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INTRODUCTION

Let n = {1;...,n}, and denote by P the lattice of
all partitions of n. For any subset H of Pn there
exists a least sublattice L[ of Pn containing # such that
L is the congruence lattice of some algebra on zn (as the
intersection of congruence lattices on x is again a
congruence lattice). So we may say that 7 generates [
in the sense of congruence lattices. To contrast with
generation in the usual sense of lattices, in this case
we will briefly say that H cl-generates I, or A is a cl-
-generating set of [. Obviously, if A generates a con-
gruence lattice L C Pn’ then H cl-generates [ as well.

In this paper we construct cl-generating sets and
generating sets of minimum cardinality for the partition
lattices Pn'which are clearly congruence lattices.
STRIETZ [2] has shown that the minimum number of
generators of Pn(n 2 4) equals 4, and, as a union of
ordered chains, a 4-element generating set is of the
form 1+1+1+1 or 1+1+2. In [2] he gave a generating set
of type i+1+1+1 for all n z 4, and one of type 1+1+2 for
all » 2 10.

This paper is in final form and no version of it will be submitted
for publication elsewhere. ' ‘
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These results obviously imply that the minimum
number r of cl-generators of Pn is at most 4. We prove
here that r = 3 provided n 2z 3, n # 4. This answers a
question of LANGER and POSCHEL [1]. Using the 3-element
cl-generating set of Pn'given in the proof of Theorem 1.
we construct new 4-element generating sets of the type
1+1+1+1 for »n 2 4, and ones of the type 1+1+2 for » > 7.
So the existence of a generating set of the form 1+1+2
remains open for n = 5,6.

Let UEPn and let f be an operation on n. We will
say that f preserves U, or U admits £, if U is a parti-
tion corresponding to a congruence relation of the
algebra <un;f>. A subset 4 of Pn admits f if every member
of 4 has this property.

We assume throughout that » 2 3. We will denote the
least (greatest) partition of n by E (7). In the
description of the partitions we will not indicate the
1-element blocks. ‘

1. CL~-GENERATION

Clearly, if 4 admits only constants and projections,
then the least congruence lattice containing 4 equals
Pn’ i.e. 4 cl-generates Pn' The following well-known
lemma (cf. [1]) shows that in order to check this prop-
erty of 4 it suffices to deal with unary operations. For

brevity, constants and projections will be called trivial
operations.

LEMMA 1. Let A C P . If A admits a nontrivial opera-
tion then it admits a nontrivial unary operation das well.
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We now establish some straightforward properties

of the cl-generating sets of Pn‘

LEMMA 2. Suppose A4 C P \{E,T} admits only trivial
operations.

(a) Then A contains at least three pairwise incompa-
rable partitions.

(b) If A Zs the union of three chains, then the
join (meet) of the greatest (least) partitions of any

two of these chains equals T (E).

PROOF. (a) Let U1 be a maximal, and u, a minimal
partition in A. There exists a nontrivial unary oper-
ation f on n which takes on two values from a non-
-singleton block of 02 and is constant on every block
of Uq+ It is easy to see that every partition U€4 com-
parable with Uq or v, admits f. Since, by assumption,

A admits no nontrivial operation, it ﬁollows that Uy
and U, can be chosen incomparable, furthermore 4 con-
tains a partition incomparable with both U4 and Uy

(b) Let U1 denote the join of the greatest elements
of two of the chains and U, the least element of the
third chain. Were U1 #.7, the above construction would
yield a nontrivial operation admitted by every partition
in 4. Similar argument, with the role of U4 and U,
interchanged, applies for the meet of the least parti-
tions of the chains.

From this lemma it follows that at least three

partitions are necessary for cl-generating Pn’ further-

more, if there exists a 3-element generating set,. then
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it is contained in a sublattice of Pn of the form

T

E

Figure 1

THEOREM 1. For n 2 3, n # 4, the partition lattice

P has a 3-element cl-generating set.

n?
PROOF. In view of Lemma 1 it suffices to construct
three partitions U1,U2 and Uz such that every unary
operation admitted by them is a constant or a projec-
tion. '
First we consider the case n = 2k+1 (k 2 1), and
define

<(1,3,000,2k+1)(2,4,...,2k)>

uqg =
U, = <(1,2)(3,4)...(2k-1,2k)>
Uy = <(2,3)(4,5)...(2k,2k+1)>.

It will be convenient to follow the proof keeping in mind
the graphs corresponding to the partitions.

The vertices of this graph are the elements of the base
set, and two vertices are connected with an edge (solid,
wavy, and dotted ones for U1,U2,'and Uzs respectively)
iff they are distinct and belong to the same block of the
corresponding partition. (In fact the solid edges are not
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II

Figure 2

drawn in Figure 2, only the two blocks are indicated.)

Let f be a unary operation prese;ving U1,U2,U3.
Observe first that if the sides of a triangle belong to
distinct partitions, then f assumes either three distinct
values or a single value on the three vertices. Indeed,
let a,b,c€n be such that a U, b Uj e Up a ({Z,4,k} =
= {1,2,3}). 1If, say, fla) = f(b), then f(a) = f(b)
(UjAUk) f(e), therefore, since UjAUk = E, we get f(a) =
= f(b) = fle).

Since f preserves U1, on block I it takes on
values only from block I, or only from block II; fF be-
haves similarly on block II. First assume that the
values of f are from the same block of U,. Since 17, 2,
it follows that fF(1) U2 f{2) . However, by assumption,
£ vy £(2), so U,AU, = E implies F(1) = F£(2).

Applying now the previous note consecutively for
the triangles 1,2,3; 2,3,4 and so on, we get that f is

constant.
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Assume now that f maps block I into block II and
vice versa. Observe that the value f(2k+1), which is in
block II, uniquely determines Ff(2k), namely fFf(2k) =
= f(2k+1)+1. Indeed, f(2k+1) Uy £(2k), since 2k+1 Uy 2k;
on the other hand, f(2k+1) and f(2k) are distinct, as
they belong to different blocks of Uq- Therefore f(2k)
is the unique vertex in block I, connected with fFf(2k+1)
by a dotted edge, i.e. it equals f(2k+1)+1. A similar
argument with U, in place of Usy shows that f(2k-1) =
= f(2k)+1, and so on. Hence we get that the equality
F£(r+1)+1 = F(h) must hold for # = 2k+1,2k... until we
reach an element %#® in block II with f(%¥*) = 2k+1. Such
an element does exist, since f(2k+1) z 2. Then »* U,
h*-1, so 2k+1 = f(h*) U, f(n*-1). However, no wavy edge
starts from 2k+1, hence f(4*) = f(h*-1), contradicting
the assumption that they belong to different blocks of
Uqg-

Suppose finally that f maps blocks I and II into
themselves. In the same way as before, we have f(k+1) =
= f(h)+1 for # = 1,2,... until we reach an element %%
such that f(k#%*) = 2k+1. Clearly, if F£(1) = 1, then f is
the identity. Otherwise %% < 2k+1, implying by #¥ Uy
h*+1 that 2k+1 = f(h¥) v, f(n*+1). This is again a
contradiction, since no wavy edge starts from 2k+1.

We consider now the case n = 2k+2 (k 2z 2), and

define

U1 = <(1,3,¢0.,2k+1)(2,4,...,2k)>,
Uy = <(1,2,2k+2) (3,4)...(2k=1,2k)>,
Us ='<(2,3)(4,5)...(2k,2k+1,2k+2)>

‘(see Figure 3).
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Figure 3

Let f be a unary operation preserving U1,U2 and U3.

Since f preserves U,, it maps each block of Uy
into some block of Uqe If f maps block I or II into
block III, i.e. f is constant with value 2k+2 on one of
the nonsingleton blocks of U1, then the above remark on
the triangles shows that f is the constant with value
2k+2. '

It remains to discuss the operations f which map the
union of blocks I and II into itself. Then, forgetting
block III for a moment, we can see as in the odd case
that f° ., the restriction of f to {1,...,2k+1}, is a
constant or the identity. If f° is a constant, then
looking at the triangle 1,2k+1,2k+2 we get that f(1) =
= f(2k+1) = f(2k+2), hence f is a constant, too. If f* is

the identity, then 1 U, 2 U2 2k+2 and 2k U3 2k+1 U3 2k+2
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imply 1 U, 2 U, f(2k+2) and 2k Uy 2k+1 Uy £(2k+2),
whence f(2k+2) = 2k+2, i.e. f is the identity,. too.
This completes the proof of Theorem 1.

Note that for » = 4, Pn has a 4-element cl-gener-

ating set (cf. [2]), however, it has no 3-element cl-gen-

erating set. As we have seen after Lemma 2, if there
existed a 3-element cl-generating set {U1,U2,U3}, then
its members would form, together with F and T, a sub-
lattice, as shown in Figure 1. It is easy to check that
we have one of the following two possibilities
({a,b,c,d} = {1,2,3,4}):

U1 = <(a,b) (cld)>l U1 = <(alb)(cld)>l
Uz = <(a,e) (b,d)>, or U2 = <(a,e) (b,d)>,
Uz = <(a,d)(b,e)>, U3 = <(b,e)>.

In both cases, the nontrivial unary operation f defined
by fla) = d, f(b) = ¢, fle¢) = b, f(d) = a preserves Uqs
Uy and U3.

2. GENERATION IN THE SENSE OF LATTICES

_ Since a generating set of Pn is a generating set
in the sense of congruence lattices as well, Lemma 2 and
the remark after it imply that for » 2 4, a generating
set of P has at least four elements; moreover, a 4-
~element generating set is in the usual notation, either
of type 1+1+1+1 (four pairwise incomparable elements)
or of type 2+1+1 (only two of the four elements are
comparable) .
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STRIETZ [2] has found in P a generating set of
type 1+1+1+1 for all » z 4, and that of type 2+1+1 for
all n 2z 10. Using the partitions occurring in the proof
of Theorem 1 we construct in Pn a new generating set of
type 1+1+1+1 for »n 2z 4 and a generating set of type
2+1+1 for n 2 7.

THEOREM 2. Pn has a generating set of type 1+1+1+1
for all n 2 4, and one of type 2+1+1 for all n 2 7.

PROOF. First let n = 2k+1 (k 2z 2), and consider
the partitions Ugelyilsg defined in the proof of Theorem 1,
and let

Uy = <(1,2,2k,2k+1)>

(see Figure‘4).

T e e

Figure 4
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Set

M1 = U2/\U4 = <(1,2)>
and
<(2k,2k+1)>.

My = U3AU4

We show that UyrUgyiUs,M, and M, generate P_. For the
time being let L denote the sublattiqe of P, generated
by {U1,U2,U3,M1,M2}. To show I = P, clearly, it
suffices to prove that all partitions having one 2-
-elemeqt block and n-2 1-element blocks belong to I.
Define

A
~
A
P
~

K, <(1,2)...(22-1,22)>, 1

Kz <(2,3)...(22,21+1)>, 1 s 1

A
Py

It can be easily seen that X, = ¥

1 1’

14

K'Z = (((KZVUB)/\U.])VKZ)/\U3, 151
1 g k.

<
KZ+1 = (((KZVUZ)AU1)VKZ)AU2, A

/AN

Hence it follows by induction on I that KZ,KzeL(T <17 <

£ k). We get symmetrically that the partitions

- <(2k,2k=1) ... (2(k=7) ,2(k=5)=1)>,

Z., =
J
0§j§k"11 )
Zj = <(2k+1,2k)..-(2(k‘j)+112(k-j)>r

0§j§k"1,

also belong to E. So <(Z,Z+1)>€L for 2 =1,...,2k,

because <(21-1,21)> = KZ”Z and <(27,21L+1)> = K2nz?

k=1 1 k-1
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if 1 £ 7 £ k. Hence
<(zZ,2+2)> = U1A(<(i,i+1)>v<(i+1,i+2)>)€L

for ¢ = 1,...,2k-1. Furthermore, if 7,7 (1 s 2 < § <
£ 2k+1) are of the same parity and <+2 < j, then

<(Z2,d)> = (<(Z24Z2+2)>V...V<(F=2,4)>)A
AL, 2+1)>V<(F=1,F)>V<(Z+1,2+3>V...
e V<(G-3,4-1)>)€EL;

if ¢ is odd, j is even, and |i¢-j| > 1, then, according

to whether ¢ < 4 or © > j, we have

{Z,d)> = (K(Z2,2+1)>V<(Z4+1,5) >IN (L(Z,5-1)>V
V<(g=-1,d)>) €L,
or
(Z2,d)> = (K, FF1)>V(G+1,2) >IN (L(F,2=1)>V
v<(z-1,2)>)€L,

respectively. Thus [ = P4 what was to be proved.
If n = 2k+1 2 7, then the partitions U1,U2,U3 and
<(1,2k+1) (2,2k) > (= U1) also generate P since
1 (U:IVU3)AU2 and M, = (U&VUZ)AU3. Obviously, they
form a generating set of type 2+1+1.

Now let n = 2k+2, k 2 1. It is easy to see that
P4 has a generating set of type 1+1+1+1; take, for ex-
ample, <(1,2)>,<(2,3)>;<(3,4)>,<(24)>. From now on
assume kK 2 2, and let '

Uy
M

]
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U1 = <(1,3,...,2k+1)(2,4,...,2k+2)>,
UZ = <(1,2)(3,4)...(2k+1,2k+2)>,

Uz = <(2,3) (4,5)...(2k,2k+1)>,

Uy = <(1,2,2k,2k+1) >,

(see Figure 5).

Figure 5

Set

M1 = U2/\U4 = <(1,2)> , M2 = U3/\U4 = <(2k,2k+1)>.

Again we want to show that U1,U2,U3,M1 and M, generate
the lattice P . Let L denote the sublattice of P,
generated by {U1,U2,U3,M1,M2}. In the same way as in the
odd. case we get that

<(i,)>€L for 1 < i < j < 2k+1.

Hence
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<(1,2,2k+1,2k+2)> = ((<(1,2k+1)>VU2)/\U1)VM1EL,
<(2k-1,2k)(2k+1,2k+2)> = (((MZVUz)AU1)VM2)AU2EL,

implying that their meet
<(2k+1,2k+2) >€L.

Thus, repeating the argument used in the odd case for
the partitions U1,U3,U2,<(2k+1,2k+2)> and <(2,3)>(< 1),
which are situated symmetrically to U1,U2,U3,M1 and M2,
we get that

<(,41>€L for 2 s 1 < j S 2k+2.

Finally,

<(1,2k+2)> = (<(1,2k+1)>V<(2k+1,2k+2)>)A
A(<(1,2)>V<(2,2k+2)>)€EL,

completing the proof of L =P .

If n = 2k+2 =2 7, then the partitions U1,U2,U3 and
Ua <(1,2k+1) (2,2k)> (s U1) also generate Pn' since
M, (U4VU3)/\U2 and ¥, = (U4VU2)AU3. This yields a
generating set of type 2+1+1. :
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