of one of the authors, Knut Dehnhardt, in 1981.

There are two known sets of sixteen points in general position that do not contain
the vertices of a convex hexagon: cf. [6] and pp. 331-332 of [3]. We note that in
both examples the convex hulls of the points are pentagons. We present the proof
of Theorem 1 in the next section. We note that, using the same tools, it may be
shown that every planar set of twenty five points in general position contains six
points in convex position. We observe also that, by Lemma 4, our proof yields that
if S ⊂ E

2 is a set of seventeen points in general position, P = [S] is a triangle
or a quadrangle, Q = [S \ V (P )] is a pentagon, and R = [S \ (V (P ) ∪ V (Q))] is
a triangle then S contains six point in convex position. Thus, according to the
classification of planar point sets introduced by Bonnice in [2], our proof yields
the Erdős-Szekeres Hexagon Conjecture for twenty four classes of point sets out
of seventy two. We remark that in [2] it is stated incorrectly that the number of
classes is seventy. The correct number (and the list of the classes) can be found,
for example, in [4].

Figure 1: A point b beyond exactly
two edges of P

In the proof, for two distinct points a, b ⊂
E

2, [a, b], L(a, b), L+(a, b), and L−(a, b) de-
note, respectively, the closed segment with
endpoints a and b, the line containing a

and b, the closed ray emanating from a and
containing b, and the closed ray emanating
from a in L(a, b) that does not contain b.
Furthermore, if s ≥ 3, P is a convex s-gon,
and a point b ∈ E

2 does not lie on any side-
line of P and is strictly separated from P

by exactly m sidelines of P , we say that b

is beyond exactly m edges of P (cf. Figure
1). If these sidelines are the lines passing
through the edges E1, E2, . . . , Em of P , we
may say that b is beyond exactly the edges
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E1, E2, . . . , Em of P . For simplicity, a k-
gon means a convex k-gon for every k ≥ 3,
and if a set contains six points in convex
position, we say that it contains a hexagon.

2. Proof of Theorem 1

We begin the proof with a series of lemmas.

Lemma 1. Let P and Q be polygons with Q ⊂ intP ⊂ E
2. Let X ⊂ V (P ) be a set

of points beyond exactly the same edge of Q. Then V (Q) ∪ X is a set of points in
convex position (cf. Figure 1).

Lemma 2. Let {Pi : i = 1, 2, . . . ,m} be a family of t triangles, q quadrangles, and
p pentagons such that p + q + t = m and M = [P1, P2, P3, . . . , Pm] be an m-gon
[x1, x2, x3, . . . , xm]. Suppose that [xi, xi+1] is an edge of Pi, and Pi and Pi+1 have
disjoint interiors for i = 1, 2, 3, . . . ,m. Let P0 be a k-gon that contains M in its
interior and assume that the points of W =

⋃m

i=0 V (Pi) are in general position. If
q + 2t < k then W contains a hexagon.

Figure 1

Proof. Let us denote by Xi the set of
points that are beyond exactly the edge
[xi, xi+1] of Pi, and observe that ev-
ery vertex of P0 is contained in Xi for
some value of i. If card(Xi ∩ V (P0)) +
card(V (Pi)) ≥ 6 for some Pi then the
assertion follows from Lemma 1 (cf.
Figure 2). Thus, we may assume that
card(Xi ∩V (P0)) is at most two if Pi is
a triangle, at most one if Pi is a quad-
rangle, and zero if Pi is a pentagon,
which yields that k = card(V (P0)) ≤
0 · p + 1 · q + 2 · t, a contradiction. �

We use Lemma 2 often during the proof with k = 5. For simplicity, in such cases
we use the notation P1 ∗ P2 ∗ . . . ∗ Pm.

Lemma 3. Let S ⊂ E
2 be a set of eleven points in general position such that

P = [S] is a pentagon, Q = [S \ V (P )] is a triangle, and [S \ (V (P ) ∪ {q})] is a
quadrilateral for every q ∈ V (Q). Then S contains a hexagon.

Proof. Note that as card S = 11, P is a pentagon, and Q is a triangle, R =
[

S \
(

V (P )∪ V (Q)
)]

is a triangle. Let Q = [q1, q2, q3] and R = [r1, r2, r3]. Observe
that for any i 6= j, the straight line L(ri, rj) strictly separates the third vertex of
R from a unique vertex of Q. We may label our points in a way that q1, q2, and
q3 are in counterclockwise cyclic order, and L(ri, rj) separates rk and qk for any
i 6= j 6= k 6= i. Let us denote by Qk the open convex domain bounded by L−(qk, ri)
and L−(qk, rj) for every i 6= j 6= k 6= i. For every i 6= j, let Qij denote the open
convex domain that is bounded by the rays L−(qi, rj), L−(qj , ri), and the segment
[qi, qj ] (cf. Figure 3).

Observe that if Q12 contains at least two vertices of P then these vertices together
with q1, q2, r1, and r2 are vertices of a hexagon. Similarly, if Q1∪Q13∪Q3 contains
at least three vertices of P , or Q2∪Q23∪Q3 contains at least three vertices of P then
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Figure 2 Figure 3

S contains a hexagon. Since P is a pentagon, we may assume that Q12 contains
one, Q1 ∪ Q13 and Q2 ∪ Q23 both contain two, and Q3 contains no vertex of P .
By symmetry, we obtain that S contains a hexagon unless card(Qi ∩ V (P )) = 0
and card(Qij ∩ V (P )) = 1 for every i 6= j. Since the latter case contradicts the
condition that P is a pentagon, S contains a hexagon. �

Lemma 4. Let S ⊂ E
2 be a set of thirteen points in general position such that

P = [S] is a pentagon and Q = [S \ V (P )] is a triangle. Then S contains a
hexagon.

Proof. Let q1, q2, and q3 be the vertices of Q in counterclockwise cyclic order and
let R = S \ (V (P ) ∪ V (Q)). Observe that cardR = 5. Using an idea of Klein and
Szekeres, we obtain that R contains an empty quadrilateral. In other words, there
is a quadrilateral U that satisfies V (U) ⊂ R and U ∩R = V (U). Let r1, r2, r3 and
r4 be the vertices of U in counterclockwise cyclic order, and let r be the remaining
point of R.

We show that if U has no sideline that separates U from an edge of Q then S

contains a hexagon. Indeed, if every sideline of U separates U from exactly one
vertex of Q then, by the pigeon-hole principle, Q has a vertex, say q3, such that at
least two sidelines of U separate U from it. This yields that there are two sidelines
passing through consecutive edges of U that separate U from only q3. Let these
edges be [ri−1, ri] and [ri, ri+1]. Then we have [q1, ri+1, ri, ri−1, q2] ∗ [q2, ri−1, q3] ∗
[q3, ri+1, q1]. Hence, we may assume that U has a sideline that separates U from an
edge of Q. Without loss of generality, let this sideline pass through the edge [r1, r2]
and let it separate U from [q1, q2].

Figure 4

For every 3 6= i 6= j 6= 3, let xi, yi, and
zi denote the intersection point of the segment
[qi, q3] with the line L(qj , rj), L(qj , ri), and
L(r1, r2), respectively, and let wi denote the in-
tersection point of [ri, q3] and L(qj , rj) (cf. Fig-
ure 4). If some point u ∈ R is beyond exactly
the edge [r1, r2] of [q1, q2, r2, r1] then we have
[q1, r1, u, r2, q2]∗ [q2, r2, q3]∗ [q3, r1, q1]. If u ∈ R

is beyond exactly the edge [r1, q3] of [q1, r1, q3]
then [q1, r1, u, q3] ∗ [q3, s, q2] ∗ [q2, r2, r1, q1] for
s = u or s = r2. Hence, by symmetry, we
may assume that r3, r4, and r are in one of
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the quadrangles [ri, wi, xi, zi] for i = 1 or 2, or
in [q1, q2, z2, z1].

Assume that r3 ∈ [r1, w1, x1, z1]. If L+(r4, r3)∩[q1, q3] 6= ∅ then [q3, r3, r4, r1, r2]∗
[r2, r1, q1] ∗ [q1, r3, q3]. If L−(r4, r3)∩ [q1, q3] 6= ∅ then [q1, r4, r3, r2, q2] ∗ [q2, r2, q3] ∗
[q3, r4, q1]. If L(r4, r3) ∩ [q1, q3] = ∅ then [q1, r1, r2, q2] ∗ [q2, r2, q3] ∗ [q3, r3, r4, q1].
Thus, we may assume that r3 ∈ [r2, z2, x2, w2]. Since r3 ∈ [r2, y2, z2] yields
[q3, r4, r1, r2, r3] ∗ [r3, r2, q1] ∗ [q1, r4, q3], we may assume that r3 ∈ [r2, w2, x2, y2],
and (by symmetry) that r4 ∈ [r1, w1, x1, y1].

Assume that r ∈ [r1, w1, x1, y1]. If [r1, r2, r4, r] is a quadrilateral then we may
apply an argument similar to that in the previous paragraph. Thus, we may
assume that r4 ∈ [r1, r2, r]. This yields [r, r4, r1, q1] ∗ [q1, r1, r2, q2] ∗ [q2, r3, q3] ∗
[q3, r3, r2, r4, r]. Hence, r ∈ [q1, q2, z2, z1].

If r ∈ [q1, r1, z1] then [q1, r, r1, r2, q2]∗ [q2, r2, q3]∗ [q3, r, q1]. Let r ∈ [q1, q2, r2, r1].
If L(q3, r4) does not separate q1 and r then [q1, r, q2] ∗ [q2, r1, r4, q3] ∗ [q3, r4, r, q1].
Otherwise, we may suppose that L+(r, r4) ∩ [q1, q3] 6= ∅. By symmetry, we obtain
also that L+(r, r3) ∩ [q2, q3] 6= ∅.

Assume that r ∈ [q1, r1, r2]. Then we observe that U ′ = [r, r2, r3, r1] is an empty
quadrilateral, and L(r, r2) separates U ′ from [q1, q2]. Since R∩ [q1, r, r2, q2] = ∅, an
argument applied for U ′, similar to that applied for U , yields a hexagon. Hence,
r ∈ [q1, r1, q2]∩ [q1, r2, q2]. Then L+(r3, r)∩ [q1, q2] 6= ∅ 6= L+(r4, r)∩ [q1, q2]. Now,
we apply Lemma 3 with V (P ) ∪ V (Q) ∪ {r3, r4, r} as S. �

Definition 1. Let A,B ⊂ E
2 be sets of points in general position. Suppose that

there is a bijective function f : A → B such that, for any a1, a2, a3 ∈ A, the
ordered triples (a1, a2, a3) and (f(a1), f(a2), f(a3)) have the same or the opposite
orientation, independently of the choice of a1, a2 and a3. Then we say that A and
B are identical.

We note that if A and B are identical then A′ ⊂ A is a k-gon if, and only if,
f(A′) is a k-gon.

Let S̃ be a set of less than thirteen points such that [S̃] is a pentagon, [S̃\V (S̃)] is

a triangle, and S̃ does not contain a hexagon. Using Lemma 4, we may characterize
the possible configurations for S̃\V (S̃). Lemma 5 summarizes our work. We sketch
its proof.

Lemma 5. Let S̃ ⊂ E
2 be a set of fewer than thirteen points in general position

such that [S̃] is a pentagon, Q = [S̃ \ V (S̃)] is a triangle, and S̃ does not contain a
hexagon. Then Q is identical to one of the sets in Figure 5.

Proof. Let the vertices of Q be q1, q2 and q3 in counterclockwise cyclic order, and
let R = S ∩ int Q. If cardR ≤ 2, the assertion readily follows. Let us assume that
cardR = 3 and that the vertices of [R] are r1, r2 and r3 in counterclockwise cyclic
order. By Lemma 3, we may assume that there is a sideline of R that separates
exactly two vertices of Q from R. Let this line be L(r1, r2), and let it separate q1 and
q2 from R. Note that if r3 ∈ [r1, r2, q3], the assertion follows by an argument similar
to that in the third paragraph of the proof of Lemma 4. Without loss of generality,
we may assume that L(q3, r1) separates r3 from q2. If L(q2, r1) separates r3 from
q3, then Q is a type 3b configuration. Otherwise Q is a type 3a configuration.

The proof for the case cardR = 4 is similar to the proof in the similar case, and
hence we omit it. �



6 K. DEHNHARDT, H. HARBORTH, AND Z. LÁNGI

Figure 5

This list helps us to exclude some other cases from our investigation. If a set
is identical to one of the sets in Figure 5, we say that its type is the type of the
corresponding set in the figure.

Lemma 6. Let S ⊂ E
2 be a set of seventeen points in general position such that

P = [S] is a pentagon and Q = [S \ V (P )] is a quadrilateral. Then S contains a
hexagon.

Proof. Consider a diagonal D of Q. By Lemma 4, we may assume that D divides
Q into two triangles that contain exactly four points of S in their interiors, and
both these triangles have to be either type 4a, 4b, or 4c. Let us observe that if
both triangles contain a pair of points such that the line passing through them does
not intersect D then these two pairs of points and the two endpoints of D are in
convex position. Hence, we may assume that, in at least one of the triangles, each
line passing through two points intersects D.

Since there is, in a type 4c set, no edge of the convex hull that meets all the lines
that pass through two of its points, we may assume that the set of the points in one
of the triangles is type 4a or 4b, and that D is the left edge of one of the triangles in
Figure 5. We observe also that configurations of type 4a or 4b are almost identical,
the only difference is that the line passing through the two points closest to the left
edge of the triangle intersects the bottom or the right edge of the triangle. Thus,
we may handle these two cases together if we leave it open which edge this line
intersects.

Figure 6

We denote our points as in Fig-
ure 6 with D = [q1, q2], and let
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L = L(r1, r2). Observe that L di-
vides the set of points, beyond ex-
actly the edge [q1, q2] of [q1, q2, q3],
into two connected components. If
a point p is in the component that
contains q1, respectively q2, in its
boundary then we say that p is
on the left-hand side, respectively
right-hand side, of L. Let B =
(Q ∩ S) \ [q1, q2, q3]. Observe that,
as card(Q ∩ S) = 12 and card(S ∩ [q1, q2, q3]) = 7, we have that cardB = 5 and
every point of B is either on the left-hand side or on the right-hand side of L. By
the pigeon-hole principle, there are three points of B that are on the same side of
L. Let us denote these points by s1, s2, and s3.

Assume that s1, s2, and s3 are on the left-hand side of L. Observe that if
L(si, sj) and [q1, r1] are disjoint for some i 6= j then [q1, si, sj , r1, r2, r3] is a hexagon.
Thus, we may relabel s1, s2, and s3 such that s3 ∈ [q1, r1, s2] ⊂ [q1, r1, s1]. This
yields that either [s1, s2, s3, q1] or [s1, s2, s3, r1] is a quadrilateral. If [s1, s2, s3, q1]
is a quadrilateral then [s1, s2, s3, q1] ∗ [q1, s3, r1, r2, r3] ∗ [r3, r4, q2] ∗ [q2, r1, s2, s1]. If
[s1, s2, s3, r1] is a quadrilateral then [s1, s2, s3, r1, q2] ∗ [q2, r4, r3] ∗ [r3, r2, r1, s3, q1] ∗
[q1, s2, s1].

Let s1, s2, and s3 be on the right-hand side of L. Observe that if L(si, sj) and
[q2, r1] are disjoint for some i 6= j then [q2, si, sj , r1, r2, r4] is a hexagon. Hence, we
may assume that s3 ∈ [q2, r1, s2] ⊂ [q2, r1, s1]. Then [s1, s2, s3, q2] or [s1, s2, s3, r1] is
a quadrangle. If [s1, s2, s3, q2] is a quadrilateral then [s1, s2, s3, q2]∗[q2, s3, r1, r2, r4]∗
[r4, r2, q1] ∗ [q1, r1, s2, s1]. If [s1, s2, s3, r1] is a quadrilateral then [s1, s2, s3, r1, q1] ∗
[q1, r2, r4] ∗ [r4, r2, r1, s3, q2] ∗ [q2, s2, s1]. �

Lemma 7. Let S ⊂ E
2 be a set of points in general position such that P = [S] and

Q = [S \V (P )] are pentagons, and S \ (V (P )∪V (Q)) has a subset of type 3a, or a
subset identical to the point set in Figure 8, 9, or 10. Then S contains a hexagon.

Proof. Let R denote the subset of S \ (V (P )∪V (Q)) that is either of type 3a, or is
identical to the point set in Figure 8, 9 or 10. Let q1, q2, q3, q4, and q5 denote the
vertices of Q in counterclockwise cyclic order.

Figure 7 Figure 8
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Assume that R is of type 3a. Let us denote the points of R as in Figure 7. Let
R12, R23, and R13 denote, respectively, the set of points that are beyond exactly the
edge [r1, r2] of [r2, t2, t3, r1], the edge [r2, r3] of [r2, t1, t3, r3], and the edge [r1, r3] of
[r1, t3, r3]. If card(R12∩V (Q)) ≥ 2, card(R23∩V (Q)) ≥ 2, or card(R13∩V (Q)) ≥ 3
then S contains a convex hexagon. Otherwise, there is a vertex qi of Q in the convex
domain bounded by the half-lines L−(r2, t1) and L−(r2, t2), from which we obtain
[r1, t1, r2, qi] ∗ [qi, r2, t2, r3] ∗ [r3, t3, r1].

Let us assume that R is the set in Figure 8 and denote the points of R as
indicated. Let R12, R23, and R13 denote, respectively, the set of points that are
beyond exactly the edge [r1, r2] of [r1, t1, t2, r2], the edge [r2, r3] of [r2, t2, r3], and
the edge [r1, r3] of [r1, t1, r3]. If card(R12 ∩ V (Q)) ≥ 2, card(R23 ∩ V (Q)) ≥ 3, or
card(R13 ∩ V (Q)) ≥ 3 then S contains a hexagon. Hence, we may assume that
q1 ∈ R12, {q2, q3} ⊂ R23, {q4, q5} ⊂ R13, and there is no vertex of Q in R23 ∩ R13.
If L(q1, r4) does not intersect the interior of [R] then the convex hull of [t1, t2, r2, r1]
and [r4, q1] is a hexagon.

Let r4 ∈ [q1, r1, r2]. If L(r4, r1) does not separate q5 and q1, and L(r4, r2) does
not separate q2 and q1 then [q1, r4, r2, q2]∗[q2, r2, t2, r3]∗[r3, t1, r1, q5]∗[q5, r1, r4, q1].
Thus, we may assume that, say, L(r4, r1) separates q5 and q1. If L(r2, r3) separates
q4 and R then [q4, r3, r2]∗ [r2, t2, t1, r1]∗ [r1, t1, r3, q4]. If L(r2, r3) does not separate
q4 and R then [r4, r2, r3, q4, q5, r1] is a hexagon.

Assume that R is the set in Figure 9 and denote the points of R as indicated.
We may clearly assume that there is no vertex of Q beyond exactly the edge
[r1, r2] of [r1, r2, t2, t3, t1]. Hence, there is an edge, say [q1, q2], that intersects both
rays L−(r1, t1) and L−(r2, t2). If L(r1, r2) separates R from both q1 and q2 then
[q1, r1, r2, q2] ∗ [q2, r2, t2, r3] ∗ [r3, t2, t1, r4] ∗ [r4, t1, r1, q1]. Hence, we may assume
that L(r1, r2) does not separate R, say, from q2. If L(t2, t3) does not separate r2

and q2 then [r1, r2, q2, t2, t3, t1] is a hexagon. If L(t2, t3) separates r2 and q2 then
[q1, r2, q2] ∗ [q2, t2, t3, r4] ∗ [r4, t1, r1, q1].

We are left with the case when R is the set in Figure 10 with points as indicated.
Let R12, R23, R34, and R14 denote, respectively, the set of points that are beyond
exactly the edge [r1, r2] of [r1, r2, t2, t1], the edge [r2, r3] of [r2, t2, t3, r3], the edge
[r3, r4] of [r3, t3, t1, r4], and the edge [r1, r4] of [r4, t1, r1]. If card(Ri(i+1)∩V (Q)) ≥ 2
for some i ∈ {1, 2, 3} then S contains a hexagon. Otherwise, R14 contains at least
two vertices of Q, which we denote by q1 and q2. If both q1 and q2 are beyond exactly
the edge [r1, r4] of [r1, t2, t3, r4] then [t2, t3, r4, q1, q2, r1] is a hexagon. Thus, we may
assume that, say, q1 is beyond exactly the edge [r3, r4] of [r3, t3, r4]. From this, it
follows that [r3, t3, r4, q1] ∗ [q1, r4, t1, r1] ∗ [r1, t1, t2, r2] ∗ [r2, t2, t3, r3]. �

Proof of Theorem 1. Let Q = [S \ V (P )], R = [S \ (V (P ) ∪ V (Q))], and T =
S \ (V (P ) ∪ V (Q) ∪ V (R)). If Q is a triangle then we apply Lemma 4. If Q is a
quadrilateral, we apply Lemma 6. Let Q be a pentagon. If R is a triangle then, by
Lemma 5, V (R)∪T has type 4a, 4b or 4c, and thus, it contains a type 3a subset, and
the assertion follows from Lemma 7. If R is a quadrilateral then V (R)∪T contains
a subset identical to the set in Figure 8, 9, or 10, and we may apply Lemma 7.

Let R be a pentagon. We note that T contains two points, say, t1 and t2.
Let q1, q2, q3, q4, q5, and r1, r2, r3, r4, r5

denote, respectively, the vertices of Q

and R in counterclockwise cyclic order.
If some qi is beyond exactly one edge
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Figure 9 Figure 10

of R then [R, qi] is a hexagon. Thus,
we may assume that every vertex of
Q is beyond at least two edges of R.
Observe that there is no point on the
plane that is beyond all five edges of
R. If some qi is beyond all edges of
R but one, say [r1, r5], then we obtain
[r1, r2, r3, r4, r5] ∗ [r5, r4, qi] ∗ [qi, r2, r1].
Hence, we may assume that every ver-
tex of Q is beneath at least two edges
of R.

For 1 ≤ i ≤ 5, let Ri denote the
set of points that are beyond the two
edges of R that contain ri and beneath
the other three edges of R, and let Ri(i+1) denote the set of points that are beyond
the edges of R that contain ri or ri+1, and beneath the other two edges of R (cf.
Figure 11). We call R(i−1)i and Ri(i+1) consecutive regions.

Assume that two distinct and nonconsecutive regions contain vertices of Q, say,
qk ∈ R51 and ql ∈ R23. Since every vertex of Q is beneath at least two edges of
R, qk and ql are distinct points. If there is a vertex qh of Q in R34 ∪ R4 ∪ R45

then [ql, r3, r4, qh] ∗ [qh, r4, r5, qk] ∗ [qk, r1, r2, ql]. Let V (Q) ∩ (R34 ∪ R4 ∪ R45) = ∅.
Then exactly one edge of Q intersects R34 ∪ R4 ∪ R45. Let us denote this edge
by [qm, qm+1]. If qm ∈ R23 then [qm+1, r4, qm] ∗ [qm, r2, r1] ∗ [r1, r2, r3, r4, qm+1].
Let qm ∈ R3 and, by symmetry, qm+1 ∈ R5. If there are at least three vertices of
Q in R2 ∪ R23 ∪ R3 or in R1 ∪ R15 ∪ R5 then V (Q) ∪ V (R) contains a hexagon.
Hence, we may assume that a vertex qg of Q is in R12. Since every vertex of Q

is beneath at least two edges of Q, the sum of the angles of R at r1 and r2 is
greater than π, which implies that L(r1, r2) separates R and qg. Thus, we have
[qg, r2, r3, qm] ∗ [qm, r4, qm+1] ∗ [qm+1, r5, r1, qg].

Assume that two consecutive regions contain vertices of Q, say qk ∈ R51 and
ql ∈ R12. If V (Q) ∩ (R23 ∪R34 ∪R45) 6= ∅ then we may apply the argument in the
previous paragraph. Let V (Q)∩ (R23∪R34∪R45) = ∅. If at least four vertices of Q

are beneath the edge [r3, r4] of R then these vertices, together with r3 and r4, are
six points in convex position. Hence, we may assume that R3∪R4 contains at least
two vertices of Q. Let us denote these vertices by qe and qf . If qe, qf ∈ R3 then
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[r1, r2, qe, qf , r4, r5] is a hexagon. Thus, we may clearly assume that, say, qe ∈ R3

and qf ∈ R4. Then we have [ql, r2, r3, qe]∗[qe, r3, r4, qf ]∗[qf , r4, r5, qk]∗[qk, r5, r1, ql].
Assume that Ri(i+1) contains a vertex of Q for some i, say q1 ∈ R51. By the

preceeding, no vertex of Q is in R12 ∪ R23 ∪ R34 ∪ R45. An argument similar
to that used in the previous paragraph yields the existence of a hexagon if R2,
R3, or R4 contains no vertex of Q. Let qk ∈ R2, ql ∈ R3, and qm ∈ R4. Then
[q1, r1, r2, qk] ∗ [qk, r2, r3, ql] ∗ [ql, r3, r4, qm] ∗ [qm, r4, r5, q1].

Figure 12

We have now arrived at the case
that each vertex of Q is beyond ex-
actly two edges of R. Clearly, we
may assume that qi ∈ Ri for each
i. If L(t1, t2) intersects two con-
secutive edges of R then S contains
a hexagon. Hence, we may assume
that, say, L+(t1, t2) ∩ [r2, r3] 6= ∅ and
L−(t1, t2) ∩ [r5, r1] 6= ∅ (cf. Fig-
ure 12). If both q1 and q2 are
beyond exactly the edge [r1, r2] of
[r1, t1, t2, r2] then we have a hexagon.
If neither point is beyond exactly that
edge then [q1, r1, r2, q2] ∗ [q2, r2, t2, r3] ∗
[r3, t2, t1, r5] ∗ [r5, t1, r1, q1]. Thus,
we may assume that q1 is beyond
exactly the edge [r1, r2] and q2 is
not. If q5 is beyond exactly the
edge [r4, r5] of [r4, r5, t1, t2, r3] then
[q5, r5, t1, t2, r3, r4] is a hexagon. Hence, we may assume that q5 is beyond ex-
actly the edge [r1, r5] of [r1, t1, r5] and, similarly, that q3 is beyond exactly the
edge [r2, r3] of [r2, t2, r3]. From this, we obtain that [q3, r3, r4, q4] ∗ [q4, r4, r5, q5] ∗
[q5, r5, r1, q1] ∗ [q1, r1, r2, q2] ∗ [q2, r2, t2, r3, q3]. �
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Sci. Budapest. Eötvös Sect. Math. 3–4 (1960/61), 53–62.
[7] J. D. Kalbfleisch, J. G. Kalbfleisch and R. G. Stanton, A combinatorial problem on convex

n-gons, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing (Louisiana

State Univ., Baton Rouge, La., 1970), 180–188.
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