and one point a inside of the triangle ajazas. The second con-
figuration consists of four points by, by, b3, b4 on the boundary
of the pentagon.
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Let C be a convex body in Euclidean plane E2. By the C-
distance distc(z,y) of points z,y € E? we understand the
ratio of the Euclidean distance |zy| of z and y to the half
of the maximum distance of points @ and b in C such that
the segments zy and ab are parallel (see [3]). When there

is no doubt about the body C, we also use the term relative
distance.

From (2] and [3] we know that every centrally-symmetric
planar convex body contains four points in relative distances
at least /2. Analogical question about four far points in an
arbitrary planar convex body seems to be difficult. Here is our
conjecture.

CONJECTURE. Every planar convex body contains four
points in paiwise relative distances at least v/5 — 1.

This value is attained for C' being the pentagon a}a;aza)as
such that the triangle aja%a; is isosceles with Zasaza; = %
and such that the quadrangle alayaza} is a rectangle with
laraz| = (V5 + 1)|a;1a}| (see Fig. 1).

There are two configurations of four points in pairwise
relative distances at least v/5 — 1 here. The first configuration
consists of three points a;, az, as on the boundary of the body
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Figure 1

Analogical approach is developed in the proof of Theorem.
If the shape of the body is somehow ”similar” to a triangle,
the first kind of configuration gives larger relative distances of
points, and if not, then the second kind of configuration. ‘

Let us add that the papers [1] and [3] consider a.na.logwal
question about a few points in possibly large C-distance in a
convex body C C E? while [2] concentrates on the situation
when C is centrally-symmetric. .

By the C-distance of two parallel lines we mean the min-
imum C-distance of two points from those lines, respectively.

It is easy to see that the C-distance of two parallel lines is

nothing else but the ratio of the width of the strip between
those lines to the half of the width of C in the perpendicular
direction.

Whenever we say about the distance of points, we mean
the Euclidean distance.

THEOREM. Every planar convex body C contains four
points in pairwise C-distances at least %(\/5 +1).

Proof. Consider a triangle T' = ajaza3 of the largest possible
area inscribed in C. Since the C-distance of points does not
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change under affine transformations, we may assume that 7" is
a regular triangle of sides of length 2 (see Fig. 2). During the
proof it is convenient to imagine the direction of the side asas3
as horizontal.

Figure 2

From the maximality of the area we conclude that the
straight lines through the vertices parallel to the opposite sides
of T are supporting lines of C. By T” we denote the triangle
bounded by the above supporting lines. Consider the smallest
positive homothetic image T of T" which contains C. Here A
denotes the ratio of the homothety which transforms 7" into
T. The intersection of the triangles T\ and 7" is a hexagon
H = hyhahazhghshg. The notation is chosen such that a; €
hihs, az € hshy, az € hshe. We denote the common value
of |agh4| and |hsas| by z, the common value of |azhg| and
|hia1| by z2, and the common value of |ajhz| and |hszas| by
z3. Clearly, A = %(221 + 2 + x3) + 1.

Since C C H, in order to find four points of C in pairwise
C-distances at least »31-(\/5-{-1) it is sufficient to find four points
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of C in pairwise H-distances at least 3(v/5 +1).

We intend to show that the pairwise H-distances of ai,
as, a3 are over %—(\/5 + 1). Consider the three triangles T1,
T, T3 which are copies of 7" under homotheties of centers at
the vertices of 7" and ratio 1. The sides of T" are of length
4, and since A < § (see [4]), the sides of T) are of length at
most 5. As H is contained in T, we conclude that among 711,
T, and T3 there exists at most one such that H has a point
in its interior. Thus, the maximal chords of H parallel to the
sides of T are of lengths at most % Since the sides of T' are of
length 2, we see that the H-distances of the vertices of 1" are
at least %, and thus over %(\/g +1).

Case 1, when A < 3v/5 —5.

Let S be the triangle bounded by segments connecting the
centers of sides of T. As S is a homothetic image of T of ratio
—1, it is a homothetic image of T of ratio —1A. Denote by a
the center of the homothety that transforms T into S. Denote
the images of the points a1, a2, a3 by s1, s2, $3, respectively.
The segments a;51, azs2, azss intersect at a.

We show that @ € C. If SNT = 0, then T) has a side
which does not intersect 7 which means that C' does not in-
tersect this side of T, contrary to the definition of Tx. So the
intersection of T' and S is not empty. This and the description
ofagivea€TNS. Since T C C, we get a € C.

Of course, ,2—:‘ = %/\ fori=1, 2, 3. We omit a calculation

which shows that m'%'ﬁ%“;' = ,_,% for i = 1,2,3. Thus the H-

distances of a from the points a1, as, as are at least 5.
Hence, those H-distances, and thus also C-distances are at

least m = %(\/E—F 1).

The pairs of points a;, a3, a3 are also in C-distances at
least %(\/5 + 1) as explained earlier. So the points a,, ag, as,
a of C are in pairwise C-distances at least VB +1).
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Case 2, when A > 35 — 5.

We do not make our proof narrower assuming that z; <
T2 < T3.

Denote by ¢; a point of the body C on the side hyhs of
the hexagon H, by co the common point of segments ash; and
arhg, by c3 the common point of segments a;hs and ash,.
From the convexity of C' we conclude that the hexagon G =
ai1csasciasce is a subset of C.

Before Case 1 we have explained that the H-distance of as
and as is over %(\/5 +1). Thus there is a horizontal segment S}
whose endpoints are on the segments ayc; and azc; in the H-
distance %(\/3 +1). We omit a tedious calculation that under
the assumption of Case 2 there is also a horizontal segment
S, whose endpoints are on the segments a;c; and a;c; in the
H-distance 2(v/5 +1).

We see that the four endpoints of the segments S; and S,
belong to G and thus to C.

We intend to show that they are in pairwise H-distances
atleast 1(v/6+1). Thus it remains to show that the H-distance
l of the lines L; and L, containing the segments S; and S, is
at least 1(v5+1).

We wish to check the behavior of the H-distance [ in de-
pendence on z2 and z3, but under the condition that z; and
zo + 3 are fixed.

Since the opposite sides of H are parallel, we conclude that
the longest horizontal segment in H is of length 2 4 z,. As
Zo +x3 is fixed, the value 2 4z, is maximal for £, = z3. From
this and from the fact that the H-distance of the endpoints
of S; is fixed for i = 1 and i = 2 we get that |S;| = |Ss| is
maximal for z2 = z3. So the distance d; of the line L, and
the line through ay and ag is minimal for zo = x3.

Denote by p; and ps the points of the intersection of the
line through a; and az with the lines through a,, hs, and
through a1, he. An elementary calculation gives |pops| =

4 4 _ . . . . . .
5oy + 7om; 2. This expression is minimal for z, = z3.
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Consider the distance dz of the line L2 and the line through a,
and a3. As |S;| is maximal and |peps3| is minimal for z; = z3,
from the triangle a;p;p3 we see that d is minimal for z, = x3.
Remember that also d; is minimal for z2 = x3. Therefore the
distance between the straight lines Ly and L is minimal for
xzs = x3. Since the distance of the horizontal lines through
a; and ¢; does not change, we conclude that ! is minimal for
T2 = XT3,

It remains to consider the case when zo = x3. We in-
tend to show that [ > %(\/5 + 1). We omit a time consum-
13% calculation which shows that the distance of L, and L4 is

3(2421)(2(5—v5)+ 2H(VE+1)% - 572). As the width of H
in the direction parallel to the lines L; and L is 3@(2 + ),
wegetl=1(56-v5)+3(VE+1)%. —2;—21 When z2 decreases
and z; increases, then [ decreases. Hence it is minimal for
T = Xq.

We see that the worst case is when z3 = o = 3. Thus
now A = 3z, + 1. By the assumption of Case 2 we have
A>3v5—5,and by [4] we have A < 2. So 25 —4 <z < 1.
From the preceding calculation we get that now | = 1(5 —

VB) = (VB4 1)g - BE = 1114 5VE) - §(VE+1)-2v2-

(—21\7——2 + ;21%_5—2) The form of the expression in the parenthesis
shows that [ is always at least the minimum of its values at the
ends of the interval [24/5—4, 1] in which z, changes. Thus it is
always at least %(\/5 +1). We conclude that the four endpoints
of the segments S; and S, are in pairwise H-distances at least
25 +1). Since C C H, their C-distances are also at least

this number. |

The endpoints of the segments S; and S; in Case 2 of the
above proof are usually not in the boundary of C. But if we
prolong the segments S;, Sz up to the intersection with the
boundary of C, we obtain four boundary points by, b,, bs, by
in the pairwise C-distances at least 2(v/5 +1).
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This is the second installment of an essay [Soi7] that started in the
previous issue. We will look here at polychromatic number of the
plane, notion of the type of coloring, and 6-colorings of the plane.

3. POLYCHROMATIC NUMBER OF THE
PLANE

When a great problem withstands all assaults, mathematicians
create many related problems. It gives them something to solve :-).
Sometimes there is a real gain in this process, when an insight into
a related problem brings new ways to conquer the original one.
Numerous problems were posed around the chromatic number of
the plane. 1 would like to share with you my favorite among thein.

It is convenient to say that a colored set § realizes distance d if S
contains a monochromatic segment of length d.

Our knowledge about this problem starts with the celebrated 1959
book by Hugo Hadwiger ([HD2], and consequently its translations
[HD3] and [HDK]). Hadwiger reported in the book that he had
received a 9/9/1958 letter from the Hungarian mathematician A.
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