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Abstract. In 1986 Tardos proved that for the poset 1+ 2+ 2 424 1, the clone of monotone operations
is nonfinitely generated. We generalize his result in the class of series parallel posets. We characterize
the posets with nonfinitely generated clones in this class by the property that they have a retract of the
formeither 1+2+2+2+ 1,242+ 1, 0r 1+2+2.
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Introduction

Throughout the paper the same boldface and slanted capital letters are used to denote
a poset and its baseset, respectively.

For a poset P the clone of all monotone operations is called the clone of P. For
n 2 3 an n-ary operation f is a near unanimity function, briefly a nuf, if it obeys
the identity

fz,..,2,y,2,...,2)=2

for every 1 < ¢ < n. If n = 3, then f is called a majority function. One of the most
intriguing problems on finite bounded posets is the following, mentioned in [1], [4]
and [5]. Is it true that if the clone of a finite bounded poset is finitely generated
then it contains a near unanimity function? Since the property of admitting a nuf
is preserved under retraction, if the answer were yes we would have the following
claim. If the clone of a finite bounded poset P is finitely generated, then the clone
of every retract of P is also finitely generated. By the result of Tardos in [6], this
would imply that for every finite bounded poset having 1+2+2+2+1 as a retract,
the clone of monotone operations is nonfinitely generated. But to prove even the
claim in the preceding sentence seems very difficult.
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A 4-element subset in a poset P is called an n-subset if it induces a 4-element
fence in P. A poset is called series parallel if it is finite and does not contain an
n-subset. Series parallel posets are characterized in [7] as the ones that are obtained
from one element posets by using linear sum and disjoint union in a finite number
of steps. In this paper we give a full description of the series parallel posets with
nonfinitely generated clones. In Theorem 3.8 these posets are characterized by the
property that they have one of 1+2+2+2+1,2+2+1, and 1+2+2 as a retract.
We also show that every bounded series parallel poset having a finitely generated
clone admits a 5-ary nuf. So for bounded series parallel posets the above mentioned
question has an affirmative answer.

1. Zigzags

We need some definitions and claims from [8]. We say that a poset Q is contained
in a poset P if <qC<p. If Q is contained in P we write Q C P. We say that Q is
properly contained in P if Q C P and Q #P.

Let P and Q be posets. A pair (Q, f) is called a P-colored poset if f is a partially
defined map from @ to P. If f can be extended to a fully defined monotone map
f': Q — P on Q then f and (Q, f) are called P-extendible; otherwise f and (Q, f)
are called P-nonextendible. A P-zigzag is a P-nonextendible, P-colored poset (H, f),
where H is finite and for every K, properly contained in H, the P-colored poset
(K, flx) is P-extendible. Roughly speaking, the P-zigzags are the finite, minimal,
nonextendible P-colored posets. When it is clear what P is we omit it in the terms
such as P-zigzags, P-extendible, etc.

For two P-colored posets (H, f) and (Q,g) we say that (H, f) is contained in
(Q, 9) and we write (H, f) C (Q,¢) if HC Q and f = g|y. Observe that every finite
nonextendible colored poset contains a zigzag. For a P-colored poset (H, f) we
define the set C(H, f) = {h € H: f(h) exists} and N(H, f)= H \ C(H, f). We call
the elements of C(H, f) colored elements and the elements of N(H, f) noncolored
elements. If C(H, f) and N(H, f) are nonempty we define the posets C(H, f) and
N(H, ) by the restriction of <z to C(H, f) and N(H, f), respectively. A colored
poset (H, f) is called monotone if f is monotone on its domain. Observe that a
zigzag (H, f) is monotone if and only if |[N(H, f)| > 1.

We frequently use the following claims about zigzags in the next section without
explicitly mentioning them. The reader is encouraged to supply the easy proofs to
them.

CLAIM 1.1. Let (H, f) be a P-zigzag. The subgraph spanned by N(H, f) in the
covering graph of H is connected.

CLAIM 1.2. Let (H, f) be a monotone zigzag and let a € C(H, f). For every b€ H
which satisfies a < b or b < a we have b € N(H, f).
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CLAIM 1.3. Let (H, f) be a P-zigzag and let a and b be two different elements of
C(H; f). Ler us suppose that there exists ¢ € N(H, f) with ¢ < a,b. Then f(a) and
f(b) are incomparable.

An element a € Q is called irreducible if there is a unique b € Q with ¢ < b or
b<a.

CLAIM 1.4. Let (H, f) be a P-zigzag. Then N(H, f) has no irreducible element
of H.

CLAIM 1.5. If P = Q + 1, then every maximal element of a P-zigzag (H, f) is
colored.

CLAIM 1.6. For a P-zigzag (H, f) the following hold.

) If IN(H, f)| = 0, then (H, f) is a two element nonmonotone zigzag.

Q) If IN(H, f)| = 1, then (H, f) is the first colored poset shown in the figure,
where m and n are nonnegative integers such that m+n > 0 and n,m # 1.
Moreover, f is an order isomorphism on its domain.

(@) If IN(H, f)| = 2, then (H, f) is the second collored poset shown in the figure,
where k,l > 1 and m and n are nonnegative integers for which m,n # 1.
Moreover, any comparable pair in Range(f) not shown in the figure is of the
form d; < cj, ¢; < b; ora; < d; forsomel i<k, 1<jgl,1<s<m
and 1<t < n.

a, a, A
Tardos’s remark in [6] describes via zigzags the finite posets admitting an n-ary
nuf. )

REMARK 1.7. Let n > 3. A finite poset P admits an n-ary near unanimity function
if and only if in every P-zigzag the number of colored elements is at most n — 1.

2. Series Parallel Posets with Nonfinitely Generated Clones

To get instances of series parallel posets possessing clones with no finite generating
sets we begin with some claims that serve as the basis of Tardos’s proof in [6].
For an algebra A let Clo(A) be the set of finitary term operations on A and let
Clo(A) be the set of m-ary term operations on A. Recall that for any algebra A the
set of n-ary relations on A admitting Clo(A) concides with the set of subalgebras of
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the n-th power of A. A set of sets is called an m-cover if any m-element subset of
their union is a subset of one of them. Note that for all n € m any m-cover is also
an n-cover.

Let A be a finite algebra. We characterize the relations admitting Clon, (A) with
the help of relations admitting Clo(A).

LEMMA 2.1. An n-ary relation R admits Clo,,(A) if and only if R is of the form
Ui=1 Ri for some s, where each R;, 1 € i < s, admits Clo(A) and the R; form an
m-cover.

Proof. Let R = {r1,...,r:} an n-ary relation admitting Clon,(A4). Then we have

R= U {f(r,-l,...,r,-m): fe ClOm(A)}

{81 m }C {1, ot}

Each set following the cup symbol is subalgebra of A™. So

R=J R,
i=1

where each R; is a subalgebra of A™ and, clearly, every m-element subset of R is
contained in some R;.

Now, let R be a set of n-tuples such that R = U:=1 R;, where each R; admits
Clo(A) and every m-element subset of R is contained in some R;. When applying
any f € Cloy(A) to R only m elements of R are involved but these elements are
in R; for some i and f preserves R;. So f preserves R as well. Thus R admits
Clon, (4). O

Lemma 2.1 has the following corollary.

COROLLARY 2.2. Clo(A) is nonfinitely generated if and only if for every m there
exists an m-cover {Ry, ..., Rs, } of n-ary relations admitting Clo(A) such that

does not admit Clo(A), i.e., R is smaller than the join of the R;, 1 < i < $m, in the
subalgebra lattice of A". .

Now we are ready to prove the main claim of the paper. The proof is based on the
one contained in [6].

THEOREM 2.3. If a series parallel poset P has at least one of 2+2+1,1+2+2
and 1+ 2+ 2+ 2+ 1 as a retract then the clone of P is nonfinitely generated.
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Proof. Let P be a series parallel poset and let C be its clone. First let us suppose
that 142+ 2+ 2+ 1 is a retract of P. We are going to show that C is nonfinitely
generated. Let A be the algebra given on the universe P whose fundamental oper-
ations are all the monotone operations on P. We define some subalgebras of A™+5
with the help of the poset Q,,, m > 3, in the figure below. ‘

Let Ry C P™+3 be the set of those (m + 5)-tuples of the form
(a,a',b,b,¢1,...,¢m, ")

for which all the partial functions f;, 1 < i < m, given by

fiX)=a, fi(XN=d, )=, fHYF)=V, fi(Z)=/,
fi(Zo) = ciy .. ., fi(Zm-1) = Cimn—1)4i>

where the indices are considered modulo m, are P-extendible when restricted to
~both Qm \ {Y} and Qn \ {Y'}. Let R; contain those elements of Ry, where f; is
P-extendible to Q,,. We note that in the case of P = 1+ 2+ 2+ 2+ 1 Tardos has
the same definition in [6].

It is obvious that each R;, 0 € i < m, is a subalgebra of A™*35. We show that
the R;, 1 < i < m, form an [(m — 1)/2]-cover. Let R = U;’;l R;. For an arbitrary
u € R we define S, = {I: v € R;}. First we prove that |S,] > m — 2. We
assume that there is an ¢ such that u ¢ R; and u € R;; otherwise there is nothing
to prove. Observe that b’ > ¢ is impossible otherwise u € Ry implies u € R;.
Suppose that b’ and ¢’ are incomparable. By leaving out Wy,,_4 from the colored
poset (Qum, fi), because of u € Ry, the remaining colored poset is P-extendible via
amap f: Qm \ {Wom-4} = P. Now, f(Wam_s), ¢/, f(Wam_3) and ¥ form an
n-subset in P since u ¢ R;. But this contradicts the fact that P is series parallel. So
we have b’ < ¢ and similarly b’ < ¢p,—24;. Let us color Wy, 4 by ¥ in (Qm, fi).
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The so obtained colored poset is nonextendible since u ¢ R;. By leaving out Wy, _s
from this colored poset, again, because of u € Ro, the remaining colored poset is
P-extendible. By repeating the preceding argument we get b’ < cp-34¢. Similarly,
by induction, we get b’ < c;j4 forall 1 € j < m — 2. By symmetry b < ¢’ and
b<c,+.foralll<j<m 2. '

Let M; = {p € P: a,d < d,¢jtit1}, where 1 < j < m — 2. Let M be the
subposet of P induced by the set

m—2

U M u{sv}

j=1

Since u € R;,1, b and b’ are connected by a path in M. Because u € R; and M is
series parallel there exists a d € M with b,% < d < ciym-1,¢

Now, in both cases when either u € R;_; or not, by the preceding two paragraphs
‘we get b,b" < ¢;. But then each (Qm, fj+i), 1 € j £ m—2, is extendible by coloring
Wi by b if k < 2(m — 1) — 2j, Wam-—1)—2; by d and W; by ¥’ if k > 2(m — 1) — 2j.
Thus we have |Sy| > m — 2.

Since any [(m—1)/2] elements of R avoid at most 2[(m—1)/2] < m—1 of the R;,
where 1 € i € m, there is at least one R; which contains these [(m — 1)/2] elements.
So the R; form an [(m — 1)/2]-cover. By Corollary 2.2, it remains to show that R is
not preserved by a monotone operation on P. Let us select a subposet T of P that is
isomorphic to 1 4+ 2+ 2+ 2+ 1 such that there exists an idempotent monotone map
r from P onto T. By Lemma 5 in [6] there is a monotone function g: T>™ — T that
docs not preserve | J[—, r(R;). But then g(r(z1), ..., r(z2m)) does not preserve R.

For the case when 2+ 2+ 1 is a retract of P, we note that the proofs and claims in
Tardos’s paper [6] can simply be carried over to the poset 1+ 2+ 2 and so can the
above argument to P by leaving out the two minimal elements when defining Q.
The case when 1+ 2+ 2 is a retract of P is the dual of the preceding one. O

3. Series Parallel Posets with Finitely Generated Clones

We will prove that the posets described in Theorem 2.3 are the only ones with clones
not having finite generating sets among series parallel posets. First we show, if none
of 24+2,14+2+2,2+2+1and 1 +2+2+ 2+ 1is a retract of a series parallel
poset P then the clone of P contains a 5-ary nuf.

THEOREM 3.1. Let P be a connected series parallel poset. If P has neither of
242, 142+2+2+1,2+2+1, and 1+ 2+ 2 as a retract then every monotone
P-zigzag is one of the form

a a, al\/ a,
’ and
b, b,
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for some appropriate a,, a, b, and by in P. In particular, P admits a majority
function (when 1+ 2+ 2+ 1 is not a retract of P) or a 5-ary nuf.

Proof. Let P be a connected series parallel poset. Let us suppose that (Q, g) is a
P-zigzag with |[N(Q, g)| > 2. We are going to prove that P has a retract of the form
2+2,142+2+2+1, 24241 or 14+2+2. Let hy and h; be two elements in N(Q, ¢)
such that h; is covered by h;. By the minimality of (Q, g) there is an extension ¢’ of
g to Q\ {Ay, h2} such that (Q, g’) contains a zigzag (H, f) with noncolored elements
hi and h,. ‘

‘We show that (H, f) is one of the form

Note, if h; had no upper covers and h; had no lower covers in H then (H, f)
- would be P-extendible because P has no n-subsets. Hence, if (H, f) is not of the
above form then, in (H, f), up to duality, either there exist three upper covers s, s’
and s” of hy colored by ¢, ¢’ and ¢”, respectively, or there exist two lower covers ¢
and t’ of h; colored by b, b”, respectively. In the first case, let us delete s in (H, f).
We extend the remaining colored poset coloring h; by u and h; by v. Similarly, by
deleting s’ in (H, f) the remaining colored poset is extended coloring h; by u’ and
hy by v'. Now, it is easy to check that v,c”,v’ and ¢ form an n-subset in P. In the
second case, by deleting ¢ in (H, f) the remaining colored poset is extended coloring
hy by u and h; by v. Let o' € P an element that extends f to h,. Now b, v/, b and
v form an n-subset in P. So (H, f) is of the desired form.

In all three cases for (H, f) we claim that a,a’ < b,8' and b, < c, ¢/, whichever
applies. We prove this in the first case. For the others the proof is similar. If b < ¥
then by deleting the covering edge (hy, h2) in (H, f) the remaining colored poset
7 extends coloring h; by u and h; by v. But then u,b’,b and v form an n-subset of P.
Hence b and b’ are incomparable. In this case, by the main argument in Theorem 2.3,
a,a’ < b < c,c holds if and only if a,a’ < ¥’ < ¢, ¢’ does. So if a,a’ < b,b < ¢, ¢
does not hold then, up to symmetry, b is incomparable to a and b’ is incomparable
to c¢. Then b, ¢,a and b’ form an n-subset in P. So we have the claim.

Finally, we show that one of 2+2, 1+2+2+2+1,2+2+1,and 1 +2+2isa
retract of P. Let T be the subset of P that is obtained from Range(f) by augmenting
it by an element above both ¢ and ¢’ and an element below both a and o, provided
there exist such. Let T be the subposet in P induced by 7. Let R be a maximal
subposet of T such that R is isomorphic to one of 2+2, 1+2+2+2+1,2+2+1,
and 1+ 2+ 2. We claim that R is an idempotent image of P. In other words, the
colored poset (P,idr) is R-extendible, i.e., (P,idg) does not contain an R-zigzag.
This claim is obvious if R is isomorphic to one of 1 +2+2+2+1,24+2+1 and
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1+ 2+ 2 by using the form of R-zigzags described in Tardos [6], the facts that P is
series parallel and that (H, f) is not extendible. The only more complicated case, up

to duality, comes up when (H, f) is of the form shown here from the mlddle of the precedmg
figure

and T = R = {b,b,c,c'}. Then let S be the set of elements dominating both b, b’
in P. So ¢,¢’ € S. The subposet S induced by S in P is disconnected and c, c
belong to different components. For otherwise c and ¢’ are connected in S by a
path of length two which contradicts the definition of T or the fact that (H, f) is not
extendible. Now, let S’ be the subposet of P induced by S’ = P\ S. Again, §' is
disconnected and b and b’ belong to different components of §'. For otherwise b and
b are connected in §’ by a path of length two which contradicts the definition of
S or the fact that (H, f) is not extendible. So one can easily define an idempotent
monotone map from P onto R.

Thus, if P has none of 2+ 2, 1+24+2+2+1,2+2+1, and 2+ 2+ 1asa
retract then every P-zigzag has at most one noncolored element. To show that such
a zigzag is of the form stated in the claim use the first half of the second paragraph
of this proof. The last claim of the theorem follows by Remark 1.7. O

We have the following corollary of the previous two theorems.

COROLLARY 3.2. Let P be a bounded series parallel poset. The following are
equivalent:

(1) P admits a 5-ary near unanimity function.
(2) P has a finitely generated clone.
(3) 14+ 242+ 2+1 is not a retract of P.

Theorem 3.1 has a generalization as follows.

COROLLARY 3.3. Every series parallel poset P that has neither of 2+ 2, 1+ 2+
242+1,242+1and 142+ 2 as a retract admils a majority function (when
1+ 2+ 2+ 1 is not a retract of P) or a 5-ary nuf.

Proof. By Theorem 3.1 we have the claim for the connected components of P.
Now, P is obtained as a retract of a product formed by a power of the two element
antichain and the components of P. Since the property of admitting an n-ary nuf is
inherited for product and retract we have the claim. O
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It was shown by Demetrovics and Rényai in [3] that the clone of every crown is
finitely generated although it does not contain a nuf. Next we will show that a
similar result is true for the series parallel posets having 2 + 2 and not having any
of1+24+24+24+1,24+2+1, and 142+ 2 as a retract.

Let P and P;, 1 < i < n, be posets. Let Q denote the product of P;, 1 < i< n. For
a € Q let a; stand for the i-th component of a and let a* stand for the (n - 1)-tuple
obtained from @ by leaving out its i-th component a;. We use the notation a[, p]
for the n-tuple whose i-th component is p and whose other components coincide
with the other components of a, respectively. Let Q[i, p] denote the set of all the
elements of the form a[, p], where a € Q). For a function f: @ — P and p € P; let

f[z,p] f|Q[f»,p]

LEMMA 34. Let P and P;, 1 < i < n, be connected posets. Let Q denote the
product of P;, 1 € i < n. Let f: Q — P be a monotone function with |Range(f)| > 3
which depends on at least two of its variables. Then there exist a,b,c € Q such that
a; = b;, b = ¢ for some i and f(a), f(b) and f(c) form a three element connected
subposet of P.

Proof. Let f: Q — P be a monotone function with |Range(f)| > 3 such that it
depends on its ¢-th variables, where 7 # j. Since f depends on its j-th variable there
is p € P; such that |Range(fj;5))| > 2. Since f depends on its i-th variable there
is ¢ € P; such that fi; ] # fli,q]- By using that [Range(f)| > 3 we choose ¢ € P,
e,b € Q[i,p] and d € Q[i,q] in such a way that b* = d* and f takes on different
values for e, b and d. Since P; is connected there is a path between p and ¢ in P.
Let s be the closest point to p on this path such that f(b[3, s]) is different from both
f(e) and f(b). Let ¢ = b[¢, s]. If there is a t on the path between p and s satisfying
f([i,%]) = f(e) we set a = e. Then for the so obtained a,b and ¢ we get the claim.
For otherwise, since the points of Q[7, p] span a connected subposet of Q the points
b and c¢ are connected by a path in this subposet. Let a be the closest point on this
path to b with the property that. f(a) is different from both f(b) and f(c). Again, by
taking the so obtained a, b and ¢ we get the claim. O

LEMMA 3.5. Let P = A1 + A;, where A, and A, are two antichains. For every
1 < i < n let P; be a finite connected poset whose each element is either comparable
to all minimal or to all maximal elements. Let Q denote the product of P;, 1 i < n.
Then for every monotone map f: Q — P depending on at least two of its variables
either |Range(f) N A1| = 1 or |[Range(f)N A4z| = 1.

Proof. Let f: Q — P be a monotone map depending on at least two of its variables.
We assume that [Range(f)| > 3, otherwise there is nothing to prove. Lemma 3.4
applies. Hence there are a,b, ¢ € Q such that a; = b; and ¥ = ¢ for some i and f(a),
f(b), f(c) form a three element connected subposet of P. Without loss of generality
we assume that one of f(a), f(b) and f(c) is minimal and the other two are maximal
in P. By contradiction, let us assume that there is a d € @ such that f(a), f(b), f(c),
and f(d) form a 4-element crown in P.
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Now we replace a, b, ¢, and d by new elements in P such that the values of f
will not change. As a result of this replacement the new a, b, ¢, and d will satisfy
the old properties for a, b, ¢, and d, moreover for every 1 < j < n the elements a;,
b;, ¢j, and d; will form a connected subposet in P;. We replace d by a minimal
element of Q below d. If f(a) is minimal we replace ¢ by a maximal element of
Q above ¢ and then replace b by c[3,b;]. If f(b) is minimal we replace ¢ by c[i, p],
where p is maximal in P; above ¢; and we replace a by a maximal element above a
in the poset spanned by the elements of Q[7,a;] in Q. If f(c) is minimal we replace
a by a maximal element of Q above a and then replace b by b[, a;].

Let

n .
H= H{aj,bj,cj,dj}.

j=1

Let H be the subposet spanned by the elements of H in Q. Then flg: H— P is
monotone with a 4-element crown in its range. This is impossible since each factor
of H is a connected poset with at most three elements, so it contains an element with
distance at most 1 from each extremal element, which property is preserved under
taking product and monotone image. O

From Lemma 3.5 it follows immediately that the clone of the linear sum of two finite
antichains, each of which having at least two elements, is contained in the Stupecki
clone on the underlying set. We note that an argument similar to the one given in
the last paragraph of the proof of Lemma 3.5 can be used to show for other posets,
such as braids of height one defined in [2], that their clones are contained in the
Stupecki clone.

Observe that a connected series parallel poset P which does not have any of
14+2+42+2+1,24+241, and 1+ 2+ 2 but does have 2+ 2 as a retract is of the
form A; + A;, where each A; is a disjoint sum of series parallel posets B; 1,...,B;;
with [; > 2. Each B;; has neither one of 2+2, 1 +2+2+2+1,24+2+41, and
14242 as a retract and contains a largest element b; ; for i = 1 and a smallest one
b;; for i = 2. On P we define the monotone idempotent maps r;; by r;;j(z) =  if

LEMMA 3.6. Let P be a connected series parallel poset that has 2+ 2 but does not
have any of 1+2+2+2+1,2+2+1, and 1+ 2+ 2 as a retract. We assume that
P is given in the above form. For every 1 < i < n let P; be a finite connected poset
whose each element is either comparable to all minimal or to all maximal elements.
Let Q denote the product of P;, 1 < i < n. Let f: Q — P be a monotone map
such that its range has a nonempty intersection with at least two of the B; ; for each
i=1,2. Let fij: Q — P be defined r;; o f. Then there exists a monotone map
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h: Py x Ptz — P for some 1 < t < n such that

f(xl’ . "zﬂ) = h(xf’fl,l(zl, .. '7zn)9 v ',fl,ll(zl,' . ',zn),

f2,1(z1’ o -,xn)’ . -af2,12($1a . -’xn))-

Proof. Let P be a series parallel poset of the above form and let f: Q — P be an
arbitrary monotone map. Let r: P — P be an idempotent map defined by r(p) = b; ;
for all p € B;;. Then the map r o f: Q — P is a monotone map and its image
is the linear sum of two at least two element finite antichains. So, by Lemma 3.5,
ro f is essentially unary. Hence there exists a 1 < ¢ < n such that for each ¢ € P,
Range(fis,q1) is a subset of some B; ;.

We define h: P; x P'112 — P as follows. The value of h on

(Qa P11 5P, P25+ - -,Pz,lz)

-is given by r;;(pi;) that corresponds to the (7, ;) for which Range(ft,,)) C Bij;-

Now, observe that the so defined A is monotone and satisfies the identity in the
claim. a

Let f be an n-ary operation on P. An l-ary operation on P is called an I-ary polymer
of f, if it is obtained from f by identifying some variables.

LEMMA 3.7. Let C be a clone on a finite set P. Suppose that there is an l-ary
m € C that is near unanimity when restricted to some R C P. Let n > |P|'""1. Then
every n-ary operation f € C with Range(f) C R can be built from its |P|'~1-ary
polymers, m and the projections via composition of functions.

Proof. Let f € C be an operation with arity n > |P|'~! such that Range(f) C R.
Observe that for an arbitrary [ — 1-element subset H of P™ there is an n-ary operation

“which interpolates f on H and is obtained by a | P|'~l-ary polymer of f substituted

in a suitable variable of an n-ary projection. By using these operations, m and the
projections, f is easily built. O

THEOREM 3.8. Let P be a series parallel poset. The clone of P is nonfinitely
generated if and only if one of 1 +24+2+2+1,2+2+1,and 1+ 2+ 2 is a retract
of P.

Proof. The if part of the theorem has been shown in Theorem 2.3. Now, we will
prove the only if part. Let P be a series parallel poset having neither of 14+2+2+2+1,
2+2+1,and 1+ 2+ 2 as a retract. Suppose that P has k connected components.
Then P™ has k™ connected components, say, Cj,...,Ci». Let f: P* — P be a
monotone operation. Let r;: P* — C; be an onto idempotent monotone map defined
by componentwise idempotent maps s;: P — P, 1 I < n,and let f; = for;
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for each 1 < ¢ < k". First we want to show that f; is generated by the |P|*ary
operations on P. Let the image of f; be contained in a connected component C of
P. If the image of f; does not contain a four element crown that is an idempotent
image of C then there exist a subposet R of C with Range(f;) € R and an onto
idempotent map r: P — R such that R is connected, does not have a four element
crown as a retract and so, by Theorem 3.1, it admits a 5-ary nuf m. Hence by taking
m(r(z1), r(z2), r(z3), r(z4), r(zs)) and applying Lemma 3.7 we get the claim. If the
image of f; contains a four element crown that is an idempotent image of C then
Lemma 3.6 applies to the map f|c,. So there exist ¢ and & such that

fi(z1,...,2p)
=h (St (@1), fL1(51(21), - - -3 80 (2n))s - - s FLi (51(21); - - - Sn (@),

F1(51(z1), .. ., 80(2n))s - . o, Frpp (53(21), - - o) Sn(tcn))) .

The range of f ;s o r; is contained in B j for all i/ and j/ hence the preceding
argument applies for fir ;¢ o r;. Since h extends to the whole P1+!1%2 we have the
claim in this case as well.

Finally, we show that f is obtained by using only [P|*ary monotone operations
on P. Observe that f is obtained by substituting the operations fi(%1,...,25) in
the ¢-th variable of the (k™ + n)-ary operation v, that projects to its /-th variable, if
its last n coordinates form an n-tuple in C;. But v, is obtained, via a (k + 1)-ary
monotone operation v; that projects to its j-th variable if its last coordinate is in the
j-th component of P, in the following way:

vn(yO: ey Ykn—1205- .+ wn—l)

= (vn—l(yO, ey Ypn-1-1,%05 - s zn—Z), IRRE)

Un—l(y(k—l)k"‘17 ey Ykr—1,T0y 0 0 0y wn—z)’ zn—l) . O
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