We are now going to examine, for the degree n = n, = 4, the equations in [P&S, pp. 80-81]
for the computation of the deviation points z; of T-polynomials on two intervals, and will then
specialize to Z, ;. According to [P&S, Formula (7.1)] one has to consider the intervals

(1)  [~1,min {4, B(A)}]U[max {4, B(4)},1] and [-1,CC —DT)U[ CC + VDT, 1]

where

2) CC = CC(A) = L4

2

Y
and DT = DT(A) = E@-4"

Here we have set 4, B(4), CC, DT in place of the variables a € (—=1,1), ™ (a) € (-1,1),c,d
as used in [P&S], in order to avoid notational confusion.

Key is the system of equations as given in [P&S, Formula (7.3)] (we correct here the second
upper index of summation to n — 2): For k = 1,2, ...,n — 1 there holds

(3) 217 = 2 B2 (~ D7 + (~DF + (=" + (D™ ((cc - VD) +
(cc+DT)*) = 0

Due to exploitation of Grobner basis, it is shown that it suffices to consider the special case
m = 0, so that (3)7.4) reduces, if n = 4, to

(4) —2(=zk +2) + (=1 + 1~ ((cC =vDT)" + (cC +VDT)*) = 0, fork=1,2,3.

The assumption n = 4 and m = 0 implies, see [P&S, pp. 78-79], that for a given A € (—1,1)
there is a B(A) € (—1,1) such that there exists a T-polynomial on [—1, min {4, B(A)}]U[max
{A, B(A)}, 1] with m = 0 deviation points in (—1, min{A4, B(A)}). Consequently, both of the two
inner deviation points of the T-polynomial must be situated in (max {4, B(4)}, 1). Therefore,
the goal is to determine B(4). To this end, we deploy the two identities in (2) and,
furthermore, the first equation given in [P&S, p. 80], forn = 4, i.e., 2(1 + DT)CC? — (1 — DT)?
= 0. With these three equations we execute, with Mathematica,

GroebnerBasis[{(B[A] + A)/2 — CC,(B[A] — A)?> — 4DT,2(1 + DT)CC? — (1 —
DT)?},{A, B[A]},{DT, CC}]].

We so get the equation —16 + 1642 + A* + 443B[A] + 16B[A]? — 1042B[A]? + 4AB[A]® + B[A]* = 0.
2 3

16804079  27436B[A] , 3198B[A]*  76B[A] n B[A]4.

1500625 42875 245 35

Among the two real zeros of this equation in the interval (—1, 1) we choose that one which is

least, and this is B[A] = B(A) = —29/35. Hence there exists a T-polynomial on
[-1,—29/35]U [-19/35, 1]. From (2) we deduce CC = —24/35 and DT = 1/49, and we know
that for the chosen A = —19/35 the two inner deviation points of the T-polynomial must be
situated in (—=19/35,1).

In order to determine them we deploy the second respectively third equation (in the variable
z) given in [P&S, p. 80] forn =4, i.e.,

2CCz —2CC%* +1 — DT = 2(—24/35)z — 2(— 24/35)% + 1 — % =0, yielding z = z, = 1/35,
respectively

Choosing e.g. A = —19/35, it turns to —




2CCz+1—DT = 2(—24/35)z+ 1 — 4—19 =0, yielding z = z, = 5/7.

It is readily verified that with CC = —24/35, DT = 1/49, z; = 1/35 and z, = 5/7 the three
equations in (4) are indeed satisfied.

Finally, we reconstruct the Zolotarev polynomial on IU[a, 8] which corresponds to the
normed quartic T-polynomial (with fixed A = —19/35) on [-1,—-29/35]U[ —19/35,1], call it
t4A:

EXAMPLE. Let t44 be of form t4A(x) = X1, t;x'. Exploiting its interpolatory conditions
t4A(—1) = 1, t4A(—29/35) = —1, t4A(—19/35) = —1, t4A(1/35) = 1, t4A(5/7) = —1, t4A(1) = 1 we
get

6863 . 1715x  833x%2  1715x3  60025x% .
— — + , see the left Figure below.
6912 3456 96 3456 6912

(5) t4A(x) =

Knowing that its two deviation points are situated in (—19/35, 1), we have to consider
t4A(—x) in order to be compliant with Theorem 1.1 in [11]. Its graph has the shape of a
compressed normed quartic Zolotarev polynomial on I. Decompressing it by means of the
linear transformation x - (—8 + 27x)/35 yields the normed Zolotarev polynomial

t4A((8 — 27x)/35) on IU[a, B] with @ = ay = 37/27 and B = B, = 43/27. After division by
the leading coefficient, 19683 /6400, we obtain the monic quartic Zolotarev polynomial which
corresponds to the normed T-polynomial t4A above, see the right Figure below:
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