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We study relation varieties, i.e. classes of relational sets (resets) of the same type that
are closed under the formation of products and retracts. The notions of an irreducible
reset and a representation of a reset are defined similarly to the ones for partially ordered
sets. Wé give a characterization of finite irreducible resets. We show that every finite
reset has a representation by minimal resets which are certain distinguished irreducible
retracts. It turns out that a representation by minimal resets is a smallest one in some sense
among all representations of a reset. We prove that non-isomorphic finite irreducible resets
generate different relation. varieties. We characterize categorical equivalence of algebras
via product and retract of certain resets associated with the algebras. In the finite case
the characterization involves minimal resets. Examples are given to demonstrate how the
general theorems work for particular algebras and resets.

0. Introduction

In [5] Duffus and Rival define the notions of an order variety, a representation of
‘a poset and an irreducible poset. Their definitions carry over to arbitrary relational
sets (resets). It is natural to ask whether some nice properties involving those
< notions remain valid for arbitrary relational sets. In the present paper we give
an affirmative answer to this question by generalizing the results and developing
the ideas given for posets in [15]. The main emphasis, just as in [15], is on finite
structures, although some results remain valid in the infinite case.

In Sec. 1 we generalize the results in [15] to arbitrary relational sets. We give
a characterization of membership in a relation variety. We also characterize irre-
ducible relational sets. We define minimal resets of a reset and show that they
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yield a representation of the reset. A representation by minimal resets turns out
to be a smallest one in the obvious sense. We get that two nonisomorphic finite
irreducible resets generate different relation varieties. The characterizations and
proofs are based on the key notions: nonextendible colored reset and, in the finite
case, obstruction.

In Sec. 2 we describe categorical equivalence of algebras on the relational side.
In the finite case minirnal resets play a crucial role in this description. We apply the
general theory developed here to finite, arithmetical, congruence primal algebras.
We determine the irreducible resets in a certain finite relation variety associated
with any finite, arithmetical, congruence primal algebra. As a consequence we
get a new proof of a theorem of Bergman and Berman [2] concerning categorical
equivalence between finite, arithmetical, congruence primal algebras. Some other
applications are also mentioned. '

1. Relation Varieties and Irreducible Resets

Throughout the present paper we work with relational sets, sets equipped with
(possibly infinitary) relations. For brevity, a relational set is called a reset. We
use the same boldface and slanted capital letters to denote a reset and its base set,
respectively. If Q = (Q, (r§)ses) and P = (P, (r%)ses) are resets of a fixed type
then we write f : Q — P if f is a morphism from Q to P, meaning that f preserves
each relation of Q, i.e. if (as)ter € & then (f(at))ter € rp for each s € 5. A reset
Q = (@, (rh)ses) is a subreset of P = (P, (r)ses) f Q C P and 1y = rp |g for
all s € S. We say that a reset Q is contained in P if Q C P and rg & % |g for all
s € S. If Q is contained in P we write Q C P.

Let P and Q be resets of the same type. A pair (Q, f) is called a P-colored reset
if f is a partially defined map from @ to P. If f can be extended to a fully defined
morphism f/ : Q = P on Q then f and (Q, f) are called P-extendible, otherwise f
and (Q, f) are called P-nonextendible. For two P-colored resets (H, f) and (Q,9)
we write (H, f) € (Q, 9) and say that (H, f) is contained in (Q,9) f HC Q and
fcy.

A P-obstruction is a P-nonextendible, P-colored reset (H, f), where H is fi-
nite and every P-colored reset (K, g) properly contained in (H, f), is P-extendible.
Roughly speaking, the P-obstructions are the finite, minimal P-nonextendible
P-colored resets. The notion of an obstruction defined above is related to that
of the gap[11], hole [10], obstruction [9] and zigzag [14, 15). When it is clear what
P is we omit it in the terms P-obstructions, P-extendible, etc.

We define two important constructions of resets: product and retract. Let I be
an index set and let P;, i € I, be resets of the same type. Then the product ILicr Pi
is a reset with the base set [];c; P; on which the relation r* is defined componentwise
for every s € S. Let P and R be two resets of the same type. We say that R is
a retract of P if there are morphisms 7 : P —+ R and e : R — P such that re is
equal to the identity function of R. The maps r and e are called retraction and
coretraction, respectively. A morphism h: P — P is called idempotent if A2 = h.
Obviously, every retraction r is associated with an idempotent morphism, namely
er is idempotent.
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Let K be a class of resets of the same type. The relation variety generated by K
is the smallest class of resets containing K and closed under the retract and product
constructions. It is easy to see that the relation variety generated by K exists and
is equal to RP(K), where R is the operator of taking retracts of resets and P is
the operator of taking products of resets.

In this section we generalize the results obtained for posets in [15]. A reset
whose base set is finite, and whose relations are finitary is called a finite reset. First
we want to introduce a particular relation variety that turns out to be useful when
working with finite resets. We say that a reset P = (P, (r})ses) is finite-like if each
Tp, $ € 5, is finitary and every P-colored reset (H, f) is extendible whenever every
finite (H', f') C (H, f) is extendible. Since every finite nonextendible colored reset
contains an obstruction we have the following simple proposition.

Proposition 1.1. Let P be a finite-like reset. A P-colored reset is P-exten-
dible if and only if it does not contain a P-obstruction.

One expects the following result.

Proposition 1.2. Every finite reset is finite-like.

Proof. Let P be a finjte reset and let (H, f) be a P-colored reset. Suppose
that every finite (H', f') C (H, f) is P-extendible. We want to show that f is
P-extendible to H. We give a compactness argument using Tikhonov’s theorem,
which states that a product of compact topological spaces is compact. For every
h € H we define a compact topological space T}, namely, if f is defined on A then
T}, is the one element set {f(h)} otherwise T, is P with the discrete topology.
Then [z T can be considered to be the set of all functions from H to P which
extend f to H. For each n-ary relation r°, s € S, each (hi,...,hs) € Ty and
(a1,...,a,) ¢ Tp, where ai,...,a, € P, we define an open set of IThcg Tt in the
~» product topology consisting of those elements of Hhe g In whose h;-component is
a;, 1 <i < n. Let O denote the set of all open sets obtained in this way. Observe
that every extension of f that does not preserve one of the r° is in one of the open
sets of O. Let us suppose that f has no extension to H that preserves all the r°.
Then the open sets of O cover [],cy Th- But since [,y Th is compact there are
even finitely many members of O which cover [], .z Th. So there is a finite set
M C H which contains all the elements of H which occur in the definition of this
finite cover. Then in [], .5, Th there exists no morphism from the finite subreset of
H having base set M to P. But this contradicts the assumption. O

Proposition 1.3. The finite-like resets of the same type form a relation
variety.

Proof. First we show that a product [[;c; P: of finite-like resets P;, i € I,
is finite-like. Let (H,f) be a [],.;Pi-colored reset such that every finite
(H', f') € (H, f) is [[;c; Pi-extendible. Looking at the ith component of f as
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a coloring on H the so obtained P;-colored reset has a P;-extension since P; is
finite-like. Now, the ith component of a [];; Pi-extension of f is defined by this
extension for all ¢ € I. :

Second we show that a retract R’ of a finite-like reset P is finite-like. Let
r : P — R be an onto retraction and let e : R — P be a corresponding core-
traction. Let (H, f) be an R-colored reset such that every finite (H',f)C(H,f)is
R-extendible. The P-colored reset (H, ef) is P-extendible since P is finite-like. So
there exists a morphism g : H — P which extends ef to H. But then rg : H—->R
is an R-extension of f to H since ref = f. O

Corollary 1.4. The relation variety generated by all finite resets of o fized
type is a subvariety of the relation variety of all finite-like resets of the same type.

Proof. Apply Proposition 1.2 and 1.3. O

Next we shall prove some general theorems concerning relation varieties and, in
particular, relation varieties generated by finite resets.

For a reset P let E(P), N(P) and O(P) denote the class of all P-extendible
P-colored resets, the class of all nonextendible P-colored resets and the class of all
P-obstructions, respectively.

Throughout the following proofs we frequently use the fact that, if (H,f) € O(P)
and g : P — Q is a morphism then (H, gf) € O(Q) U E(Q).

Proposition 1.5. Let P and R be two resets of the same type. Then there
ezists a retraction 7 : P — R if and only if there is a one-to-one morphism
e: R — P such that for every R-colored reset (H, f) in N(R) the P-colored reset
(H,ef) is in N(P).

Proof. Let r be a retraction from P to R with a corresponding coretraction
e. Let (H, f) € N(R). Let us suppose that (H,ef) is P-extendible and let g be a
morphism that extends ef to H. Then rg extends re f = f to H which contradicts
the fact that (H, f) € N(R). '

Conversely, let us suppose that there is a morphism e from R to P such that
for every R-colored reset (H, f) € N(R) we have (H,ef) € N(P). Let us take
the R-colored reset (P,e~!). This is R-extendible by a morphism r; for otherwise,
(P,e1) € N(R) and then by the hypothesis, (P,ee™) = (P, ide(r)) € N(P). This
is impossible since idp extends id.(g) to P. Clearly, re = idg showing that 7 is a
retraction of P onto R. O

Corollary 1.6. Let P and R be resets of the same type. Let us suppose that
R is finite-like. Then there exzists a retraction r from P onto R if and only if there
is a one-to-one morphism e : R — P such that for every R-colored reset (H, f) in
O(R) the P-colored reset (H,ef) is in O(P).

Proof. Use Proposition 1.1 and Proposition 1.5. O
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Proposition 1.7. Let P;, ¢ € I, be resets of the same type. Then a
[Lic; Pi-colored reset (H, f) is in N([];c; P:i) 4f and only if there exists an i € I
such that (H, f;) is in N(P;) where f; is the ith component of f.:

Proof. The claim is obvious. A ‘ O

Corqllary 1.8. Let Py, i € I, be resets of the same type. Then a [[;o; Ps-
colored reset (H, f) is in O([[;c; P:) if and only if there exists an i € I such that
(H, f;) is in O(P;) where f; is the ith component of f.

Proof. Use Proposition 1.7 and the fact preceding Proposition 1.5. O

Let P, Q be posets of the same type and (H,f) € N(P). We say that a
morphism g : P — Q separates (H, f), if (H, gf) € N(Q). If (H,gf) € E(Q) we
say that g collapses (H, f). Let K and M be classes of resets of the same type. A
set G of morphisms with

GC{9g:P—-Q| PeK, Qe M}
is called a separating set from K to M, if for every P € K,

ﬂ Ker(g)=0
g€G,Dom(g)=P
and for every (H, f) € N(P) there exist Q € M and g : P — Q such that g separates
(H, f). Note that, if every poset is finite-like in K then we get an equivalent
definition by replacing N(...) by O(...). Instead of writing that G is a separating
set from {P} to M or from K to {Q} we write that G is a separating set from P
to M or from K to Q, respectively.

Theorem 1.9. Let P be a reset and let K be a class of resets of the same type
as P. Then P € RP(K) if and only if there exists a separating set from P to K.

Proof. Let P be a retract of the product of [L;c; P: where P; € K for every
i € I. Then by Proposition 1.5 there exists a one-to-one morphism e : P — [],o; Ps
which sends every P-colored poset (H, f) € N(P) to (H,ef) € N(J[;c;P:). Let
G = {meli € I} where m;, i € I, is the ith projection map for [[;.; P;. Clearly,
NgecKer(g) = 0. Let (H, f) € N(P). Then, by Proposition 1.7, there exists an i
such that (H,mef) € N(P;). Hence ;e separates (H, f). So G is a separating set
from P to K.

To prove the other direction, by Proposition 1.5 it suffices to show that there
exist a set I, resets P; € K, ¢ € I, and a one-to-one morphism e : P — [[;.; P; such
that for every (H, f) € N(P) we have (H,ef) € N(J[;c; P:). Let I be a separating
set from P to K. For every i € I let P; be the target of 7 that is 1 : P — P;. Let
e be the map from P to [[;c; P; given by e;(a) =i(a), a € P. Now, e is obviously
a one-to-one morphism. Moreover, if (H, f) € N(P) then (H,ef) € N([[;c; Pi)-
Indeed, by the hypothesis there exists some i € I such that (H,7f) € N(P;) and
we can apply Proposition 1.7. O
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From Theorem 1.9 we easily get the following generalization of a well known
result for posets in [5].

Corollary 1.10. Let a finite reset P be in RP(K ), where K is a ﬁmte set of
finite resets of the same type as P. Then P is a retract of a finite product of some
members of K.

Proof. The claim follows from the “only if” part of Theorem 1.9 and from the
proof of the “if” part of Theorem 1.9 since I will be finite. O

The analogue of the following definitions for posets can be found in [5]. A
representation of a reset P is a family (P; | ¢ € I) of resets of the same type as P
such that P; is a retract of P for each ¢ € I, and P is a retract of Hie 1 Pi. A reset
P is irreducible if for every representation (P; | i € I) of P, P is a retract of P; for
some i € I. If P is not irreducible then it is called reducible.

Now we characterize finite reducible resets in terms of separating sets.

- Proposition 1.11. Let P be a finite reset. Let G1 be the set of morphisms
from P to P whose ranges are contained in the range of a non-identity idempotent
morphism on P. Let G2 be the set of non-onto morphisms from P to P. Then the
following are equivalent.

(1) P is reducible.
(2) Gy is separating from P to P.
(3) G2 1is separating from P to P.

Proof. Let P be a finite reset. Let G1 and Ga be the sets as defined in
the claim. Let M be the set of idempotent images on P, different from P. By
rephrasing (1) with the help of Proposition 1.9 and by using that for every R € M
_every R-obstruction is a P-obstruction, one can easily see that (1) is equivalent to
(2). Since G1 C Ga, (2) implies (3). Now, suppose (3). We show (2). We claim
that, if for every P-obstruction there is a morphism in G+ that separates it then
for every P-obstruction there is a morphism in G that separates it. Let (H, f) be
an arbitrary P-obstruction. By the assumption there exists a sequence g; : P—-P,
1 < i < w, of non-onto maps such that (H,g;...g1 f) is a P-obstruction for every
iwithl1 <i<w. Let f; =g...g1, 1 £i < w. By finitenes s there exist ¢ and j
such that 1 < i < j < w and f; = f;. Now, the map f; is non-onto and separates
(H, f). Moreover, the range of f; is a subset of the range of any finite power of the
non-onto map g = gj - - - gi+1 since gf; = fi. By taking into account that g has an
idempotent power because of finiteness, we have the claim. One can show similarly
that Ngeg, Ker(g) = 0 implies Ngeg, Ker(g) = 0. Thus (3) implies (2). a

The following corollary might be a useful tool of proving irreducibility for par-
ticular resets.

Corollary 1.12. Let P be a finite reset. Then P is irreducible if and only if
the set of non-onto morphisms from P to P is not separating.
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When we are dealing with morphisms in a separating set from a reset P, they
have to have kernels which intersect in 0, i.e. they have to separate the pairs of
points in P. Sometimes it happens that morphisms separating all P-obstructions
do not separate the pairs of points in P and so they fail to produce a representation
of P. In order to obtain a certain representation of P, described in details in the
next theorem, we need the concept of minimality for obstructions and for pairs,
as well. '

Let P be a finite reset. A P-obstruction (H, f) is called a minimal obstruction
if for every morphism g : P — P with (H,gf) € O(P) there exists a morphism
g’ : P — P such that (H,¢'gf) = (H, f). The name comes from the observation
that the minimal obstructions are just the minimal elements of the quasiordered
set defined on the set of the P-obstructions with a fixed base poset H where the
quasiordering is given by (H, f’) < (H, f#) if and only if there exists g : P —
P with (H,gfr) = (H, f'). A pair formed by two distinct elements a and b in
P is called a minimal pair if for every morphism g : P — P with g(a) # g(b)
there exists a morphism g’ : P — P such that g’g(a) = a and ¢’g(d) = b. To
" justify the name minima)] pair a similar quasiorder can be defined as for minimal
obstructions. We call an idempotent image R of P a minimal reset if there exists
a minimal P-obstruction (H, f) (a minimal pair (a,b)) such that R is one of the
idempotent images of P that contain the range of f (a and b) and have minimum
cardinality. :

Theorem 1.13. For every finite reset P the following hold.

(1) All minimal resets of P associated with the same minimal obstruction (pair)
are isomorphic.

(2) Every minimal reset of P is irreducible.

(3) P has a representation by minimal resets.

Proof. Let (H, f) be a minimal P-obstruction. Suppose that R and T are two
” minimal resets of P such that both are associated with (H, f). Let r and ¢ be two
idempotent retractions to the minimal resets R and T, respectively. Observe that
7T is onto R when restricted to T'; otherwise T would not be an idempotent image
of minimum cardinality which contains the range of f. Then because of finiteness
we have (1). (For minimal pairs the proof of (1) is similar.)

Let R be a minimal reset of P. The set of non-onto morphisms from R to R is
not separating since the corresponding minimal obstruction (pair) is not separated
by this set. So, by Corollary 1.12, we have (2).

For every P-obstruction (H, f) there exists a morphism g : P — P such that
(H,gf) is a minimal P-obstruction and for every minimal reset R with respect

to (H,gf), the R-colored reset (H,gf) is an R-obstruction. Let 7 : P — R

be an idempotent retraction. Clearly, (H,rgf) = (H,gf) and so the morphism
rg : P — R separates (H, f). A similar argument works for pairs in P. Then, by
Theorem 1.9 and Corollary 1.10 we can conclude that for every finite reset there is
finite representation by minimal resets. Thus, (3) also holds. O
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Theorem 1.14. Let R be a minimal reset of a finite reset P such that R is
a retract of [[;c; Pi where the Py, i € I, are finite members of the relation variety
generated by P. Then there exist an i € I and a minimal reset T of P; such that
R is isomorphic to T. '

Proof. Let R be a minimal reset of a finite reset P. Suppose that P1,...,Pn
are retracts of a finite power of P and R is a retract of ][, Ps. Since R is a minimal
reset it is associated with a minimal P-obstruction (H, f). (If R is associated with
a minimal pair in P then the proof is similar.) By Theorem 1.9, there exist ani € I
and a morphism g : P — P; such that (H, gf) is a Ps-obstruction. We choose g so
that (H, gf) is a minimal P;-obstruction. Let T be a minimal reset with respect to
(H,gf) in P;. Since P; is in the relation variety generated by P, by Theorem 1.9
there exists a morphism ¢’ : P; — P which separates (H, gf). By the minimality of
(H, f) there exists a morphism g/ : P — P such that (H,grg'gf) = (H,gf). Let
r:P — Rand t: P; » T be idempotent retractions. Now, we must have that the
morphisms tg|z : R — T and rg/g’|r : T — R are onto; otherwise their two way
compositions are non-onto and separate (H, f) and (H,g f), respectively, which
contradicts the irreducibility of R and T. Hence, by finiteness, R is isomorphic
to T. |

It is clear from Theorem 1.14 and (3) of Theorem 1.13 that for every finite reset
P there is a smallest finite representation given by the minimal resets of P. It
is smallest in the sense that from the set of members in any other representation
of P the set of minimal resets can be obtained via taking retracts. In the same
sense there is the largest representation of P by irreducibles. It is given by those
irreducible idempotent images of P that are maximal with respect to containment
in P. We call these irreducible resets mazimal resets. It is an interesting problem
for particular classes of resets: Does the set of minimal resets contain the set of
maximal resets? For posets, this problem is equivalent to the unique factorization
problem in [5] which is still open. We remark that in [7] Kabil and Pouzet showed
that unique factorization does not hold in the class of finite reflexive graphs. We do
not know the answer for the following question related to the unique factorization
problem. Does there exist a finite reset such that the relation variety generated by
it contains infinitely many finite irreducible resets? Theorem 1.14 has the following
easy corollary.

Corollary 1.15. Let P and Q be two finite resets of the same type. Then P
and Q generate the same relation variety if and only if P and Q have the same
minimal resets up to isomorphism.

Since every finite irreducible reset is a minimal reset of itself we get the following
corollary of Corollary 1.15.

Corollary 1.16. Non-isomorphic finite irreducible resets generate different re-
lation varieties.




RELATIONAL SETS AND CATEGORICAL EQUIVALENCE OF ALGEBRAS 569

The next theorem is a generalization of a remark by Tardos in [14]. It gives an
important reason why we defined obstructions in the way as we did. Let P be a
finite set. For n > 3 an operation f : P* — P is called an n-ary near unanimity
function if f(a,...,a, b,a,...,a) =a for all a,b € P and for all ¢ with 1 <7 < n.

i

=

A ternary near unanimity function is usually called a majority function.

Theorem 1.17. Letn > 3 and let P be a finite reset. Then P admits an n-
ary near unanimity function if and only if the number of colored elements in every
P-obstruction is at most n — 1. '

Proof. Let n > 3. Let P be a reset that admits an n-ary near unanimity
function. Then observe that P admits an m-ary near unanimity function for all
m > n. Let (H, f) be a P-colored reset whose number of colored elements is m.
Suppose that m > n and every P-colored reset properly contained in (H, f) is
extendible. We show that (H, f) is also extendible. By removing the color of any
colored element in (H, f) we get an extendible P-colored reset. Let fi,..., fm be
extensions wich are obtained by removing the colors of the m colored elements in
(H, f), respectively. Let M be an m-ary near unanimity function admitted by. P.
Now, the map M(f1,..., fm) is a morphism from H to P and extends f.

Let P be a finite reset. Suppose that the number of colored elements in every
P-obstruction is at most n — 1. Let g be a partial map from P" to P defined by
the equality f(a,...,a, b,a,...,a) =afor all a,b € P and for all  with 1 < i < n.

o

We claim that g extends to a morphism from P™ to P that is the P-colored poset
(P",g) € E(P). For otherwise (P, g) contains a P-obstruction (H, f) with at most
n— 1 colored elements. Now, H C P™ and the colored elements in (H, f) are of the

form (a,...,a, b,a,...,a) where f(a,...,a, b,a,...,a) = a. This is impossible
Dbecause-there exists-a j with 1. < j < n such that the j-th projection extends f
to H. ' O

4

2. Categorical Equivalence and Congruence Primal Algebras

We say that two categories U and W are categorically equivalent if there exists
a functor F from U to W such that for every object B in W there is an object A
in U with B isomorphic to F(A) and for all objects C and D in U, F' is a bijection
between Hom(C, D) and Hom(F(C), F(D)). In this case the functor F is called a
categorical equivalence between U and W.

We can view a variety of algebras as a category; the objects are the algebras
in the variety and the morhisms are the homomorphisms between algebras in the

variety. Under a categorical equivalence between two varieties of algebras, many

algebraic properties are preserved; lists of properties preserved are given in [4] and
[8]. So when studying the structure of algebras it is always useful to know whether
the varieties generated by the given algebras are categorically equivalent.

The following definition is from [2]. We say that two algebras A and B are
categorically equivalent, A =, B for short, if there is a categorical equivalence F'
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between the varieties generated by A and B such that F(A) = B. The next char-
acterization of categorically equivalent algebras given in [8] involves two algebraic
constructions called idempotent, invertible image and matrix power. Let A be an
algebra and let 7 be an idempotent unary term for A, that is, r is a unary term in
the language of A and r2(z) = r(z) is satisfied by A. The term r is called invertible
if there exist unary terms ty,..., %, and an m-ary term ¢ in the language of A such
that ¢(rt1(z), ..., tm(z)) = = is satisfied by A. On the range of r acting on A we
define the algebra r(A) whose basic operations are given by restricting the term
operation 7t acting on A for each term t in the language of A. We call r(A) the
idempotent, invertible image of A under r. Let n be a positive integer. On the nth
power of the base set of A we define the algebra A"l called the nth matriz power
of A by taking the m-ary basic operation t for all mn-ary terms t1,...,%¢, in the
language of A such that the ith component of ¢ is ¢; acting on 4, 1 < i <n. We
say that two algebras A and B are weakly isomorphic if there exists an algebra C
such that C is of the same type as A, C is isomorphic to A, C has the same base
set as B and C and B have the same sets of term operations.

Theorem 2.1. Let A and B be two algebras. Then A =, B if and only if there
ezist a positive integer n and an idempotent, invertible, unary term r for A such
that B is weakly isomorphic to r(AlM).

When we are studying classes of algebras, sometimes it is more convenient and
natural to use relations than operations. The algebras may be given in terms
of preservation. For example, congruence primal algebras are the algebras whose
term operations are the operations preserving a set of equivalence relations on their
underlying set. The relational point of view that we pursue by dealing with algebras
is reflected in the next theorems.

We say that two resets P and Q of the same type are equivalent, P = Q for short,
whenever each one of them is a retract of a finite power of the other. In the finite
-case, this is equivalent to saying that P and Q generate the same relation variety.
A morphism r : P — P is called invertible if there exist morphisms t1,...,%, from
P to P and a morphism ¢ : P™ — P such that t(rt1,...,7tm) = idp.

Theorem 2.2. Let P and Q be resets of the same type. Then P = Q if
and only if there exist a positive integer n and an idempotent, invertible morphism
r: P™ — P™ such that Q is isomorphic to r(P™).

Proof. Suppose that P = Q. Then there exist positive integers n, m and
retractions 7 : P — Q and s : (Q™)™ — P™ where the corresponding coretractions
are e : Q = P™ and f : P* — (Q™)™, respectively. Let u = er. We claim
that the idempotent, unary morphism u : P® — P" is invertible. Define ¢; =
emif : P* — P", i = 1,...,mn. Moreover, let ¢t : (P")™" — P" be defined
by (&1, ., Tmn) = $(r(z1),--.,7(Tmn)). For an arbitrary (a1,...,as) € P" let
fla1,...,an) = (b1,..-,bms). Since sf = idp~ we have that s(bi,...,0mn) =
(a1,...,an). Clearly, Q is isomorphic to u(P"). Now, the invertibility of u is
verified by the following lines of equalities:




]
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t(uti(az, ..y Qn)y ey Utmn (a1, ..., Gn)) =
tleremi f(@1y..-yn)y.- ., €remmnf(a1,...,an)) =

t(e(1),...,e(bmn)) = s(re(d1),...,re(bmn)) =
8(b1,y. ey bmn) = (@1,-..,an).

Suppose that there exist a positive integer n and an idempotent, invertible
morphism 7 : P* — P” such that Q is isomorphic to r(P™). We assume without
loss of generality that Q = r(P™). Observe that the morphism ¢ : (P")™ — P i
occurring in the definition of invertibility is a retraction to P” when restricted to
Q™. So P is a retract of a finite power of Q. Obv1ously, Q is a retract of a finite g
power of P. Thus P = Q. O |

We say that a reset P is a reset for an algebra A if the underlying sets of P and ‘
A are the same and the set of morphisms from finite powers of P to P coincides
with the set of finitary term operations of A. 1

Theorem 2.3. Let A and B be algebras. Then there ezists a reset for A and
it can be chosen to be finite when A is finite. Moreover, the following are equivalent.
(1) A=. B. ,
(2) If P is a reset for A then there exists a reset Q for B such that P and Q
are of the same type and P = Q.
(8) There exist two resets P and Q of the same type such that P is a reset for
A, Q is a reset for B and P = Q.

Proof. In order to prove the first statement of the theorem, define a reset for
algebra A by equipping the base set of A with the relations which are subalgebras
generated by the m projections in algebra AA™ where 0 < m < w.

The proof of the second statement is as follows. First we show @O = @).
Suppose that-A-=;B. - Then by Theorem 2.1, there exist a positive integer n and

_an idempotent, invertible, unary term r for Al guch that B is weakly isomorphic
“to 7(Al™). Let P be an arbitrary reset for A. Observe that the set of finitary term
operations of Al equals the set of morphism from finite powers of P™ to P". By
using this fact there exists a reset Q for B such that Q is isomorphic to r(P™) where
r : P* — P™ is an idempotent, invertible morphism. By Theorem 2.2, this means
that P = Q. By using the first statement of the theorem, (2) = (3) immediately.
Finally we prove (3) = (1). Let P and Q be resets of the same type such that P
is a reset for A and Q is a reset for B and P = Q. Then, by Theorem 2.2, there
exist a positive integer n and an idempotent, invertible morphism r : P* — P"
such that Q is isomorphic to 7(P™). Hence, by the above observation B is weakly
isomorphic to 7(Al™) where r is an idempotent, invertible, unary term for A™. So
by Theorem 2.1, we have that A =, B. O

For congruence primal algebras we have the following.

Theorem 2.4. Let A be a congruence primal algebra and let B be any al-
gebra. Let P and Q denote the underlying sets of A and B, respectively. Then
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A =, B if and only if B is congruence primal, Con(A) is isomorphic to Con(B)
and (P, Con(4)) = (Q, Con(B)).

Proof. Let A be a congruence primal algebra and let B be an algebra such
that A =, B. Because of Theorem 2.1 it suffices to show that B is congruence
primal, Con(A) is isomorphic to Con(B) and (P,Con(4)) = (Q,Con(B)) when
B = r(Al") for some positive integer n and idempotent, invertible term r for Alnl,
. Let P = (P,Con(A4)). By properties of matrix power and idempotent, invertible
image, it follows that P™ = (P™, Con(A")), r(P™) = (r(P™),Con(r(A™))) and
Con(A), Con(AM), and Con(r(AM)) are isomorphic lattices. Since A is congruence
primal we get that P" is a reset for A" and r(P") is a reset for B = r(AM).
Hence B is congruence primal and Con(4) is isomorphic to Con(B). Moreover by
Theorem 2.2, P = r(P"), i.e., (P,Con(4)) = (Q,Con(B)). The other part of the
claim immediately follows from Theorem 2.3. O

In the case of finite algebras we have the following corollary of Corollary 1.15
and Theorem 2.3.

Theorem 2.5. For finite algebras A and B the following are equivalent.

(1) A=.B. :

(2) If P is a finite reset for A then there exists a finite reset Q for B such
that P and Q are of the same type and have the same minimal resets up to
isomorphism. ‘

(8) There ezist a reset P for A and a reset Q for B such that P and Q are of
the same type and have representations by the same resets.

Next we show some examples how to apply the results in Sec. 1 and Theorem 2.5
in the study of algebras. A sublattice of the lattice of equivalences on a set P is
called arithmetical, if it is distributive and permutable. We shall examine the resets
of the form P = (P, (r$)ses) where P is a finite set and the % are equivalences
on P which generate (via lattice operations) an arithmetical 0, 1-sublattice of the

“Jattice of equivalences on P. It is allowed that different relational symbols have the
same interpretation. The 0, 1-sublattice associated with P is denoted by Lp. Let
V denote the class of resets of the above form. A class of finite resets of the same
type is called a finite relation variety if it is closed under retract and finite product.
It is easy to check that V is a finite relation variety.

When P € V every P-colored reset (H, f) can be imagined as a directed graph
on the set H where each edge is labeled by some r® (meaning that the given edge
belongs to ¢ in H) and accordingly to f some points of H are colored by elements
from P. All the 7° that do not occur as a label are empty in H. For example, Fig. 1
indicates a P-colored reset (H, f). The set H has m + 1 elements. Each of them is
symbolized by a vertex. For each 7 with 1 < i < m, the relation 6; in H contains a
single pair, say (h, h’), for which we draw an edge connecting the vertices h and A’
and label it by ;. In this special case H is visualized as a path (not necessarily a
directed one). According to f the two endpoints of this path are the only colored
elements of (H, f), one of them is colored by a and the other by b, as shown in
Fig. 1.
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Fig. 1. A P-colored reset of the form o(a, b,61,...,0m)-

Theorem 2.6. Let P be a reset in'V. Then every P-obstruction (H, f) is
of the form 0(a,b,01,...,0m) in the figure where 01,...,0, € {r* : s € S} and
a,b € P such that (a,b) & 61V ---V 0, in P. (The direction of edges not shown in
Fig. 1 is arbitrary in H.)

Proof. Since all relations of P are reflexive, the P-obstructions have at least
two colored elements. Due to Pixley [12], P admits a majority function. Hence
Theorem 1.17 gives that every P-obstruction has exactly two colored elements.
Observe that in every P-obstruction each colored element has degree one; otherwise
we could split the colored elements to obtain a new obstruction with more than two
colored elements which is impossible.

Let (H, f) be a P-obstruction. We prove the theorem via an induction on the
number |H|. If |[H| = 2 it is clear that the P-obstruction (H, f) is of the required
form. Now, suppose that |[H| > 3. Let h; and hy be the two colored elements of
(H, f). Let f(h1) = a and f(h2) = b. The unique element connected to h; in H
is denoted by h. During the proof keep in mind that we work in an arithmetical
equivalence lattice and so 81V« -+ V8, =010---08,, for every 61,...,0, in Lp. We
create a system (x) of equivalence equations in Lp as follows. We take the equation
(z,a) €  where 8 is the label of the unique edge connecting h; and h in H and for
each path connecting k and ho we take the equation (z,b) € 61V ---V 0, where the
edges in the path are labelled by 61,...,0, in H.

Suppose that (x) is solvable and has solution u € P. Now, delete h; in (H, f)
and color h by u. The so obtained colored poset is nonextendible since (H, f) is.
So it contains an obstruction. By the induction hypothesis this obstruction is a
path connecting h and hy in H such that the color of h is u, the color of hg is
b and (u,b) ¢ 61V ---V b, in Lp where 61,...,0, are the labels of the edges

of the path. This contradicts the choice of w. So (*) is not solvable. Hence by

Baker and Pixley [1] the system () contains a two-element subsystem that is not
solvable. This implies that that there exists a path connecting h; and hz such that
(a,b) €6V 6 V---V8b,, in Lp where 6,61,...,0n are the labels of the edges of the
path, i.e. we have an obstruction of the required form contained in (H, f). Because
the only obstruction contained by (H, f) is (H, f) itself we get the claim. O

With P-obstructions on hand we show that every P € V has a finite represen-
tation by two element resets in V. Note that the two element resets are always
irreducible. For a,b € P let 6,5 denote the equivalence generated by (a,b) in Lp.

Proposition 2.7. Let P € V. Let c and d be two different elements in P.
Let 043 < 0cq in Lp such that 8, is join irreducible and a is different from b.
Define the partial map ¢ by p(c) = a and p(d) =b. Then ¢ extends to a morphism
Pa,b * P— Pl{a,b} where Pl{a,b} = ({a, b}, (T;?[{a,b})s€S>'
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Proof. Let Q = P|{53}. Note that Q € V. If ¢ is Q-nonextendible then
there is a Q-obstruction (H, f) contained in the Q-colored reset (P,¢). So (H, f)
is of the form o(a,b,61,...,6r,) where (a,b) ¢ 61V ---V by, in ‘. Since Q is
two-element, this gives that (a,b) is not in any of 61,...,0m in ‘. As (H, f) C (P, )
we have that (c,d) € 61V ---V by, in Lp. So we get that o p < 0ea <01V VO
in Lp. Since 6,4 is join irreducible it is join prime in the distributive lattice
Lp. Hence 6,5 < 6; for some i in Lp. So (a,b) € 6; in ‘, which gives a
contradiction. O

Corollary 2.8. Let P € V. For every a,b € P with 0, is join irreducible in
Lp, the reset Pl{a,b} is an idempotent image of P.

Proposition 2.9. Let P be a reset in V. For every P-obstruction (H, f) of
the form o(c,d, 61, .. .,0m) there exist a and b such that O, p < Oc,a and O,p 1s join
irreducible in Lp, a # b and ¢, given in Proposition 2.7 separates (H, f).

~ Proof. Since Lp is algebraic, 0c,a = V(q,p)ecfa,p Where C is the set of ordered
pairs (a,b) with the property that 6,5 < 6c,d, 0q, is join irreducible in Lp and
a # b. If all the (H, pq3f), (a,b) € C, were extendible then for every (a,b) € C
there would exists an i such that (a,b) € 6; in P|{g3} and so (a,d) € 6; in Lp.
Hence 6c,g = V(a,p)ectap < 61V ---V#8,, in Lp. But this contradicts the fact that
(H, f) is a P-obstruction. _ O

By Theorem 1.9, we have the following corollary of Proposition 2.7 and 2.9.

Corollary 2.10. Every P with P € V has a finite representation by two ele-
ment resets in V. This representation is unique for the whole =-class of P in V in
the strong sense that for all Q = P all finite representations of Q by irreducibles
have the-same-members.

Proof. The first statement is clear by Theorem 1.9. The uniqueness part
follows from Theorem 1.14 and the fact that the two-element retracts of every
reset in V are minimal resets. The proof of this fact is as follows. Let Q be
an irreducible idempotent image of P € V. We know that Q is two-element, let
Q = {a,b}. Let 61,...,0, be the list of those relation symbols in Q that interpret
as 0 in Q. Consider a Q-obstruction of the form o(a,b,01,...,0r). There exists a
minimal reset R and a morphism g : Q — R that separates this obstruction. Of
course, R is also two-element. By Theorem 2.6 every Q-obstruction is of the form
o(a,b,71,...,v) where {y1,...,m} C {61,...,0m}. Since y1V---Vy < 61V---Vp,
in Lp and (g(a), g(b)) & 61V---VO, all Q-obstructions are separated by g. Moreover
g is one-to-one. So by Corollary 1.6, Q is a retract of R. Both being two-element,
we have that Q is isomorphic to R. d

An algebra is arithmetical if its congruence lattice is arithmetical. The next
theorem is due to Bergman and Berman, see [2]. We give a proof of it by using the
description of irreducible resets in a particular V of the above form.
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Theorem 2.11. Let A be a finite, arithmetical, congruence primal algebra and
let B be any algebra. Then A =, B if and only if B is finite, arithmetical, congruence
primal and Con(A) =Con(B).

Proof. It is well known, see [8], that categorical equivalence between algebras
preserves finiteness and the Maltsev property for arithmeticity. So by Theorem 2.4
we have one direction of the claim. To prove the other direction which is the essential
part we use Theorem 2.5.

Let A and B be finite, arithmetical, congruence primal algebras such that
Con(A) is isomorphic to Con(B). Let P the be the finite reset (P,71,...,7,) Where
P is the base set of the algebra A and r1,. .., T, are the elements of Con(A). Clearly,
P is a reset for A. By Proposition 2.7 and 2.9, the irreducibles in a representation
of P are given by taking a join irreducible rs; and a pair (a,b) that generates r; in
Con(A) and restricting the reset P to {a,b}. So every irreducible retract T of P
is determined by a principal filter given by a join irreducible element r, in Con(A)
such that r; = 1 in T if and only if 7; > 75 in Con(A).

Let ¢ :Con(A) —Con(B) be a lattice isomorphism. We form the relational set

= (Q,(r1),...,t(rs)) of the same type as P on the base set Q of B. Since ¢ is an
order isomorphism and the order of Con(B) determines the irreducible retracts of
Q in the same way as the order of ConA does the ones of P the irreducible retracts
of Q coincide with the irreducible retracts of P. So by Theorem 2.5 we get that
A=, B. O

Let A be an algebra on a finite set P. Let A* be the extension of A by all
constant operations on P. Let P = (P,71,...,7n,...) be a finite reset for A*
such that the elements of Con(A) occur among 71,...,7s,.... In [6], for algebra
A, Hobby and McKenzie define the notion of an {a, 3)-minimal set where (o, 3)
is a quotient in Con(A4) and the notion of a tame quotient. It is interesting to
remark that every (o, 8)-minimal set U where the quotient (o, 3) is tame is a base
set of some minimal reset of P which is associated with a minimal P-obstruction
of the form o(a,b,r;) for some a,b € U and r; = « in P where (a,b) € 8\ a.
The proof of this fact is based on the properties of (@, 3)-minimal sets listed in
Theorem 2.9 of [6] and is left to the reader. In the arithmetical, congruence primal
case we get that the set of (c, 3)-minimal sets where (o, §) is tame coincides with
the base sets of minimal resets of P. This is not the case in general as the following
example shows.

Example 2.12. Let A be a congruence primal algebra defined on the four
element set {1,2,3,4} such that A has two nontrivial congruences ¢; with the only
two element block {2,3} and 62 with two two-element blocks {1,2} and {3,4}. Let
P be the corresponding reset ({1,2,3,4},0,61,62,1). Then the (o, 3)-minimal sets
are {1,2},{2,3},{3,4} and the base sets of the minimal resets of P are {1,2,3} and
{2, 3,4} besides the (o, 8)-minimal sets.

We note that in the case of preprimal algebras Theorem 2.5 comes down to a
result of Denecke and Liiders in [4]. They proved that every reset P given on a
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finite set P by a relation of Rosenberg’s type [13] different from a bounded partial
order has a finite representation by a distinguished reset of the same type as P.
One can easily show that the distinguished reset is irreducible in each case and
conclude that the equivalence class of P contains an irreducible element which is in
turn a unique minimal reset of every element in the class. On the contrary, if P is
a finite bounded poset it might easily happen that the equivalence class of P has
no irreducible element. For example, take P as the product of two finite bounded
irreducible posets such that none of them is a retract of a power of the other. The
interested reader can find examples of such irreducible posets in [5] or [11]. Variants
of Theorem 2.3 for order primal algebras were proven in (3] and [8].
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