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Abstract

Sensitive and critical complexity of a Boolean function f are measures for the
PRAM and WRAM complexity of f. It is proved that the maximum and even the

minimum sensitive complexity of f can be much larger than its critical complexity.

This result answers the last open questions on the relations between these and
other combinatorical complexity measures.
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i 1. INTRODUCTION

‘Cook Dwork and Reischuk [2] defmed the critical complexity c(f) of a Boolean
function f. For a¢{0,1}, c(f,a) is the number of neighbors b of a (Hamming
distance between a and b is 1) such that f(b) # f(a). Then c(f) is the maximum
of all c(f,a) where a¢{0, l}n

Vishkin and Wigderson [6] defined the sensitive complexity' s(f,a) of a Boolean"
function f at input a. Let d(f,a) be the dimension of the largest subcube of

- {0,1}™ such that the subcube contains a and f is constant on this subcube. Then
s(f,a) := n-d(f,a). The following definition is equivalent (see Wegener [9]).

If f(a) = 1, s(f,a) is the length of the shortest prime implicant covering a. If
f(a) = 0, one has to consider prime clauses. Smax(f) is the maximum of all
s(f,a), and S min(f) is_the minimum of all s(f,a).

These compléxity measures are motivated by the lower bound techniques for
PRAMs and WRAMS due to Cook, Dwork and Reischuk [2] and Vishkin and

- Wigderson [6]. These measures have been used also for other lower bound
techniques for parallel computers. Properties of these complexity measures
have been studied e.g. by Schiirfeld and Wegener [3], Simon [4], Turan [5] and
Wegener [8]. Relations between these and other complex1ty measures have been
investigated by Bublitz, Schiirfeld, Voigt and Wegener [1]. We mention the
known relations between c, Smax and Smin-
- c(f) < smax(f) and s (f) < s .. (f) for all Boolean functions feB,

- c(f) = s .y (f) for all monotone functions feM

= Sin(f) € cf) for all monotone or symmetric functions feMnu S,

We also mention the largest known differences betweon these complexity
measures.

Smin{fn? = 1 but c(f) = s, (f) = n for Fr(x) = xq A oo A xp.
Smin'fn) 7 c(fy) = 5/3 for some explicitly defined functions f, onn =6k
variables.
(f) 7/ clfy)) = (n-1) / (Ln/2 ]+ 2) -> 2 as n -> o for some explic1tly

Smax‘'fn
defined symmetrlc functions faeSn
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The last two results are unsatisfying, since the best known upper bound on

(f, Y/clf, ) or s

mm maXx

natural measure of sensitive complexity, which is defined by the length of prime

‘implicants and prime clauses.

In the following we proVe that s (f,)/clfy) and s (f, )/c(f ) may be rather

min‘'n max

. large, namely of size n%:29 In section 2 we prove some results on the critical -

and sensitive complexity of compound Boolean functions. In section 3 we apply
these results and construct explicitly Boolean functions whose sensitive
complexity is much larger than their critical complexity.

2. THE CRITICAL AND SENSITIVE COMPLEXITY OF COMPOUND FUNCTIONS

We introduce the notion of compound Boolean functions. Let feByp and geB,,
Then fg is the (compdund) function on km variables, grouped into k disjoint
blocks x1,...,x¥ where x! = (xi,...,xl ) and

- 1 k m
fg(x) := f(g(x),...,g(x™)).

Lemma 1: c(fg) < c(f)c(g).

Proof: Let a be some input for fg. b; := g(ai) and b = (bl' ,bi). There are at
most c(f) neighbors b’ of b where f(b ) )ﬁ £f(b). Let b)) be the neighbor of b
which differs from b at position j. If Fb)y = f(b), a change of one bit in al
cannot cause a change of the output. Therefore, only changes in one of the
at most c(f) blocks al where f(b%i)) # f(b) are interesting. There are at most
c(g) neighbors a’l of al such that g(3)) # g(al). Hence, fg is at most c(f)c(g)-
critical. _
‘ O

_____ min(®)+ Smin(h) is the minimal
number of variables such that replacing the variables by appropriate constants
yields a constant subfunction of h. If some block contains less than s,;,(g)
constant inputs, g(xi) is not replaced by a constant. If less than s ;,(f)

(f, )/c(f ) is of size n/log. n. If s, (f) and c(f) were "=
of the same size, we could replace c(f) by s, .x(f) and could work with the more
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block outputs g(xi) are replaced by constants, fg is not replaced by a constant.
Hence, at least s, (f) sp;,(8) variables have to be replaced by constants in
order to obtain a constant subfunction. ‘ o

' o

The estimation of s, (fg) is a little bit more difficult. Let sFL. (h) and
sPC;x(h) be the maximum of all s(h,a) where h(a) = 1 and h(a) = 0 resp. We

use the following interpretation of s(h,a). s(h,a) is the minimal number of variables
X§ which have to be replaced by the corresponding ai-value such that we obtain
a constant subfunction of h.

We like to estimate for some b = (by,...,by) the maximum of all s(fg,a) where

b; = g(ai). W.l.o.g. f(b) = 1. Let ty,...,t, be the prime implicants of f covering

b and let iy and j, be the number of positive and negative resp. literals in

tg. In order to obtain a constant subfunction of fg by replacing variables in
such a way by constants that the i-th g-function can compute b;, it is necessary
to replace, for some £, the appropriate iy g-functions by 1 anfl the appropriate
jg g-functions by 0. For this purpose we can choose inputs a! such that we
have to replace iy sPI (g) + jg sl:ncax(vg) ‘variables xf by ai . Similar considerations

max .
hold for vectors b where f(b) = 0. Hence, we have proved the following lemma.

Lemma 3: For bef~ (1) [bef—l(O)] let r(b) be the number of prime implicants
[prime clauses] covering b and let iy (b) and jg (b) be the number of positive
and negative resp. literals in the 2-th prime implicant [prime clause] covering

b. Then

sll?nlax(fg) 2 ma1X min  {ig(b) SIl:nlax(g) + g0 sggx ()}
bef™ (1) 1<2<r(b)
' aﬁd

bef 1(0) 1s22r(b)

We finish the section with a remark. If f is the logical-and of two inputs, Voigt
and Wegener [7] have shown that one does in general not obtain a2 minimal
polynomial for fg by applying the law of distributivity to the conjunction of
minimal polynomials for g(xl) and g(xz), Nevertheless, by Lemma 3,

Pl - n..PI
smax.(fg) =2 smax(g).




3.'\FUNCTIONS WHOSE SENSITIVE COMPLE_-XITY IS MUCH LARGER THAN
THEIR CRITICAL COMPLEXITY '

We now apply the results of the last section in order to obtain functions whose
sensitive complexity is much larger than their critical complexity. We have to =
start with a function fe¢By whose sensitive complexity is larger than its critical

complexity. Let fl .= £ and £2.= £f2-1 pe the compound function on k? variables.
The largest known value for Smax(f)/c(f) has been obtained for the symmetric.
function f¢S; computing 1 iff the number of ones in the input is Lk/72 ] or
Lk/721+ 1.

Obviously, c(fly = Lk/2] + 2 and, by Lemma 1, c(f¥) < (Lks2] + 2)2. Moreover,
srr;lla,((fl) = k-1 and all prime implicants consist of Lk/2] positive literals and

Fk/27- 1 negative literals. Finally, sfncax(fi) = Lk/72] + 2 and there are pfime clauses
consisting of Lk/2 ] + 2 negative literals and prime clauses consisting of

lk/27 + 1 positive literals. No acf~1(0) is covered by both types of prime clauses.
Hence, by Lemma 3,

Pl (¢f Pl (ef-1 - PC (ef2-1
sP1 (1) = Lk/2] sPL (E7D + (Fks27 .1) sPC (171 and

SPC_(£0) » max {(Lk/21 + 2 s (EF7D, (Tk/271 +D sPC (271

= P1 2-1
= (Lk/72]+ 2) S max (f ).

. We apply the second inequality to sfn%x(fg'l) and insert the result into the

et ‘ Pl 2 k PI 2-1 ky2 _PI 2-2
first inequality. Then, for even k, Smax(f ) 2 5 Smax(f ) + (2) smax(f ).

Le£ Sy := sfnlax(fp) (]2-()9. Then

S;22-2.S323+§ --11:27 and S, > Sp_y + Sg_p . which is the Fibonacci

recursion. Hence, it is easy to prove that Sy 2 Fib(2+2) for 2 > 4 and that for
all 2 and ¢ := 51 + /3)

PI

2 ck, ¢
max(f )2(2) )

smax(f8) = s

,,.',._mf..v.zm,_.ww,.f:?::.' R
et < RS F 1T o atre o




: Altogether,
(ff)/c(ff) 2 (cl - 3 ))9

max

log n

£2 is defined on n = k? variables, hence ¢ 'TJET In order to maximize the

quotxent of maximal sensitive and critical complexity, we have to maximize

(c1 - -——4)) /log k . The optimal value for k’'is 34. Then the quotxent of maximal

sensitive and critical complexity grows as fast as

{ 4 (log n)/log 34 [1og( a(1+ F))]/log 34 0.105‘
(U + f’) .

The.starting point of this consideration is not as good as it seemed at the
first glance. For 34 variables Smax (£)/c(f) = %g— ~ 1.737. We can prove better
results. We know (see [1]) a function g on 6 var1ables such that s, . (g) =5
and c(g) = 3. By Lemma 1 and Lemma 2, s,in(8 )/c(g'q) 2 (5)

The number of variables of g is n =67, Hence, |

s

2 g log 5 - log 3)/log 6 x 50.285
mm(g )/c(g?) = nllog og 3)/log :

. We obtain the best result by starting with the smallest example. Let
heBy be defined by the following Karnaugh diagram.

h 00 01 11 10

00 O 1 | SR |
0t 0 O 0] 1
11 1 1 0 1
‘10_..0__t __O0__0O
Then sp,;,(h) =3 and c(h) = 2. By Lemma 1 and Lemxha 2,

Smin(h?)/7ch?) 2 (3 )JE

The number of variables of h? is n = 4%, Hence, we have shown our main
result,

varlables such that
(h?)/c(h?) » nllog 3-1)/2 , 0.29248

/

2 2
max(h )/c(h®) 2 500
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It has been proved by Simon [4] that c(f) = Q(log n) for all nondegenerate
functions f. Hence, s, ,(f)/c(f) cannot grow faster than n/log n and our

result is not very far from optimal.

There is still an open problem. Are there Boolean functions f such that
Smax(f) grows faster than any polynomial in c(f)? If this were not the case,
the lower bound of Cook, Dwork and Reischuk [2] could be expressed as

Q(log s (f)) and all the mentioned lower bounds for parallel computers
would depend only on the sensitive complexity of Boolean functions. The

only functions, for which it is known that the critical complexity is very
small, are types of addressing functions. For these functions also the sensitive

complexity is small.
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