R7alphabeta[x]=x^7+(-7s)x^6+a5 x^5+a4 x^4+a3 x^3+a2 x^2+a1 x+a0; a0=1/215040 (-180708864 s^7+721 \[Alpha]^7+13083 \[Alpha]^6 \[Beta]+178557568 s^6 (\[Alpha]+\[Beta])-153664 s^5 (-228+203 \[Alpha]^2+1214 \[Alpha] \[Beta]+203 \[Beta]^2)+21 \[Alpha]^5 (76+485 \[Beta]^2)-7 \[Alpha]^4 \[Beta] (-7092+3427 \[Beta]^2)-219520 s^4 (120 \[Alpha]+77 \[Alpha]^3+120 \[Beta]-228 \[Alpha]^2 \[Beta]-228 \[Alpha] \[Beta]^2+77 \[Beta]^3)+7 \[Alpha]^2 \[Beta] (3856-7320 \[Beta]^2+1455 \[Beta]^4)-7 \[Alpha]^3 (3856+7320 \[Beta]^2+3427 \[Beta]^4)+\[Beta] (-2880-26992 \[Beta]^2+1596 \[Beta]^4+721 \[Beta]^6)+\[Alpha] (-2880+26992 \[Beta]^2+49644 \[Beta]^4+13083 \[Beta]^6)+784 s^3 (-6304+7385 \[Alpha]^4+4200 \[Alpha]^3 \[Beta]+1588 \[Beta]^2+7385 \[Beta]^4+\[Alpha]^2 (1588-24274 \[Beta]^2)+8 \[Alpha] \[Beta] (3419+525 \[Beta]^2))-224 s^2 (952 \[Alpha]^5+9485 \[Alpha]^4 \[Beta]-5 \[Alpha]^3 (1861+1129 \[Beta]^2)+\[Alpha]^2 (17741 \[Beta]-5645 \[Beta]^3)+\[Beta] (-3928-9305 \[Beta]^2+952 \[Beta]^4)+\[Alpha] (-3928+17741 \[Beta]^2+9485 \[Beta]^4))-2 s (-30784+25627 \[Alpha]^6-15778 \[Alpha]^5 \[Beta]-101808 \[Beta]^2+150276 \[Beta]^4+25627 \[Beta]^6+\[Alpha]^4 (150276-74123 \[Beta]^2)+28 \[Alpha]^3 \[Beta] (3748+751 \[Beta]^2)-14 \[Alpha] \[Beta] (-20816-7496 \[Beta]^2+1127 \[Beta]^4)-7 \[Alpha]^2 (14544+83672 \[Beta]^2+10589 \[Beta]^4))); a1=1/192 (-19208 s^4+8232 s^3 (\[Alpha]+\[Beta])+196 s^2 (10+3 \[Alpha]^2-28 \[Alpha] \[Beta]+3 \[Beta]^2)-14 s (12 \[Alpha]+31 \[Alpha]^3+12 \[Beta]-43 \[Alpha]^2 \[Beta]-43 \[Alpha] \[Beta]^2+31 \[Beta]^3)+3 (-8+7 \[Alpha]^4+14 \[Alpha]^3 \[Beta]-14 \[Beta]^2+7 \[Beta]^4+14 \[Alpha] \[Beta] (2+\[Beta]^2)-14 \[Alpha]^2 (1+3 \[Beta]^2))); a2=-(1/1920)7 (38416 s^5-27440 s^4 (\[Alpha]+\[Beta])+1960 s^3 (-10+\[Alpha]^2+12 \[Alpha] \[Beta]+\[Beta]^2)+280 s^2 (16 \[Alpha]+7 \[Alpha]^3+16 \[Beta]-17 \[Alpha]^2 \[Beta]-17 \[Alpha] \[Beta]^2+7 \[Beta]^3)+(\[Alpha]-\[Beta])^2 (-116 \[Alpha]+7 \[Alpha]^3-116 \[Beta]+89 \[Alpha]^2 \[Beta]+89 \[Alpha] \[Beta]^2+7 \[Beta]^3)-2 s (-632+175 \[Alpha]^4+110 \[Alpha]^3 \[Beta]-386 \[Beta]^2+175 \[Beta]^4+2 \[Alpha] \[Beta] (618+55 \[Beta]^2)-2 \[Alpha]^2 (193+381 \[Beta]^2))); a3=7/192 (2744 s^4-1176 s^3 (\[Alpha]+\[Beta])-28 s^2 (34+3 \[Alpha]^2-28 \[Alpha] \[Beta]+3 \[Beta]^2)+s (62 \[Alpha]^3+72 \[Beta]-86 \[Alpha]^2 \[Beta]+62 \[Beta]^3+\[Alpha] (72-86 \[Beta]^2))-3 (-8+\[Alpha]^4+2 \[Alpha]^3 \[Beta]-6 \[Beta]^2+\[Beta]^4-6 \[Alpha]^2 (1+\[Beta]^2)+2 \[Alpha] \[Beta] (6+\[Beta]^2))); a4=-(7/48) (392 s^3-84 s^2 (\[Alpha]+\[Beta])+2 (\[Alpha]-\[Beta])^2 (\[Alpha]+\[Beta])-s (76+15 \[Alpha]^2-46 \[Alpha] \[Beta]+15 \[Beta]^2)); a5=7/16 (-4+56 s^2-\[Alpha]^2+2 \[Alpha] \[Beta]-\[Beta]^2-4 s (\[Alpha]+\[Beta])); a6=-7 s; a7=1;